An Overview of Groundwater Monitoring through Point-to Satellite-Based Techniques
Abstract
:1. Introduction
- ➢
- Point-based measurement (for groundwater levels measurement);
- ➢
- Satellite-based monitoring (for groundwater storage measurement);
- ➢
- Regional groundwater estimation through numerical modeling (for groundwater levels measurement).
2. Point-Based Groundwater Monitoring
2.1. Wells and Piezometers
2.2. Conventional Instruments
2.3. Geophysical Investigation Techniques
2.4. Monitoring of Aquifer Recharge Rate
3. Satellite-Based Groundwater Monitoring
3.1. Most Common Satellites
3.2. GRACE Satellite Data
3.2.1. GRACE Products
3.2.2. Estimation of Groundwater Storage (GWS)
3.2.3. GRACE Applications
3.2.4. Additional Computational Tools
3.3. Supporting Terrestrial Modeling Systems
3.3.1. Global Land Data Assimilation System (GLDAS)
3.3.2. WaterGAP Global Hydrological Model (WGHM)
4. Regional Groundwater Estimation through Numerical Modeling
- Point-to-areal-distribution models;
- Hydrologic budget-based models;
- Commercially available software tools.
4.1. Point to areal Distribution Models
4.2. Hydrologic Budget-Based Models
4.3. Available Groundwater Numerical Models
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Environmental Literacy Teacher Guide Series: Earth’s Freash Water. 2019. Available online: https://media.nationalgeographic.org/assets/file/freshwater_chapter6_v2.pdf (accessed on 10 September 2021).
- de Gramont, H.M.; Noel, C.; Oliver, J.L.; Pennequin, D.; Rama, M.; Stephan, R.M.; Frouin, K. Towards a Joint Management of Transboundary Aquifer Systems; A Savoir 03; AFD Research Department: Paris, Frence, 2011. [Google Scholar]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; van Beek, L.P.H.; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, L20402. [Google Scholar] [CrossRef] [Green Version]
- Moench, M.; Burke, J.; Moench, Y. Rethinking the Approach to Groundwater and Food Security; FAO: Rome, Italy, 2003. [Google Scholar]
- Kløve, B.; Ala-aho, P.; Bertrand, G.; Boukalova, Z.; Ertürk, A.; Goldscheider, N.; Ilmonen, J.; Karakaya, N.; Kupfersberger, H.; Kvœrner, J.; et al. Groundwater dependent ecosystems. Part I: Hydroecological status and trends. Environ. wSci. Policy 2011, 14, 770–781. [Google Scholar] [CrossRef]
- Gupta, J.; Pahl-Wostl, C.; Zondervan, R. “Glocal” water governance: A multi-level challenge in the anthropocene. Curr. Opin. Environ. Sustain. 2013, 5, 573–580. [Google Scholar] [CrossRef]
- Lopez-Gunn, E.; Llamas, M.R. Re-thinking water scarcity: Can science and technology solve the global water crisis? Nat. Resour. Forum. 2008, 32, 228–238. [Google Scholar] [CrossRef]
- de Graaf, I.E.M.; van Beek, R.L.P.H.; Gleeson, T.; Moosdorf, N.; Schmitz, O.; Sutanudjaja, E.H.; Bierkens, M.F.P. A global-scale two-layer transient groundwater model: Development and application to groundwater depletion. Adv. Water Resour. 2017, 102, 53–67. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P.; et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 2014, 518, 250–266. [Google Scholar] [CrossRef]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef] [Green Version]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Gleeson, T.; VanderSteen, J.; Sophocleous, M.A.; Taniguchi, M.; Alley, W.M.; Allen, D.M.; Zhou, Y. Groundwater sustainability strategies. Nat. Geosci. 2010, 3, 378–379. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; Van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M. Global groundwater? Issues and solutions. Annu. Rev. Environ. Resour. 2009, 34, 153–178. [Google Scholar] [CrossRef]
- Jiao, J.J.; Zhang, X.; Wang, X. Satellite-based estimates of groundwater depletion in the Badain Jaran Desert, China. Sci. Rep. 2015, 5, 8960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aeschbach-Hertig, W.; Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 2012, 5, 853–861. [Google Scholar] [CrossRef]
- IAEA. Isotope Methods for Dating Old Groundwater; IAEA: Vienna, Austria, 2013. [Google Scholar]
- Khan, H.F.; Ethan Yang, Y.C.; Ringler, C.; Wi, S.; Cheema, M.J.M.; Basharat, M. Guiding groundwater policy in the indus basin of Pakistan using a physically based groundwater model. J. Water Resour. Plan. Manag. 2017, 143, 05016014. [Google Scholar] [CrossRef]
- Kaika, M. The Water Framework Directive: A New Directive for a Changing Social, Political and Economic European Framework. Eur. Plan. Stud. 2003, 11, 303. [Google Scholar] [CrossRef]
- Voss, K.A.; Famiglietti, J.S.; Lo, M.; de Linage, C.; Rodell, M.; Swenson, S.C. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Jelovčan, M.; Šraj, M. Analysis of groundwater levels in piezometers in the vipava valley. Acta Hydrotech. 2020, 33, 61–78. [Google Scholar] [CrossRef]
- Bonacci, E.O.; Roje-Bonacci, E.T. Analysis of groundwater levels and lake vrana water levels on the cres Island. Hrvat. Vode 2018, 26, 39–47. [Google Scholar]
- Sattari, M.T.; Mirabbasi, R.; Sushab, R.S.; Abraham, J. Prediction of Groundwater Level in Ardebil Plain Using Support Vector Regression and M5 Tree Model. Groundwater 2018, 56, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Hu, L.; Jiao, J.J. Evaluation of Groundwater Storage Variations in Northern China Using GRACE Data. Geofluids 2017, 2017, 8254824. [Google Scholar] [CrossRef] [Green Version]
- Novakovic, B.; Farvolden, R.N. Investigations of Groundwater Flow Systems in Big Creek and Big Otter Creek Drainage Basins, Ontario. Can. J. Earth Sci. 1974, 11, 964–975. [Google Scholar] [CrossRef]
- Husain, M.M.; Cherry, J.A.; Fidler, S.; Frape, S.K. On the long-term hydraulic gradient in the thick clayey aquitard in the Sarnia region, Ontario. Can. Geotech. J. 1998, 35, 986–1003. [Google Scholar] [CrossRef]
- Groundwater Monitoring Procedures for Operation and Maintenance Norms. 2002. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiJs4qWl_z1AhWesVYBHWlVBhcQFnoECAMQAQ&url=http%3A%2F%2Fhydrology-project.gov.in%2FPDF%2F-download-manuals-General-HPIIfollow-upWorkingDraftPaper.pdf&usg=AOvVaw2KZyJ646-2EQ-CqBL1ci56 (accessed on 10 September 2021).
- Cunningham, W.L.; Schalk, C.W. Groundwater Technical Procedures of the U.S. Geological Survey. Available online: https://pubs.usgs.gov/tm/1a1/pdf/tm1-a1.pdf (accessed on 10 September 2021).
- Peralta, R.C.; Mazur, V.; Dutram, P. Monitoring of Groundwater Levels for Real-Time Conjunctive Water Management. Publ.—Arkansas Water Resour. Res. Cent. 1983, 92, 1–27. [Google Scholar]
- Authority, S.G. Groundwater Level Monitoring Plan for the Sacramento Groundwater Authority CASGEM Well Network. 2011. Available online: https://www.sgah2o.org/wp-content/uploads/2016/06/pub-CASGEM-Plan-12-21-11.pdf (accessed on 10 September 2021).
- Garber, M.S.; Koopman, F.C. Methods of Measuring Water Levels in Deep Wells. Available online: https://pubs.er.usgs.gov/publication/twri08A1 (accessed on 10 September 2021).
- Chevalking, L.K.; van Steenbergen Description, F. Ideas for Groundwater Management. Available online: https://metameta.nl/wp-content/uploads/2010/05/Ideas_for_Groundwater_Management_Digital.pdf (accessed on 15 November 2021).
- Cunningham, W.L.; Schalk, C.W. Groundwater technical procedures of the U.S. Geological Survey: U.S. Geological Survey Techniques and Methods 1–A1, 151 p, GWPD 16-Measuring water levels in wells and piezometers by use of a submersible pressure transducer. In Groundwater technical procedures of the U.S. Geological Survey; 2010; pp. 139–144. Available online: https://pubs.usgs.gov/tm/1a1/ (accessed on 10 September 2021).
- Kalbus, E.; Reinstorf, F.; Schirmer, M. Hydrology and Earth System Sciences Measuring Methods for Groundwater-Surface Water Interactions: A Review. Hydrol. Earth Syst. Sci. 2006, 10, 873–887. [Google Scholar] [CrossRef] [Green Version]
- Gray Member, D.M.; Mahapatra, A.K. A Method of Measurement of the Ground Water Table and Soil Hydraulic Conductivity; Canadian Agriculture Engineering Department, University of Saskatchewan Saskatoon: Saskatoon, SK, Canada, 1965; Volume 7, pp. 25–27, 36. Available online: https://library.csbe-scgab.ca/docs/journal/7/7_1_25_ocr.pdf (accessed on 10 September 2021).
- Freeman, L.A.; Carpenter, M.C.; Rosenberry, D.O.; Rousseau, J.P.; Unger, R.; McLean, J.S. Use of Submersible Pressure Transducers in Water-Resources Investigations. 2004, pp. 1–65. Available online: https://www.mendeley.com/catalogue/7e74894e-5a41-3358-bc1d-455c09fec44d/ (accessed on 6 January 2022).
- Rossetto, R.; Barbagli, A.; Borsi, I.; Mazzanti, G.; Vienken, T.; Bonari, E. Site investigation and design of the monitoring system at the Sant’Alessio Induced RiverBank Filtration plant (Lucca, Italy). Rend. Online Soc. Geol. Ital. 2015, 35, 248–251. [Google Scholar] [CrossRef]
- Rosenberry, D.O.; Labaugh, J.W.; Hunt, R.J. Use of Monitoring Wells, Portable Piezometers, and Seepage Meters to Quantify Flow between Surface Water and Ground Water Chapter 2 of Field Techniques for Estimating Water Fluxes between Surface Water and Ground Water, U.S Geological Survey. Techniques and Methods Chapter 4-D2; 2008; pp. 39–90. Available online: https://pubs.usgs.gov/tm/04d02/pdf/TM4-D2-chap2.pdf (accessed on 10 September 2021).
- Mallick, J.; Singh, C.K.; Al-Wadi, H.; Ahmed, M.; Rahman, A.; Shashtri, S.; Mukherjee, S. Geospatial and geostatistical approach for groundwater potential zone delineation. Hydrol. Process. 2015, 29, 395–418. [Google Scholar] [CrossRef]
- García-Menéndez, O.; Ballesteros, B.J.; Renau-Pruñonosa, A.; Morell, I.; Mochales, T.; Ibarra, P.I.; Rubio, F.M. Using electrical resistivity tomography to assess the effectiveness of managed aquifer recharge in a salinized coastal aquifer. Environ. Monit. Assess. 2018, 190, 100. [Google Scholar] [CrossRef]
- Mohamaden, M.I.I. Electric resistivity investigation at Nuweiba Harbour Gulf of Aqaba, South Sinai, Egypt. Cit. Egypt. J. Aquat. Res. 2005, 31, 58–67. [Google Scholar]
- Mohamaden, M.I.I. Groundwater exploration at Rafah, Sinai Peninsula, Egypt. Egypt. J. Aquat. Res. 2008, 35, 49–68. [Google Scholar]
- Shagar, M.M.S.A. Structural effect on the groundwater at the Arish City, North eastern Part of Sinai Peninsula, Egypt Egypt. Egypt. J. Aquat. Res. 2008, 35, 31–47. [Google Scholar]
- Mohamaden, M.I.I.; Wahaballa, A.; El-Sayed, H.M. Application of electrical resistivity prospecting in waste water management: A case study Kharga Oasis, Egypt. Egypt. J. Aquat. Res. 2016, 42, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Mohamaden, M.I.I.; Ehab, D. Application of electrical resistivity for groundwater exploration in Wadi Rahaba, Shalateen, Egypt. NRIAG J. Astron. Geophys. 2017, 6, 201–209. [Google Scholar] [CrossRef]
- Raji, W.O. Review of Electrical and Gravity Methods of Near-Surface Exploration for Groundwater. Niger. J. Technol. Dev. 2014, 11, 31–38. [Google Scholar]
- Rolia, E.; Sutjiningsih, D. Application of Geoelectric Method for Groundwater Exploration from Surface (A Literature Study); American Institute of Physics: New York, NY, USA, 1977; p. 20018. [Google Scholar] [CrossRef]
- Rosid, M.S.; Kepic, A.W. Hydrogeological mapping using the Seismoelectric Method. Explor. Geophys. 2005, 36, 245–249. [Google Scholar] [CrossRef]
- Britannica. Earth Exploration—Seismic Refraction Methods|Britannica. Available online: https://www.britannica.com/topic/Earth-exploration/Seismic-refraction-methods (accessed on 6 January 2022).
- Chandler, V.M. Gravity Investigation for Potential Ground-Water Resources in Rock County, Minnesota; Report of Investigations 44; University of Minnesota: St. Paul, MN, USA, 1994; ISSN 0076-9177. Available online: https://conservancy.umn.edu/bitstream/handle/11299/60798/1/mgs-264.pdf (accessed on 15 September 2021).
- Sabri, L.M.; Sudarsono, B.; Aryadi, Y. Groundwater Change Detection by Gravity Measurement on Northern Coast of Java: A Case Study in Semarang City of Central Java of Indonesia. Available online: https://iopscience.iop.org/article/10.1088/1757-899X/797/1/012032 (accessed on 6 January 2022).
- Davis, K.; Li, Y.; Batzle, M. Time-lapse gravity monitoring: A systematic 4D approach with application to aquifer storage and recovery. Geophysics 2008, 73, WA61–WA69. [Google Scholar] [CrossRef]
- Iqbal, N.; Ashraf, M.; Imran, M.; Salam, H.A.; Hasan, F.U.; Khan, A.D. Groundwater Investigations and Mapping in the Lower Indus Plain; PCRWR: Islamabad, Pakistan, 2020. [Google Scholar]
- Kendall, C.; Aravena, R. Nitrate Isotopes in Groundwater Systems. In Environmental Tracers in Subsurface Hydrology; Springer: Boston, MA, USA, 2000; pp. 261–297. [Google Scholar]
- Balkhair, K.S.; Masood, A.; Almazroui, M.; Rahman, K.U.; Bamaga, O.A.; Kamis, A.S.; Ahmed, I.; Al-Zahrani, M.I.; Hesham, K. Groundwater share quantification through flood hydrographs simulation using two temporal rainfall distributions. Desalin. Water Treat. 2018, 114, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Scanlon, B.; Güntner, A. Long-term groundwater storage change in Victoria, Australia from satellite gravity and in situ observations. Glob. Planet. Chang. 2016, 139, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Oikonomidis, D.; Dimogianni, S.; Kazakis, N.; Voudouris, K. A GIS/Remote Sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. J. Hydrol. 2015, 525, 197–208. [Google Scholar] [CrossRef]
- Frappart, F.; Ramillien, G. Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef] [Green Version]
- Rohith, G.; Sutha Kumar, L.; Purnamasayangsukasih, R.P.; Adnan, M.I.A. A review of uses of satellite imagery in monitoring mangrove forests. IOP Conf. Ser. Earth Environ. Sci. 2016. [Google Scholar] [CrossRef]
- WMO. The Global Satellite Observing System: A Success Story|World Meteorological Organization. 2010. Available online: https://public.wmo.int/en/bulletin/global-satellite-observing-system-success-story (accessed on 8 January 2022).
- Elbeih, S.F. An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. Ain Shams Eng. J. 2015, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nayak, T.R.; Gupta, S.K.; Galkate, R. GIS Based Mapping of Groundwater Fluctuations in Bina Basin. Aquat. Procedia 2015, 4, 1469–1476. [Google Scholar] [CrossRef]
- Nouri, H.; Nagler, P.; Chavoshi Borujeni, S.; Barreto Munez, A.; Alaghmand, S.; Noori, B.; Galindo, A.; Didan, K. Effect of spatial resolution of satellite images on estimating the greenness and evapotranspiration of urban green spaces. Hydrol. Process. 2020, 34, 3183–3199. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- NASA-MODIS. 2020. Available online: https://earthdata.nasa.gov/earth-observation-data/near-real-time/download-nrt-data/modis-nrt (accessed on 25 September 2021).
- Masood, A.; Mushtaq, H. Spatio-Temporal Analysis of Early Twenty-First Century Areal Changes in the Kabul River Basin Cryosphere. Earth Syst. Environ. 2018, 2, 563–571. [Google Scholar] [CrossRef]
- Hashmi, M.Z.U.R.; Masood, A.; Mushtaq, H.; Bukhari, S.A.A.; Ahmad, B.; Tahir, A.A. Exploring climate change impacts during first half of the 21st century on flow regime of the transboundary kabul river in the hindukush region. J. Water Clim. Chang. 2020, 11, 1521–1538. [Google Scholar] [CrossRef]
- Zhang, Z.; Moore, J.C. Mathematical and Physical Fundamentals of Climate Change. Available online: https://www.elsevier.com/books/mathematical-and-physical-fundamentals-of-climate-change/zhang/978-0-12-800066-3 (accessed on 25 September 2021). eBook ISBN: 97801280058352014.
- Cao, Z. Assessment methods for air pollution exposure. In Spatiotemporal Analysis of Air Pollution and Its Application in Public Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 197–206. [Google Scholar] [CrossRef]
- Westerhoff, R.; White, P.; Rawlinson, Z. Application of global models and satellite data for smaller-scale groundwater recharge studies. Hydrol. Earth Syst. Sci. 2016. [Google Scholar] [CrossRef] [Green Version]
- Elmahdy, S.; Mohamed, M.; Ali, T. Land use/land cover changes impact on groundwater level and quality in the northern part of the United Arab Emirates. Remote Sens. 2020, 12, 1715. [Google Scholar] [CrossRef]
- USGS. What Is the Landsat Satellite Program and Why Is It Important?|U.S. Geological Survey. Available online: https://www.usgs.gov/faqs/what-landsat-satellite-program-and-why-it-important (accessed on 6 January 2022).
- Meyers, Z.P.; Frisbee, M.D.; Rademacher, L.K.; Stewart-Maddox, N.S. Old groundwater buffers the effects of a major drought in groundwater-dependent ecosystems of the eastern Sierra Nevada (CA). Environ. Res. Lett. 2021, 16, 044044. [Google Scholar] [CrossRef]
- Sharma, A.K.; Hubert-Moy, L.; Buvaneshwari, S.; Sekhar, M.; Ruiz, L.; Bandyopadhyay, S.; Corgne, S. Irrigation history estimation using multitemporal landsat satellite images: Application to an intensive groundwater irrigated agricultural watershed in India. Remote Sens. 2018, 10, 893. [Google Scholar] [CrossRef] [Green Version]
- Huntington, J.; McGwire, K.; Morton, C.; Snyder, K.; Peterson, S.; Erickson, T.; Niswonger, R.; Carroll, R.; Smith, G.; Allen, R. Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive. Remote Sens. Environ. 2016, 185, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Khand, K.; Kagone, S.; Schauer, M.; Senay, G.B.; Wu, Z. A novel approach for next generation water-use mapping using Landsat and Sentinel-2 satellite data. Hydrol. Sci. J. 2020, 65, 2508–2519. [Google Scholar] [CrossRef]
- Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Marais Sicre, C.; Le Dantec, V.; Demarez, V. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sens. Environ. 2016, 184, 668–681. [Google Scholar] [CrossRef]
- Clark, M.L. Comparison of simulated hyperspectral HyspIRI and multispectral Landsat 8 and Sentinel-2 imagery for multi-seasonal, regional land-cover mapping. Remote Sens. Environ. 2017, 200, 311–325. [Google Scholar] [CrossRef]
- Ferrant, S.; Selles, A.; Le Page, M.; Herrault, P.A.; Pelletier, C.; Al-Bitar, A.; Mermoz, S.; Gascoin, S.; Bouvet, A.; Saqalli, M.; et al. Detection of irrigated crops from Sentinel-1 and Sentinel-2 data to estimate seasonal groundwater use in South India. Remote Sens. 2017, 9, 1119. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Campos-Taberner, M.; García-Haro, F.J.; Busetto, L.; Ranghetti, L.; Martínez, B.; Gilabert, M.A.; Camps-Valls, G.; Camacho, F.; Boschetti, M. A critical comparison of remote sensing Leaf Area Index estimates over rice-cultivated areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT polar system. Remote Sens. 2018, 10, 763. [Google Scholar] [CrossRef] [Green Version]
- Rozenstein, O.; Haymann, N.; Kaplan, G.; Tanny, J. Estimating cotton water consumption using a time series of Sentinel-2 imagery. Agric. Water Manag. 2018, 207, 44–52. [Google Scholar] [CrossRef]
- Wang, Q.; Atkinson, P.M. Spatio-temporal fusion for daily Sentinel-2 images. Remote Sens. Environ. 2018, 204, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Eo Portal Directory. Copernicus: Sentinel-2—Satellite Missions—eoPortal Directory. Available online: https://earth.esa.int/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-2 (accessed on 7 January 2022).
- Dubois, C.; Stoffner, F.; Kalia, A.C.; Sandner, M.; Labiadh, M.; Mimouni, M. Copernicus sentinel-2 data for the determination of groundwater withdrawal in the maghreb region. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences IV-1, Karlsruhe, Germany, 10–12 October 2018; Volume 4, pp. 37–44. [Google Scholar]
- Stoffner, F.; Mimouni, M. Application of sentinel 2 satellite imagery for sustainable groundwater management in agricultural areas—chtouka aquifer, morocco. Quaternary 2021, 4, 35. [Google Scholar] [CrossRef]
- Galloway, D.L.; Jones, D.R.; Ingebritsen, S.E. Measuring Land Subsidence from Space; U.S. Geological Survey Fact Sheet 051–00; 2000; p. 4. Available online: http://pubs.usgs.gov/fs/fs-051-00/ (accessed on 30 November 2021).
- Lu, Y.Y.; Ke, C.Q.; Jiang, H.J.; Chen, D.L. Monitoring urban land surface deformation (2004–2010) from InSAR, groundwater and levelling data: A case study of Changzhou city, China. J. Earth Syst. Sci. 2019, 128, 159. [Google Scholar] [CrossRef] [Green Version]
- Castellazzi, P.; Schmid, W. Interpreting C-band InSAR ground deformation data for large-scale groundwater management in Australia. J. Hydrol. Reg. Stud. 2021, 34, 100774. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Bhattacharya, A.K. Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: A case study from a hard rock terrain. Int. J. Remote Sens. 2006, 27, 4599–4620. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Rodell, M. Water in the balance. Science 2013, 340, 1300–1301. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.A. Groundwater Depletion in the Mississippi Delta as Observed by the Gravity Recovery and Climate Experiment (GRACE) Satellite System. In Proceedings of the Mississippi Water Resources Conference, Jackson, MS, USA, 24–25 April 2014; pp. 59–65. Available online: https://www.wrri.msstate.edu/pdf/2014_wrri_proceedings.pdf (accessed on 1 October 2021).
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48, 1–11. [Google Scholar] [CrossRef]
- Strugarek, D.; Sosnica, K.; Arnold, D.; J’ggi, A.; Zajdel, R.; Bury, G.; Drozdzewski, M. Determination of global geodetic parameters using satellite laser ranging measurements to sentinel-3 satellites. Remote Sens. 2019, 11, 2282. [Google Scholar] [CrossRef] [Green Version]
- Long, D.; Pan, Y.; Zhou, J.; Chen, Y.; Hou, X.; Hong, Y.; Scanlon, B.R.; Longuevergne, L. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 2017, 192, 198–216. [Google Scholar] [CrossRef]
- Alley, W.M.; Konikow, L.F. Bringing GRACE Down to Earth. Groundwater 2015, 53, 826–829. [Google Scholar] [CrossRef]
- Lo, M.H.; Famiglietti, J.S.; Yeh, P.J.F.; Syed, T.H. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data. Water Resour. Res. 2010, 46, 1–15. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Mukherjee, A.; Rodell, M. Groundwater Storage Variations in India; Springer: Singapore, 2018; pp. 49–59. [Google Scholar]
- Ahmed, K.; Shahid, S.; Demirel, M.C.; Nawaz, N.; Khan, N. The changing characteristics of groundwater sustainability in Pakistan from 2002 to 2016. Hydrogeol. J. 2019, 27, 2485–2496. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.M.; Biancale, R.; Hsu, H.T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Castellazzi, P.; Martel, R.; Rivera, A.; Huang, J.; Pavlic, G.; Calderhead, A.I.; Chaussard, E.; Garfias, J.; Salas, J. Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management. Water Resour. Res. 2016, 52, 5985–6003. [Google Scholar] [CrossRef]
- Rodell, M.; Chen, J.; Kato, H.; Famiglietti, J.S.; Nigro, J.; Wilson, C.R. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J. 2007, 15, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Shamsudduha, M.; Taylor, R.G.; Longuevergne, L. Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin. Water Resour. Res. 2012, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, N.; Hossain, F.; Lee, H.; Akhter, G. Satellite Gravimetric Estimation of Groundwater Storage Variations over Indus Basin in Pakistan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3524–3534. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S. An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 2001, 37, 1327–1339. [Google Scholar] [CrossRef] [Green Version]
- Strassberg, G.; Scanlon, B.R.; Chambers, D. Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plains aquifer, central United States. Water Resour. Res. 2009, 45, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Pan, Y.; Gong, H.; Yeh, P.J.-F.; Li, X.; Zhou, D.; Zhao, W. Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophys. Res. Lett. 2015, 42, 1791–1799. [Google Scholar] [CrossRef]
- Yeh, P.J.F.; Swenson, S.C.; Famiglietti, J.S.; Rodell, M. Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 2006, 42, 1–7. [Google Scholar] [CrossRef]
- Döll, P.; Hoffmann-Dobrev, H.; Portmann, F.T.; Siebert, S.; Eicker, A.; Rodell, M.; Strassberg, G.; Scanlon, B.R. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 2012, 59–60, 143–156. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, J.; Huang, Y.; Zhou, K.; Ding, X.; Fu, J. The review of GRACE data applications in terrestrial hydrology monitoring. Adv. Meteorol. 2014, 2014, 725131. [Google Scholar] [CrossRef]
- Mohanasundaram, S.; Mekonnen, M.M.; Haacker, E.; Ray, C.; Lim, S.; Shrestha, S. An application of GRACE mission datasets for streamflow and baseflow estimation in the Conterminous United States basins. J. Hydrol. 2021, 601, 126622. [Google Scholar] [CrossRef]
- Tiwari, V.M.; Wahr, J.; Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 2009, 36, L18401. [Google Scholar] [CrossRef] [Green Version]
- Famiglietti, J.S.; Lo, M.; Ho, S.L.; Bethune, J.; Anderson, K.J.; Syed, T.H.; Swenson, S.C.; De Linage, C.R.; Rodell, M. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 2011, Vol. 38, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Castle, S.L.; Thomas, B.F.; Reager, J.T.; Rodell, M.; Swenson, S.C.; Famiglietti, J.S. Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys. Res. Lett. 2014, 41, 5904–5911. [Google Scholar] [CrossRef] [Green Version]
- Alley, W.M.; Clark, B.R.; Ely, D.M.; Faunt, C.C. Groundwater Development Stress: Global-Scale Indices Compared to Regional Modeling. Groundwater 2018, 56, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.Y.; Green, R.; Rodell, M.; Swenson, S. Inferring aquifer storage parameters using satellite and in situ measurements: Estimation under uncertainty. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Rzepecka, Z.; Birylo, M. Groundwater storage changes derived from GRACE and GLDAS on smaller river basins—A case study in Poland. Geosciences 2020, 10, 124. [Google Scholar] [CrossRef] [Green Version]
- ASCE. Artificial Neural Networks in Hydrology. I: Preliminary Concepts. J. Hydrol. Eng. 2000, 5, 115–123. [Google Scholar] [CrossRef]
- ASCE. Artificial Neural Networks in Hydrology. II: Hydrologic Applications. J. Hydrol. Eng. 2000, 5, 124–137. [Google Scholar] [CrossRef]
- Chang, F.J.; Chang, Y.T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Resour. 2006, 29, 1–10. [Google Scholar] [CrossRef]
- House-Peters, L.A.; Chang, H. Urban water demand modeling: Review of concepts, methods, and organizing principles. Water Resour. Res. 2011, 47, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hsu, K.; Gupta, H.V.; Sorooshian, S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 10, 2517–2530. [Google Scholar] [CrossRef]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Moradkhani, H.; Hsu, K.L.; Gupta, H.V.; Sorooshian, S. Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J. Hydrol. 2004, 295, 246–262. [Google Scholar] [CrossRef] [Green Version]
- Haykin, S. Neural Networks and Learning Machines; Pearson: Hamilton, ON, Canada, 2008; Volume 3, p. 937. Available online: https://cours.etsmtl.ca/sys843/REFS/Books/ebook_Haykin09 (accessed on 6 January 2022).
- Sun, A.Y. Predicting groundwater level changes using GRACE data. Water Resour. Res. 2013, 49, 5900–5912. [Google Scholar] [CrossRef]
- Seo, J.Y.; Lee, S. Il Spatio-temporal ground water drought monitoring using multi-satellite data based on an artificial neural network. Water 2019, 11, 1953. [Google Scholar] [CrossRef] [Green Version]
- Gemitzi, A.; Tsagkarakis, K.; Lakshmi, V. Determination of Groundwater Abstractions by Means of GRACE Data and Artificial Neural Networks; Geophysical Research Abstracts Vol. 19, EGU2017-3649; EGU General Assembly: Vienna, Austria, 2017; Available online: https://meetingorganizer.copernicus.org/EGU2017/EGU2017-3649.pdf (accessed on 15 October 2021).
- Pinto, D.; Shrestha, S.; Babel, M.S.; Ninsawat, S. Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Appl. Water Sci. 2017, 7, 503–519. [Google Scholar] [CrossRef] [Green Version]
- Xiao, R.; He, X.; Zhang, Y.; Ferreira, V.G.; Chang, L. Monitoring groundwater variations from satellite gravimetry and hydrological models: A comparison with in-situ measurements in the mid-atlantic region of the United States. Remote Sens. 2015, 7, 686–703. [Google Scholar] [CrossRef] [Green Version]
- Abou Zaki, N.; Torabi Haghighi, A.; Rossi, P.M.; Tourian, M.J.; Kløve, B. Monitoring Groundwater Storage Depletion Using Gravity Recovery and Climate Experiment (GRACE) Data in Bakhtegan Catchment, Iran. Water 2019, 11, 1456. [Google Scholar] [CrossRef] [Green Version]
- Döll, P.; Kaspar, F.; Lehner, B. A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol. 2003, 270, 105–134. [Google Scholar] [CrossRef]
- Döll, P.; Müller Schmied, H.; Schuh, C.; Portmann, F.T.; Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 2014, 50, 5698–5720. [Google Scholar] [CrossRef]
- Dong, J.; Yu, M.; Bian, Z.; Wang, Y.; Di, C. Geostatistical analyses of heavy metal distribution in reclaimed mine land in Xuzhou, China. Environ. Earth Sci. 2011, 62, 127–137. [Google Scholar] [CrossRef]
- Wu, C.; Wu, J.; Luo, Y.; Zhang, H.; Teng, Y.; DeGloria, S.D. Spatial interpolation of severely skewed data with several peak values by the approach integrating kriging and triangular irregular network interpolation. Environ. Earth Sci. 2011, 63, 1093–1103. [Google Scholar] [CrossRef]
- Kumar, C.P. Assessment of Groundwater Potential. Int. J. Eng. Sci. 2012, 1, 64–79. [Google Scholar]
- Konikow, L.F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Döll, P.; Fiedler, K. Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci. 2008, 12, 863–885. [Google Scholar] [CrossRef] [Green Version]
- Kalbus, E.; Reinstorf, F.; Schirmer, M. Measuring Methods for Groundwater, Surface Water And Their Interactions: A Review. 2006. Available online: www.hydrol-earth-syst-sci-discuss.net/3/1809/2006/ (accessed on 17 September 2020).
- Kumar, C.P. An Overview of Commonly Used Groundwater Modelling Software. Int. J. Adv. Sci. Eng. Technol. 2019, 6, 7854–7865. [Google Scholar]
- Chen, C.; Ahmad, S.; Kalra, A. A Conceptual Framework for Integration Development of GSFLOW Model: Concerns and Issues Identified and Addressed for Model Development Efficiency. Geosci. Model Dev. Discuss. 2018, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Parkhurst, D.; Kipp, K.; Charlton, S. PHAST Version 2—A program for simulating groundwater flow, solute transport, and multicomponent geochemical reactions. Model. Tech. B 2010. [Google Scholar] [CrossRef]
- Hu, L.; Jiao, J.J. Calibration of a large-scale groundwater flow model using GRACE data: A case study in the Qaidam Basin, China. Hydrogeol. J. 2015, 23, 1305–1317. [Google Scholar] [CrossRef]
- Bailey, R.T.; Bieger, K.; Arnold, J.G.; Bosch, D.D. A new physically-based spatially-distributed groundwater flow module for SWAT+. Hydrology 2020, 7, 75. [Google Scholar] [CrossRef]
- Triana, J.S.A.; Chu, M.L.; Guzman, J.A.; Moriasi, D.N.; Steiner, J.L. Evaluating the risks of groundwater extraction in an agricultural landscape under different climate projections. Water 2020, 12, 400. [Google Scholar] [CrossRef] [Green Version]
- USGS. ModelMuse Downloads. Available online: https://water.usgs.gov/water-resources/software/ModelMuse/ (accessed on 17 January 2022).
- De Filippis, G.; Pouliaris, C.; Kahuda, D.; Vasile, T.A.; Manea, V.A.; Zaun, F.; Panteleit, B.; Dadaser-Celik, F.; Positano, P.; Nannucci, M.S.; et al. Spatial data management and numerical modelling: Demonstrating the application of the QGIS-integrated FREEWAT platform at 13 case studies for tackling groundwater resource management. Water 2020, 12, 41. [Google Scholar] [CrossRef] [Green Version]
Satellite | Launched by | Start | Resolution | Outputs |
---|---|---|---|---|
MODIS (Terra and Aqua) | NASA | 1999 and 2002 | 250 m, 500 m, 1 km | Precipitable water, cloud, atmospheric profiles, land cover, evapotranspiration, water mask, ocean products, and snow, glaciers, and sea ice cover |
Landsat | NASA and USGS | 1972 | 30 m | Agriculture, land use, water resources, forestry |
Sentinel-2 | ESA | 2015 | 10–20 m | Soil, water, and vegetation cover for land, inland waterways, and coastal areas |
INSAR | USGS | 1992 | 20 m | Measuring the variations of land surface elevation at higher resolution and spatial detail |
IRS-LISS 3 | ISRO and USGS | 2003 | 24 m | Data for integrated land and water resource management |
SRTM DEM | NASA | 2000 | 90 m, 30 m | Elevation data of an area |
GRACE | NASA | 2002 | 300 km | Terrestrial water storage that includes groundwater, soil moisture, surface water, canopy water, snow, and ice water |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masood, A.; Tariq, M.A.U.R.; Hashmi, M.Z.U.R.; Waseem, M.; Sarwar, M.K.; Ali, W.; Farooq, R.; Almazroui, M.; Ng, A.W.M. An Overview of Groundwater Monitoring through Point-to Satellite-Based Techniques. Water 2022, 14, 565. https://doi.org/10.3390/w14040565
Masood A, Tariq MAUR, Hashmi MZUR, Waseem M, Sarwar MK, Ali W, Farooq R, Almazroui M, Ng AWM. An Overview of Groundwater Monitoring through Point-to Satellite-Based Techniques. Water. 2022; 14(4):565. https://doi.org/10.3390/w14040565
Chicago/Turabian StyleMasood, Amjad, Muhammad Atiq Ur Rahman Tariq, Muhammad Zia Ur Rahman Hashmi, Muhammad Waseem, Muhammad Kaleem Sarwar, Wasif Ali, Rashid Farooq, Mansour Almazroui, and Anne W. M. Ng. 2022. "An Overview of Groundwater Monitoring through Point-to Satellite-Based Techniques" Water 14, no. 4: 565. https://doi.org/10.3390/w14040565