Experimental Investigation on Bioremediation of Heavy Metal Contaminated Solution by Sporosarcina pasteurii under Some Complex Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria and Culture Medium
2.2. Laboratory Experiments for Bioremediation
2.3. Key Indicators for Result Analyses
3. Results and Discussions
3.1. Chemical Precipitation of Single Heavy Metal
3.2. Bioremediation of Single-Heavy-Metal Contaminated Solution
3.2.1. Bioremediation Efficiency of S. pasteurii
- For Cd Contaminated Solution
- For Cr(III) contaminated solution
- For Zn contaminated solution
- For Ni contaminated solution
- For Cu contaminated solution
3.2.2. Mechanism of S. pasteurii-Based Bioremediation
3.3. Bioremediation of Heavy Metal Contaminated Solution under High Salinity Context
3.4. Bioremediation of Multi-Heavy-Metal-Contaminated Solutions
4. Conclusions
- S. pasteurii can effectively remedy single Cd, Cr(III) or Zn contaminated solution. The bioremediation rates for Cd and Cr(III) are as high as 96%, regardless of the heavy metal concentration. The bioremediation rate for Zn is larger than 86% when the initial concentration is 500–1000 mg/L, but it decreases gradually with the increase in initial concentration. The efficiency of S. pasteurii-based bioremediation to Ni or Cu is not good within the concentration range covered in this study (i.e., 150–750 mg/L for Ni and 400–2000 mg/L for Cu).
- High mineral salinity (including NaCl and KCl) has very little detrimental effect on the S. pasteurii-based bioremediation of heavy metal contaminated solution. For the typical range of mineral salinity possibly encountered in practice in some contaminated solutions such as leachate of landfills, the detrimental influence of high mineral salinity on bioremediation efficiency can be neglected.
- S. pasteurii-based bioremediation can be considered as a potential option for remedying multi-heavy-metal contaminated solutions. The combination and concentration of involved heavy metals are the main factors controlling the bioremediation efficiency under the multi-heavy-metal contaminated condition. The addition of Cd or Cr(III) shows the negligible influence on the bioremediation ability of S. pasteurii to other heavy metals; the addition of Zn or Ni tends to produce a substantial influence on the bioremediation ability of S. pasteurii to other heavy metals, which becomes more and more significant with the increase in concentration level; whereas the addition of Cu is very likely to produce an extremely detrimental effect on (or even completely inhibit) the bioremediation ability of S. pasteurii to other heavy metals.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahman, R.O.A.; Hung, Y.T. Application of Ionizing Radiation in Wastewater Treatment: An Overview. Water 2020, 12, 19. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Zhang, X.; Yang, Q.; Zhang, K.; Zheng, Y.; Zhou, G.H. Pollution characteristics of atmospheric dustfall and heavy metals in a typical inland heavy industry city in China. J. Environ. Sci. 2018, 71, 283–291. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Li, Z.Y.; Lu, X.N.; Duan, Q.N.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Zhou, P.; Mao, L.A.; Zhi, Y.E.; Zhang, C.H.; Shi, W.J. Effects of plant species coexistence on soil enzyme activities and soil microbial community structure under Cd and Pb combined pollution. J. Environ. Sci. 2010, 22, 1040–1048. [Google Scholar] [CrossRef]
- Jalilvand, N.; Akhgar, A.; Alikhani, H.A.; Rahmani, H.A.; Rejali, F. Removal of Heavy Metals Zinc, Lead, and Cadmium by Biomineralization of Urease-Producing Bacteria Isolated from Iranian Mine Calcareous Soils. J. Soil Sci. Plant Nutr. 2020, 20, 206–219. [Google Scholar] [CrossRef]
- Chileshe, M.N.; Syampungani, S.; Festin, E.S.; Tigabu, M.; Daneshvar, A.; Oden, P.C. Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: Implications for pollution risk and restoration. J. For. Res. 2020, 31, 1283–1293. [Google Scholar] [CrossRef] [Green Version]
- Kanakaraju, D.; Shahdad, N.; Lim, Y.C.; Pace, A. Concurrent removal of Cr(III), Cu(II), and Pb(II) ions from water by multifunctional TiO2/Alg/FeNPs beads. Sustain. Chem. Pharm. 2019, 14, 12. [Google Scholar] [CrossRef]
- Lazaridis, N.K.; Charalambous, C. Sorptive removal of trivalent and hexavalent chromium from binary aqueous solutions by composite alginate-goethite beads. Water Res. 2005, 39, 4385–4396. [Google Scholar] [CrossRef]
- Liu, Z.P.; Zhang, Q.F.; Han, T.Q.; Ding, Y.F.; Sun, J.W.; Wang, F.J.; Zhu, C. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China. Int. J. Environ. Res. Public Health 2016, 13, 63. [Google Scholar] [CrossRef] [Green Version]
- Kamaruddin, M.A.; Yusoff, M.S.; Rui, L.M.; Isa, A.M.; Zawawi, M.H.; Alrozi, R. An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives. Environ. Sci. Pollut. Res. 2017, 24, 26988–27020. [Google Scholar] [CrossRef] [PubMed]
- Naveen, B.P.; Mahapatra, D.M.; Sitharam, T.G.; Sivapullaiah, P.V.; Ramachandra, T.V. Physico-chemical and biological characterization of urban municipal landfill leachate. Environ. Pollut. 2017, 220, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Di Iaconi, C.; Ramadori, R.; Lopez, A. Combined biological and chemical degradation for treating a mature municipal landfill leachate. Biochem. Eng. J. 2006, 31, 118–124. [Google Scholar] [CrossRef]
- Fu, F.L.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Kijjanapanich, P.; Annachhatre, A.P.; Esposito, G.; Lens, P.N.L. Chemical sulphate removal for treatment of construction and demolition debris leachate. Environ. Technol. 2014, 35, 1989–1996. [Google Scholar] [CrossRef]
- Wang, J.; Huang, T.F.; Zhang, L.; Yu, Q.J.; Hou, L.A. Dopamine crosslinked graphene oxide membrane for simultaneous removal of organic pollutants and trace heavy metals from aqueous solution. Environ. Technol. 2018, 39, 3055–3065. [Google Scholar] [CrossRef]
- Wu, S.S.; Xie, F.C.; Chen, S.J.; Fu, B.B. The removal of Pb(II) and Cd(II) with hydrous manganese dioxide: Mechanism on zeta potential and adsorption behavior. Environ. Technol. 2020, 41, 3219–3232. [Google Scholar] [CrossRef]
- Nag, M.; Lahiri, D.; Dutta, B. Biodegradation of used polyethylene bags by a new marine strain of Alcaligenes faecalis LNDR-1. Environ. Sci. Pollut. Res. 2021, 28, 41365–41379. [Google Scholar] [CrossRef]
- Dash, S.; Lahiri, D.; Nag, M.; Das, D.; Ray, R.R. Probing the Surface-Attached In Vitro Microbial Biofilms with Atomic Force (AFM) and Scanning Probe Microscopy (SPM). In Analytical Methodologies for Biofilm Research; Springer: New York, NY, USA, 2021; pp. 223–241. [Google Scholar] [CrossRef]
- Nag, M.; Lahiri, D.; Banerjee, R.; Chatterjee, A.; Ghosh, A.; Banerjee, P.; Ray, R.R. Analysing Microbial Biofilm Formation at a Molecular Level: Role of Fourier Transform Infrared and Raman Spectroscopy. In Analytical Methodologies for Biofilm Research; Springer: New York, NY, USA, 2021; pp. 69–93. [Google Scholar] [CrossRef]
- Dutta, B.; Nag, M.; Lahiri, D.; Ray, R.R. Analysis of Biofilm Matrix by Multiplex Fluorescence In Situ Hybridization (M-FISH) and Confocal Laser Scanning Microscopy (CLSM) during Nosocomial Infections. In Analytical Methodologies for Biofilm Research; Springer: New York, NY, USA, 2021; pp. 183–203. [Google Scholar] [CrossRef]
- Mukherjee, D.; Garai, S.; Lahiri, D.; Nag, M.; Ray, R.R. Monitoring Cell Distribution and Death in Sessile Forms of Microbial Biofilm: Flow Cytometry-Fluorescence Activated Cell Sorting (FCM-FACS). In Analytical Methodologies for Biofilm Research; Springer: New York, NY, USA, 2021; pp. 299–316. [Google Scholar] [CrossRef]
- Jasu, A.; Lahiri, D.; Nag, M.; Ray, R.R. Biofilm-Associated Metal Bioremediation. In Biotechnology for Sustainable; Springer: Singapore, 2021; pp. 201–221. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Tang, Q.; Shi, S.J. Bioremediation of metal-contaminated soils by microbially-induced carbonate precipitation and its effects on ecotoxicity and long-term stability. Biochem. Eng. J. 2021, 166, 107856. [Google Scholar] [CrossRef]
- Tang, Q.; Shi, P.X.; Yuan, Z.; Shi, S.J.; Xu, X.J.; Katsumi, T. Potential of zero-valent iron in remediation of Cd(II) contaminated soil: From laboratory experiment, mechanism study to field application. Soils Found. 2019, 59, 2099–2109. [Google Scholar] [CrossRef]
- Verma, S.; Kuila, A. Bioremediation of heavy metals by microbial process. Environ. Technol. Innov. 2019, 14, 100369. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.L.; Zhang, D.Y. Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol. Eng. 2011, 37, 1601–1605. [Google Scholar] [CrossRef]
- Kumari, D.; Pan, X.L.; Lee, D.J.; Achal, V. Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature. Int. Biodeterior. Biodegrad. 2014, 94, 98–102. [Google Scholar] [CrossRef]
- Li, M.; Cheng, X.H.; Guo, H.X. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int. Biodeterior. Biodegrad. 2013, 76, 81–85. [Google Scholar] [CrossRef]
- Phillips, A.J.; Gerlach, R.; Lauchnor, E.; Mitchell, A.C.; Cunningham, A.B.; Spangler, L. Engineered applications of ureolytic biomineralization: A review. Biofouling 2013, 29, 715–733. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Zheng, J.; Lai, H.; Zhang, R. Microscopic mechanism of shear behavior of sand with different roughness of particles. J. Huazhong Univ. Sci. Technol. Nat. Sci. 2015, 43, 1–6. [Google Scholar]
- Lai, H.J.; Wu, S.F.; Cui, M.J.; Chu, J. Recent development in biogeotechnology and its engineering applications. Front. Struct. Civ. Eng. 2021, 15, 1073–1096. [Google Scholar] [CrossRef]
- Cheng, L.; Cord-Ruwisch, R.; Shahin, M.A. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can. Geotech. J. 2013, 50, 81–90. [Google Scholar] [CrossRef]
- Mugwar, A.J.; Harbottle, M.J. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation. J. Hazard. Mater. 2016, 314, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.J.; Zheng, J.J.; Lai, H.J. Effect of method of biological injection on dynamic behavior for bio-cemented sand. Rock Soil Mech. 2017, 38, 3173–3178. [Google Scholar] [CrossRef]
- Chai, X.L.; Shimaoka, T.; Cao, X.Y.; Guo, Q.; Zhao, Y.C. Characteristics and mobility of heavy metals in an MSW landfill: Implications in risk assessment and reclamation. J. Hazard. Mater. 2007, 144, 485–491. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Fang, L.Y.; Niu, Q.J.; Cheng, L.; Jiang, J.X.; Yu, Y.Y.; Chu, J.; Achal, V.; You, T.Y. Ca-mediated alleviation of Cd2+ induced toxicity and improved Cd2+ biomineralization by Sporosarcina pasteurii. Sci. Total Environ. 2021, 787, 147627. [Google Scholar] [CrossRef]
- Cuzman, O.A.; Rescic, S.; Richter, K.; Wittig, L.; Tiano, P. Sporosarcina pasteurii use in extreme alkaline conditions for recycling solid industrial wastes. J. Biotechnol. 2015, 214, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.M.; Zhu, W.J.; Long, H.Z.; Chai, L.Y.; Wang, Q.W. Chromate reduction by resting cells of Achromobacter sp Ch-1 under aerobic conditions. Process Biochem. 2007, 42, 1028–1032. [Google Scholar] [CrossRef]
- Giovanella, P.; Cabral, L.; Costa, A.P.; Camargo, F.A.D.; Gianello, C.; Bento, F.M. Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presen ce of other metals. Ecotoxicol. Environ. Saf. 2017, 140, 162–169. [Google Scholar] [CrossRef]
- Qiao, S.Y.; Zeng, G.Q.; Wang, X.T.; Dai, C.G.; Sheng, M.P.; Chen, Q.; Xu, F.; Xu, H. Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration. Chemosphere 2021, 274, 129661. [Google Scholar] [CrossRef]
- Gheethi, A.A.; Efaq, A.N.; Mohamed, R.M.; Abdel-Monem, M.O.; Abduah, A.; Hashim, M.A. Bio-removal of Nickel ions by Sporosarcina pasteurii and Bacillus megaterium, A Comparative Study. IOP Conf. Ser. Mater. Sci. Eng. 2017, 226, 012044. [Google Scholar] [CrossRef]
- Duarte-Nass, C.; Rebolledo, K.; Valenzuela, T.; Kopp, M.; Jeison, D.; Rivas, M.; Azocar, L.; Torres-Aravena, A.; Ciudad, G. Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: Challenges to future industrial application. J. Environ. Manag. 2020, 256, 109938. [Google Scholar] [CrossRef]
- Chung, H.; Kim, S.H.; Nam, K. Inhibition of urea hydrolysis by free Cu concentration of soil solution in microbially induced calcium carbonate precipitation. Sci. Total Environ. 2020, 740, 140194. [Google Scholar] [CrossRef]
- Schosseler, P.M.; Wehrli, B.; Schweiger, A. Uptake of Cu2+ by the calcium carbonates vaterite and calcite as studied by continuous wave (CW) and pulse electron paramagnetic resonance. Geochim. Cosmochim. Acta 1999, 63, 1955–1967. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A. A review of microbial precipitation for sustainable construction. Constr. Build. Mater. 2015, 93, 1224–1235. [Google Scholar] [CrossRef]
- Garcia-Sanchez, A.; Alvarez-Ayuso, E. Sorption of Zn, Cd and Cr on calcite. Application to purification of industrial wastewaters. Miner. Eng. 2002, 15, 539–547. [Google Scholar] [CrossRef]
- Buekers, J.; Van Laer, L.; Amery, F.; Van Buggenhout, S.; Maes, A.; Smolders, E. Role of soil constituents in fixation of soluble Zn, Cu, Ni and Cd added to soils. Eur. J. Soil Sci. 2007, 58, 1514–1524. [Google Scholar] [CrossRef]
- Kim, H.; Son, H.M.; Park, S.; Seo, J.; Lee, H.K. Effects of Temperature and Salinity on Concrete-Surface Treatment by Bacteria in Marine Environment. ACI Mater. J. 2020, 117, 57–65. [Google Scholar] [CrossRef]
- Mortensen, B.M.; Haber, M.J.; DeJong, J.T.; Caslake, L.F.; Nelson, D.C. Effects of environmental factors on microbial induced calcium carbonate precipitation. J. Appl. Microbiol. 2011, 111, 338–349. [Google Scholar] [CrossRef]
Group | Case No. | Concentration of (NaCl + KCl) (mg/L) | Concentration of Heavy Metal (mg/L) | ||||
---|---|---|---|---|---|---|---|
Cd | Cr(III) | Zn | Ni | Cu | |||
Single-heavy-metal group | S0 (Reference case) | (0 + 0) | 0 | 0 | 0 | 0 | 0 |
S-A1~S-A5 | 5; 10; 15; 20; 25 | 0 | 0 | 0 | 0 | ||
S-B1~S-B5 | 0 | 250; 500; 750; 1000; 1250 | 0 | 0 | 0 | ||
S-C1~S-C5 | 0 | 0 | 500; 1000; 1500; 2000; 2500 | 0 | 0 | ||
S-D1~S-D5 | 0 | 0 | 0 | 150; 300; 450; 600; 750 | 0 | ||
S-E1~S-E5 | 0 | 0 | 0 | 0 | 400; 800; 1200; 1600; 2000 | ||
High salinity group | H-A0~H-A4 | (0 + 0); (200 + 200): (800 + 800); (1600 + 1600); (6400 + 6400) | 25 | 0 | 0 | 0 | 0 |
H-B0~H-B4 | 0 | 1250 | 0 | 0 | 0 | ||
H-C0~H-C4 | 0 | 0 | 1000 | 0 | 0 | ||
H-D0~H-D4 | 0 | 0 | 0 | 750 | 0 | ||
Multi-heavy-metal group | M-A1~M-A5 | (0 + 0) | 5; 10; 15; 20; 25 | 250; 500; 750; 1000; 1250 | 0 | 0 | 0 |
M-B1~M-B5 | 500; 1000; 1500; 2000; 2500 | 0 | 0 | ||||
M-C1~M-C5 | 0 | 150; 300; 450; 600; 750 | 0 | ||||
M-D1~M-B5 | 0 | 0 | 400; 800; 1200; 1600; 2000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Zhang, R.; Cui, M.; Lai, H. Experimental Investigation on Bioremediation of Heavy Metal Contaminated Solution by Sporosarcina pasteurii under Some Complex Conditions. Water 2022, 14, 595. https://doi.org/10.3390/w14040595
Huang X, Zhang R, Cui M, Lai H. Experimental Investigation on Bioremediation of Heavy Metal Contaminated Solution by Sporosarcina pasteurii under Some Complex Conditions. Water. 2022; 14(4):595. https://doi.org/10.3390/w14040595
Chicago/Turabian StyleHuang, Xiaosong, Rongjun Zhang, Mingjuan Cui, and Hanjiang Lai. 2022. "Experimental Investigation on Bioremediation of Heavy Metal Contaminated Solution by Sporosarcina pasteurii under Some Complex Conditions" Water 14, no. 4: 595. https://doi.org/10.3390/w14040595
APA StyleHuang, X., Zhang, R., Cui, M., & Lai, H. (2022). Experimental Investigation on Bioremediation of Heavy Metal Contaminated Solution by Sporosarcina pasteurii under Some Complex Conditions. Water, 14(4), 595. https://doi.org/10.3390/w14040595