Greening Urban Areas with Decentralized Wastewater Treatment and Reuse: A Case Study of Ecoparque in Tijuana, Mexico
Abstract
:1. Introduction
2. Methods
2.1. Data Collection and Literature Review
2.2. Ecoparque Case Study
2.2.1. Study Site
2.2.2. Sample Collection
2.2.3. Water Quality Analyses
3. Results and Discussion
3.1. DEWATS for Wastewater Treatment and Local Reuse
3.2. Watering of Urban Green Spaces
3.3. Guidelines and Challenges for DEWATS Reuse for Landscape Irrigation
3.4. Tijuana Case Study
3.5. Ecoparque Decentralized Wastewater Treatment for Landscape Irrigation
3.5.1. Ecoparque Background
3.5.2. Water Quality Prior to Upgrade
3.6. Water Quality after Upgrade
3.7. Ecoparque in the Context of Other Treatment Plants in Mexico
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN-Water. Quality and Wastewater. UN-Water. Available online: https://www.unwater.org/water-facts/quality-and-wastewater/ (accessed on 8 February 2021).
- United Nations. World Urbanization Prospects: The 2018 Revision. 2018. Available online: https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf (accessed on 14 February 2021).
- López, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Landsc. Urban Plan. 2001, 55, 271–285. [Google Scholar] [CrossRef]
- Ochoa, Y.; Ojeda-Revah, L. Conservación de vegetación para reducir riesgos hidrometereológicos en una metrópoli fronteriza [Vegetation conservation to reduce hydrometeorological risks on a border metropolis]. Estud. Front. 2017, 18, 47–69. [Google Scholar] [CrossRef] [Green Version]
- Kroeger, T.; Escobedo, F.J.; Hernandez, J.L.; Varela, S.; Delphin, S.; Fisher, J.R.; Waldron, J. Reforestation as a novel abatement and compliance measure for ground-level ozone. Proc. Natl. Acad. Sci. USA 2014, 111, E4204–E4213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramaiah, M.; Avtar, R. Urban Green Spaces and Their Need in Cities of Rapidly Urbanizing India: A Review. Urban. Sci. 2019, 3, 94. [Google Scholar] [CrossRef] [Green Version]
- Tallis, H.; Bratman, G.N.; Samhouri, J.F.; Fargione, J. Are California elementary school test scores more strongly associated with urban trees than poverty? Front. Psychol. 2018, 9, 2074. [Google Scholar] [CrossRef]
- Lundin, M.; Bengtsson, M.; Molander, S. Life Cycle Assessment of Wastewater Systems: Influence of System Boundaries and Scale on Calculated Environmental Loads. Environ. Sci. Technol. 2000, 34, 180–186. [Google Scholar] [CrossRef]
- Cornejo, P.K.; Zhang, Q.; Mihelcic, J.R. How Does Scale of Implementation Impact the Environmental Sustainability of Wastewater Treatment Integrated with Resource Recovery? Environ. Sci. Technol. 2016, 50, 6680–6689. [Google Scholar] [CrossRef]
- Reynaud, N.; Buckley, C. Field-data on parameters relevant for design, operation and monitoring of communal decentralized wastewater treatment systems (DEWATS). Water Pract. Technol. 2015, 10, 787–798. [Google Scholar] [CrossRef]
- Singh, A.; Sawant, M.; Kamble, S.J.; Herlekar, M.; Starkl, M.; Aymerich, E.; Kazmi, A. Performance evaluation of a decentralized wastewater treatment system in India. Environ. Sci. Pollut. Res. Int. 2019, 26, 21172–21188. [Google Scholar] [CrossRef]
- Kavvada, O.; Horvath, A.; Stokes-Draut, J.R.; Hendrickson, T.P.; Eisenstein, W.A.; Nelson, K.L. Assessing Location and Scale of Urban Nonpotable Water Reuse Systems for Life-Cycle Energy Consumption and Greenhouse Gas Emissions. Environ. Sci. Technol. 2016, 50, 13184–13194. [Google Scholar] [CrossRef]
- Barrera, D.M.R. Programas de Educación Ambiental no Formal. ¿Creando Conciencia o Sólo Informando a la Población? El caso del Programa de Ecoparque, Tijuana, Baja California, 2004–2008. Master’s Thesis, El Colegio de la Frontera Norte, Tijuana, Mexico, 2010. [Google Scholar]
- Russell, R. Waste not, want not? Evaluating the urban sustainability implications of centralized versus decentralized wastewater treatment in Tijuana, Mexico. Urban. Geogr. 2014, 35, 805–821. [Google Scholar] [CrossRef]
- Mara, D. Domestic Wastewater Treatment in Developing Countries; Routledge: London, UK, 2013. [Google Scholar] [CrossRef]
- Baum, R.; Luh, J.; Bartram, J. Sanitation: A Global Estimate of Sewerage Connections without Treatment and the Resulting Impact on MDG Progress. Environ. Sci. Technol. 2013, 47, 1994–2000. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.; Rothenberger, D.; Larsen, T.A. Decentralised wastewater treatment technologies from a national perspective: At what cost are they competitive? Water Supply 2005, 5, 145–154. [Google Scholar] [CrossRef]
- International Boundary and Water Commission United States and Mexico (IBWC). Report of Transboundary Bypass Flows into the Tijuana River. 2017. Available online: https://www.waterboards.ca.gov/sandiego/water_issues/programs/tijuana_river_valley_strategy/docs/sewage_issue/2017-04-03_IBWC_Investigative_Report.pdf (accessed on 21 September 2021).
- Benítez, G.; Pérez-Vázquez, A.; Nava-Tablada, M.; Equihua, M.; Álvarez-Palacios, J.L. Urban expansion and the environmental effects of informal settlements on the outskirts of Xalapa city, Veracruz, Mexico. Environ. Urban. 2012, 24, 149–166. [Google Scholar] [CrossRef]
- Hargrove, W.L.; Del Rio, M.; Korc, M. Water matters: Water insecurity and inadequate sanitation in the US/Mexico border region. Environ. Justice 2018, 11, 222–227. [Google Scholar] [CrossRef]
- SEMARNAT EPA. Programa Ambiental México-Estados Unidos: Frontera 2012 Situación de la Región Fronteriza. Reporte de indicadores 2010; 2011. Available online: https://www.epa.gov/sites/production/files/documents/border-2012_indicator-rpt_esp_0.pdf (accessed on 15 April 2020).
- Arcadis. Tijuana River Diversion Study: Flow Analysis, Infrastructure Diagnostic and Alternatives Development; North American Development Bank: San Antonio, TX, USA, 2019. [Google Scholar]
- HDR. Tijuana River Valley: Needs and Opportunities Assessment; HDR: San Diego, CA, USA, 2020. [Google Scholar]
- BORDA. DEWATS Implementation by BORDA; BORDA: Bremen, Germany, 2017. [Google Scholar]
- Sitzenfrei, R.; Rauch, W. Investigating Transitions of Centralized Water Infrastructure to Decentralized Solutions—An Integrated Approach. Procedia Eng. 2014, 70, 1549–1557. [Google Scholar] [CrossRef] [Green Version]
- Eggimann, S.; Truffer, B.; Maurer, M. To connect or not to connect? Modelling the optimal degree of centralisation for wastewater infrastructures. Water Res. 2015, 84, 218–231. [Google Scholar] [CrossRef] [Green Version]
- Zahediasl, A.; Bakhshipour, A.E.; Dittmer, U.; Haghighi, A. Toward Decentralised Sanitary Sewage Collection Systems: A Multiobjective Approach for Cost-Effective and Resilient Designs. Water 2021, 13, 1886. [Google Scholar] [CrossRef]
- Dev, A.; Dilly, T.C.; Bakhshipour, A.E.; Dittmer, U.; Bhallamudi, S.M. Optimal Implementation of Wastewater Reuse in Existing Sewerage Systems to Improve Resilience and Sustainability in Water Supply Systems. Water 2021, 13, 2004. [Google Scholar] [CrossRef]
- McCarty, P.L.; Bae, J.; Kim, J. Domestic Wastewater Treatment as a Net Energy Producer—Can This be Achieved? Environ. Sci. Technol. 2011, 45, 7100–7106. [Google Scholar] [CrossRef]
- California Energy Commission (CEC). Integrated Energy Policy Report; California Energy Commission: Sacramento, CA, USA, 2005.
- Wang, X.; Chen, R.; Zhang, Q.; Li, K. Optimized plan of centralized and decentralized wastewater reuse systems for housing development in the urban area of Xi’an, China. Water Sci. Technol. 2008, 58, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Niraula, R.; Meixner, T.; Norman, L.M. Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes. J. Hydrol. 2015, 522, 439–451. [Google Scholar] [CrossRef]
- Anguelovski, I.; Brand, A.L.; Connolly, J.J.T.; Corbera, E.; Kotsila, P.; Steil, J.; Garcia-Lamarca, M.; Triguero-Mas, M.; Cole, H.; Baró, F.; et al. Expanding the Boundaries of Justice in Urban Greening Scholarship: Toward an Emancipatory, Antisubordination, Intersectional, and Relational Approach. Ann. Am. Assoc. Geogr. 2020, 110, 1743–1769. [Google Scholar] [CrossRef]
- Wendel, H.E.W.; Downs, J.A.; Mihelcic, J.R. Assessing equitable access to urban green space: The role of engineered water infrastructure. Environ. Sci. Technol. 2011, 45, 6728–6734. [Google Scholar] [CrossRef] [PubMed]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse, 4th ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Adewumi, J.; Ilemobade, A.; Van Zyl, J. Treated wastewater reuse in South Africa: Overview, potential and challenges. Resour. Conserv. Recycl. 2010, 55, 221–231. [Google Scholar] [CrossRef]
- Pescod, M.B. Wastewater Treatment and Use in Agriculture; Food and Agriculture Organization of the United Nations: Quebec City, QC, Canada, 1992. [Google Scholar]
- Pietruschka, B.; Durban, South Africa. Personal communication, 2018.
- Consortium for DEWATS Dissemination Society (CDD). DEWATS: Decentralised Wastewater Treatment System, an Alternative to Centralized Wastewater Treatment; CDD: Bangalore, India, 2019. [Google Scholar]
- United States Environmental Protection Agency. Decentralized Systems Technology Fact Sheet: Types of Filters [Fact Sheet]. 2000. Available online: https://nepis.epa.gov/ (accessed on 15 April 2020).
- Parten, S.M. Planning and Installing Sustainable Onsite Wastewater Systems; McGraw-Hill Professional: New York, NY, USA, 2010. [Google Scholar]
- D’Amato, V.; Moeller, J.; Striano, E. Rethinking decentralized systems: A new tool for sustainable water management. Water Environ. Technol. 2011, 23, 62–66. [Google Scholar]
- Title 22 Code of Regulations. In California Code of Regulations; California Water Boards: Sacramento, CA, USA, 2015; p. 81.
- Mendoza-Espinosa, L.G.; Burgess, J.E.; Daesslé, L.; Villada-Canela, M. Reclaimed water for the irrigation of vineyards: Mexico and South Africa as case studies. Sustain. Cities Soc. 2019, 51, 101769. [Google Scholar] [CrossRef]
- Smith, K.; Guo, S.; Zhu, Q.; Dong, X.; Liu, S. An evaluation of the environmental benefit and energy footprint of China’s stricter wastewater standards: Can benefit be increased? J. Clean. Prod. 2019, 219, 723–733. [Google Scholar] [CrossRef]
- Schellenberg, T.; Subramanian, V.; Ganeshan, G.; Tompkins, D.; Pradeep, R. Wastewater discharge standards in the evolving context of urban sustainability—The case of India. Front. Environ. Sci. 2020, 8, 30. [Google Scholar] [CrossRef]
- Official Mexican Standard NOM-001-SEMARNAT-1996; Maximum Permissible Limits of Contaminants in Wastewaters Discharged to National Waters and Receiving Bodies. Official Journal of the Federation: Mexico City, Mexico, 1997. (In Spanish)
- Proposed Mexican Standard NOM-001-SEMARNAT-2017; Permissible Limits of Contaminants in Wastewaters Discharged to National Waters and Receiving Bodies. Official Journal of the Federation: Mexico City, Mexico, 2018. (In Spanish)
- Arora, M.; Malano, H.; Davidson, B.; Nelson, R.; George, B. Interactions between centralized and decentralized water systems in urban context: A review. Wiley Interdisciplinary Reviews. Water 2015, 2, 623–634. [Google Scholar] [CrossRef]
- Drechsel, P.; Blumenthal, U.J.; Keraita, B. Balancing health and livelihoods: Adjusting wastewater irrigation guidelines for resource-poor countries. Urban. Agric. Mag. 2002, 8, 7–9. [Google Scholar]
- Mazari-Hiriart, M.; Ponce-de-León, S.; López-Vidal, Y.; Islas-Macías, P.; Amieva-Fernández, R.I.; Quiñones-Falconi, F. Microbiological implications of periurban agriculture and water reuse in Mexico City. PLoS ONE 2008, 3, e2305. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Wichelns, D.; Raschid-Sally, L.; McCornick, P.G.; Drechsel, P.; Bahri, A.; Minhas, P.S. The challenges of wastewater irrigation in developing countries. Agric. Water Manag. 2010, 97, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Angelakis, A.N.; Gikas, P. Water reuse: Overview of current practices and trends in the world with emphasis on EU states. Water Util. J. 2014, 8, e78. [Google Scholar]
- Noyola, A.; Padilla-Rivera, A.; Morgan-Sagastume, J.M.; Güereca, L.P.; Hernández-Padilla, F. Typology of Municipal Wastewater Treatment Technologies in Latin America. Clean—Soil Air Water 2012, 40, 926–932. [Google Scholar] [CrossRef]
- Wright, D.; Vela, R.; Ganster, P.; Johnson, H.D. Tijuana River Watershed atlas—Atlas de la Cuenca del Río Tijuana; Wright, R.D., Vela, R., Eds.; Department of Geography, San Diego State University; San Diego State University Press: San Diego, CA, USA, 2005. [Google Scholar]
- Comisión Nacional del Agua (CONAGUA). Estadísticas del Agua en México, edición 2016; CONAGUA: Mexico City, Mexico, 2016. (In Spanish)
- Biggs, T.W.; Atkinson, E.; Powell, R.; Ojeda-Revah, L. Land cover following rapid urbanization on the US-Mexico border: Implications for conceptual models of urban watershed processes. Landsc. Urban. Plan. 2010, 96, 78–87. [Google Scholar] [CrossRef]
- Biggs, T.; Taniguchi, K.; Gudino-Elizondo, N.; Langendoen, E.; Yuan, Y.; Bingner, R.; Liden, D. Runoff and Sediment. Yield on the US-Mexico Border, Los Laureles Canyon; EPA/600/R-18/365; U.S. Environmental Protection Agency: Washington, DC, USA, 2018.
- Taniguchi, K.T.; Biggs, T.W.; Langendoen, E.J.; Castillo, C.; Gudino-Elizondo, N.; Yuan, Y.; Liden, D. Stream channel erosion in a rapidly urbanizing region of the US–Mexico border: Documenting the importance of channel hardpoints with Structure-from-Motion photogrammetry. Earth Surf. Processes Landf. 2018, 43, 1465–1477. [Google Scholar] [CrossRef]
- Machado, R.A.; Oliveira, A.G.; Lois-González, R.C. Urban ecological infrastructure: The importance of vegetation cover in the control of floods and landslides in Salvador/Bahia, Brazil. Land Use Policy 2019, 89, 104180. [Google Scholar] [CrossRef]
- Huizar, H.; Ojeda-Revah, L. Los Parques de Tijuana: Una perspectiva de justicia ambiental. In Cuando las áreas verdes se transforman en paisaje: La visión de Baja California [When Green Areas Become Landscape: The Baja California Vision]; Ojeda-Revah, L., Espejel, I., Eds.; Colegio de la Frontera Norte: Tijuana, Mexico, 2014; pp. 87–120. [Google Scholar]
- San Diego Foundation. Parks for Everyone 2.0: An Update to the Parks for Everyone Report. 2020. Available online: https://www.sdfoundation.org/wp-content/uploads/2015/10/2010-parkforeveryone_finalsm.pdf (accessed on 15 April 2020).
- Singh, P.; Carliell-Marquet, C.; Kansal, A. Energy pattern analysis of a wastewater treatment plant. Appl. Water Sci. 2012, 2, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Belloir, C.; Stanford, C.; Soares, A. Energy benchmarking in wastewater treatment plants: The importance of site operation and layout. Environ. Technol. 2015, 36, 260–269. [Google Scholar] [CrossRef]
- Mladenov, N.; Dodder, N.; Steinberg, L.; Richardot, W.; Johnson, J.; Martincigh, B.; Buckley, C.; Lawrence, T.; Hoh, E. Persistence and removal of trace organic compounds in centralized and decentralized wastewater treatment systems. Chemosphere 2022, 286, 131621. [Google Scholar] [CrossRef] [PubMed]
- Łuczkiewicz, A.; Fudala-Ksia̧zek, S.; Jankowska, K.; Quant, B.; Olańczuk-Neyman, K. Diversity of fecal coliforms and their antimicrobial resistance patterns in wastewater treatment model plant. Water Sci. Technol. 2010, 61, 1383–1392. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.J.A.; Avant, J.; Lowther, J.; Till, D.; Lees, D. Levels of Norovirus and E. coli in Untreated, Biologically Treated and UV-Disinfected Sewage Effluent Discharged to a Shellfish Water. J. Water Resour. Prot. 2013, 5, 978–982. [Google Scholar] [CrossRef] [Green Version]
- Comisión Nacional del Agua (CONAGUA). Inventario Nacional de Plantas Municipales de Potabilización y de Tratamiento de Aguas Residuales en Operación; CONAGUA: Mexico City, Mexico, 2015. (In Spanish)
- Fernández del Castillo, A.; Verduzco Garibay, M.; Senés-Guerrero, C.; Yebra-Montes, C.; de Anda, J.; Gradilla-Hernández, M.S. Mathematical modeling of a domestic wastewater treatment system combining a septic tank, an up flow anaerobic filter, and a constructed wetland. Water 2020, 12, 3019. [Google Scholar] [CrossRef]
- Corominas, L.; Foley, J.; Guest, J.S.; Hospido, A.; Larsen, H.F.; Morera, S.; Shaw, A. Life cycle assessment applied to wastewater treatment: State of the art. Water Res. 2013, 47, 5480–5492. [Google Scholar] [CrossRef] [PubMed]
- Laitinen, J.; Moliis, K.; Surakka, M. Resource efficient wastewater treatment in a developing area—Climate change impacts and economic feasibility. Ecol. Eng. 2017, 103. [Google Scholar] [CrossRef]
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 14 February 2021).
- Diario Tijuana (DTJ). Inicia el Proyecto Línea Morada para Riego de Áreas Verdes. DTJ. 25 May 2019. Available online: https://diariotijuana.info/inicia-el-proyecto-linea-morada-para-riego-de-areas-verdes/ (accessed on 2 January 2021).
- Arellano, J.M.T. Saneamiento Tijuana y Playas Rosarito. CESPT. 2012. Available online: http://www.conagua.gob.mx/CONAGUA07/Contenido/Documentos/P2-Saneamiento%20en%20Tijuana%20y%20Playas%20de%20Rosarito,%20Baja%20California.pdf (accessed on 2 January 2021).
- Arellano, G. Se reúne CESPT con Gobiernos de Tijuana y Rosarito para Revisar Temas de Reuso de Agua. El Sol de Tijuana. 7 August 2020. Available online: https://www.elsoldetijuana.com.mx/local/se-reune-cespt-con-gobiernos-de-tijuana-y-rosarito-para-revisar-temas-de-reuso-de-agua-5596661.html (accessed on 2 January 2021).
- Wasswa, J.; Mladenov, N.; Pearce, W. Assessing the potential of fluorescence spectroscopy to monitor contaminants in source waters and water reuse systems. Environ. Sci. Water Res. Technol. 2019, 5, 370–382. [Google Scholar] [CrossRef] [Green Version]
- Mcknight, D.; Boyer, E.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Zsolnay, Á. Dissolved organic matter: Artefacts, definitions, and functions. Geoderma 2003, 113, 187–209. [Google Scholar] [CrossRef]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.; Fram, M.; Fujii, R.; Mopper, K. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef]
- Mladenov, N.; Bigelow, A.; Pietruschka, B.; Palomo, M.; Buckley, C. Using submersible fluorescence sensors to track the removal of organic matter in decentralized wastewater treatment systems (DEWATS) in real time. Water Sci. Technol. 2017, 77, 819–828. [Google Scholar] [CrossRef] [PubMed]
Parameter | China 1 | India 2 | Mexico Current Limits 3 | Mexico Proposed Limits 4 |
---|---|---|---|---|
Temperature (°C) | - | - | 35 | 35 |
pH | 6.0–9.0 | 5.5–9.0 | - | 6.5–8.5 |
Electrical conductivity | - | 2250 | - | - |
Grease and oil (mg/L) | - | - | 50 | 15 |
TDS (mg/L) | 1000 | - | 30 | - |
TSS (mg/L) | 10 | 200 | 30 | 30 |
BOD (mg/L) | 20 | 100 | 50 | - |
COD (mg/L) | 50 | - | - | 60 |
TOC 5 (mg/L) | - | - | - | 15 |
TN (mg/L) | 0.5 | - | - | NA |
TP (mg/L) | 0.5 | - | - | NA |
Helminth eggs (eggs/L) | ≤2 | - | <5.0 | 1 |
Fecal coliforms (MPN/100 mL) | ≤100 | - | 1000 | 1000 |
Enterococci 5 (MPN/100 mL) | - | - | - | 1000 |
SAR | 9 | 26 | - | - |
Arsenic (mg/L) | 0.05 | - | 0.100 | 0.2 |
Boron (mg/L) | - | 2.0 | 0.100 | - |
Cadmium (mg/L) | 0.01 | - | 1.000 | 0.05 |
Cyanide (mg/L) | - | - | 4.000 | 2 |
Copper (mg/L) | - | - | 0.500 | 4 |
Chromium (mg/L) | 0.1 | - | 0.005 | 0.5 |
Mercury (mg/L) | 0.001 | - | 2.000 | 0.005 |
Nickel (mg/L) | - | - | 0.200 | 2 |
Lead (mg/L) | 0.2 | - | 10.00 | 0.5 |
Zinc (mg/L) | - | - | 0.100 | 10 |
Parameter | Distribution Tank | Biofilter | Clarifier | Wetland | Sludge | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean | Stdev | n | Mean | Stdev | n | Mean | Stdev | n | Mean | Stdev | n | Mean | Stdev | |
Temperature | 10 | 23.9 | 0.35 | 10 | 20.6 | 0.85 | 10 | 20.3 | 0.97 | 10 | 24.3 | 1.01 | - | - | - |
pH | 10 | 7.57 | 0.19 | 10 | 7.80 | 0.24 | 10 | 7.73 | 0.22 | 10 | 7.87 | 0.32 | - | - | - |
Electrical conductivity | 10 | 2086 | 114 | 10 | 2014 | 40.9 | 10 | 2029 | 72.9 | 10 | 1422 | 742 | - | - | - |
TDS | 10 | 1008 | 144 | 11 | 961 | 278 | 9 | 1033 | 86.6 | - | - | - | - | - | - |
TSS | 10 | 123 | 64.0 | 11 | 36.4 | 32.3 | 9 | 13.9 | 13.2 | - | - | - | - | - | - |
DO | 10 | 4.02 | 1.46 | 10 | 4.19 | 1.57 | 10 | 3.38 | 1.22 | 10 | 1.32 | 0.70 | - | - | - |
Turbidity | 10 | 448 | 191 | 10 | 249 | 113 | 10 | 105 | 30.5 | 10 | 72.0 | 27.9 | - | - | - |
COD | 2 | 880 | 13.4 | 2 | 363 | 12.7 | 2 | 262 | 262 | 2 | 129 | 129 | 2 | 50,450 | 2616 |
sCOD | 4 | 332 | 138 | 4 | 93.1 | 11.0 | 4 | 109 | 16.7 | - | - | - | 4 | 565 | 428 |
DOC | 14 | 90.9 | 24.2 | 8 | 24.7 | 5.47 | 9 | 26.0 | 6.25 | 6 | 10.7 | 3.03 | - | - | - |
TDN | 14 | 60.3 | 11.3 | 8 | 52.5 | 5.11 | 9 | 50.4 | 4.04 | 6 | 53.2 | 12.2 | - | - | - |
Ammonia | 7 | 42.3 | 6.54 | 7 | 37.8 | 13.0 | 8 | 39.0 | 6.48 | 3 | 39.2 | 8.04 | 4 | 81.5 | 27.2 |
Nitrate | 6 | 0.49 | 0.21 | 6 | 2.00 | 1.29 | 6 | 1.10 | 0.95 | 1 | 0.21 | - | 5 | 0.40 | 0.19 |
Nitrite | 8 | 0.01 | 0.01 | 9 | 0.58 | 0.28 | 8 | 0.27 | 0.38 | 3 | 0.02 | 0.01 | 4 | 0.004 | 0.005 |
Phosphate | 8 | 12.2 | 1.32 | 7 | 9.98 | 1.01 | 7 | 10.4 | 0.97 | 3 | 11.4 | 4.63 | 4 | 80.8 | 35.9 |
E. coli (log MPN/100 mL) | 3 | 6.79 | 0.55 | 4 | 6.86 | 0.36 | 4 | 6.56 | 0.43 | 1 | 4.79 | 0.17 | 5 | 7.16 | 0.18 |
Total coliforms (log MPN/100 mL) | 10 | 7.06 | 0.71 | 16 | 6.96 | 0.82 | 12 | 6.72 | 0.81 | 8 | 5.21 | 0.45 | - | - | - |
SUVA | 9 | 0.90 | 0.08 | 8 | 1.56 | 0.06 | 8 | 1.58 | 0.23 | 4 | 1.81 | 0.06 | - | - | - |
Fluorescence Index | 10 | 2.15 | 0.13 | 10 | 2.26 | 0.06 | 10 | 2.29 | 0.10 | 4 | 2.17 | 0.05 | 7 | 2.05 | 0.47 |
Humification Index | 10 | 0.63 | 0.10 | 10 | 1.38 | 0.12 | 10 | 1.39 | 0.14 | 4 | 1.98 | 0.28 | 7 | 0.36 | 0.16 |
Water Quality Parameter | Mean Values in Wetland Effluent before Upgrade August 2019–February 2020 | Mean Values in Maturation Pond Effluent after Upgrade | |||||||
---|---|---|---|---|---|---|---|---|---|
August 2020 | September 2021 | ||||||||
n | Mean | Removal | n | Mean | Removal | n | Mean | Removal | |
Temperature | 5 | 24.3 (1.00) | - | 4 | 25.8 (2.34) | NC | - | - | - |
pH | 5 | 7.87 (0.32) | - | - | - | - | - | - | - |
Oil and grease | - | - | 4 | - | - | - | - | - | |
TSS (mg/L) | 5 | 13.9 (13.1) | 89% | 4 | 51.0 (14.8) | NC | 1 | 114 | 93% |
BOD (mg/L) | 2 | 129 1 (71.5) | 85% | 4 | 19.7 (9.77) | NC | 1 | 149 | 83% |
DOC (mg/L) | 3 | 10.7 (3.03) | 88% | - | - | - | - | - | - |
TN (mg/L) | 3 | 53.2 (12.2) | 12% | - | - | - | - | - | - |
TP (mg/L) | 3 | 11.4 (4.63) | 6% | - | - | - | - | - | - |
Helminth eggs (HH/L) | - | - | 2 | 0.2 (0) | NC | - | - | - | |
E. coli (MPN/100 mL) | 1 | 65,000 (19,500) | 2.0-log | 4 | 668 (1159) | 6.4-log | 1 | 430 | 4.7-log |
Total coliforms (MPN/100 mL) | 4 | 296,000 (456,000) | 1.85-log | - | - | - | - | - | - |
Arsenic | - | - | - | 1 | ND | NC | - | - | - |
Cadmium | - | - | - | 1 | ND | NC | - | - | - |
Cyanide | - | - | - | 1 | 0.0123 | NC | - | - | - |
Copper | - | - | - | 1 | 0.0028 | NC | - | - | - |
Chromium | - | - | - | 1 | ND | NC | - | - | - |
Mercury | - | - | - | 1 | 0.00007 | NC | - | - | - |
Nickel | - | - | - | 1 | ND | NC | - | - | - |
Lead | - | - | - | 1 | ND | NC | - | - | - |
Zinc | - | - | - | 1 | 0.0141 | NC | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, D.; Muñoz Meléndez, G.; Arteaga, A.; Ojeda-Revah, L.; Mladenov, N. Greening Urban Areas with Decentralized Wastewater Treatment and Reuse: A Case Study of Ecoparque in Tijuana, Mexico. Water 2022, 14, 596. https://doi.org/10.3390/w14040596
Garcia D, Muñoz Meléndez G, Arteaga A, Ojeda-Revah L, Mladenov N. Greening Urban Areas with Decentralized Wastewater Treatment and Reuse: A Case Study of Ecoparque in Tijuana, Mexico. Water. 2022; 14(4):596. https://doi.org/10.3390/w14040596
Chicago/Turabian StyleGarcia, Denise, Gabriela Muñoz Meléndez, Armando Arteaga, Lina Ojeda-Revah, and Natalie Mladenov. 2022. "Greening Urban Areas with Decentralized Wastewater Treatment and Reuse: A Case Study of Ecoparque in Tijuana, Mexico" Water 14, no. 4: 596. https://doi.org/10.3390/w14040596