Effects of Weir Operation on Seasonal Groundwater Use: A Case Study of the Han River, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Hydrogeological Setting
2.2. Numerical Model
2.3. Pumping Available Thickness and Aquifer Productivity Index
3. Results and Discussion
3.1. Impacts of Opening of the Weir on Stream–Aquifer Interactions
3.2. Changes in Groundwater Pumping Rate
3.3. Effects of Opening of the Weir on Seasonal Groundwater Use
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korea Institute of Geoscience and Mineral Resources. Report of Research on the Improvement Plan of Environment Friendly Water-Curtain Cultivation Area for Groundwater Conservation; Korea Institute of Geoscience and Mineral Resources: Daejeon, Korea, 2019. (In Korean) [Google Scholar]
- Lee, H.; Koo, M.H.; Lim, J.; Yoo, B.H.; Kim, Y. Impacts of seasonal pumping on stream depletion. J. Soil Groundw. Environ. 2016, 21, 61–71, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Cho, B.W.; Yun, U.; Lee, B.D.; Ko, K.S. Hydrogeological characteristics of the Wangjeon-ri PCWC area, Nonsan-city, with an emphasis on water level variations. J. Eng. Geol. 2012, 22, 195–205, (In Korean with English abstract). [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Koo, M.H.; Kim, Y. Impacts of seasonal pumping on stream-aquifer interactions in Miryang, Korea. Groundwater 2017, 55, 906–916. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.I.; Koh, D.C.; Jung, B.; Ha, K. Quantification of seasonally variable water flux between aquifer and stream in the riparian zones with water curtain cultivation activities using numerical simulation. J. Geol. Soc. Kor. 2017, 53, 277–290. [Google Scholar]
- Madlala, T.; Kanyerere, T.; Oberholster, P.; Xu, Y. Application of multi-method approach to assess groundwater—Surface water interactions, for catchment management. Int. J. Environ. Sci. Technol. 2019, 16, 2215–2230. [Google Scholar] [CrossRef] [Green Version]
- Flores, L.; Bailey, R.T.; Kraeger-Rovey, C. Analyzing the effects of groundwater pumping on an urban stream-aquifer system. JAWRA J. Am. Water Resourc. Assoc. 2020, 56, 310–322. [Google Scholar] [CrossRef]
- Lee, H.; Koo, M.H.; Kim, K.; Kim, Y. Spatio-Temporal Variations in Stream–Aquifer Interactions Following Construction of Weirs in Korea. Groundwater 2016, 54, 448–458. [Google Scholar] [CrossRef]
- Oh, Y.Y.; Hamm, S.Y.; Kim, G.B.; Lee, C.M.; Chung, S.Y. Statistical Approach to River–Aquifer Interaction in the Lower Nakdong River Basin, Republic of Korea. Irrig. Drain. 2016, 65, 36–47. [Google Scholar] [CrossRef]
- Kim, G.B.; Cha, E.J.; Jeong, H.G.; Shin, K.H. Comparison of time series of alluvial groundwater levels before and after barrage construction on the lower Nakdong River. J. Eng. Geol. 2013, 23, 105–115, (in Korean with English abstract). [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.M.; Lee, S.; Kang, T. Evaluation of dams and weirs operating for water resource management of the Geum River. Sci. Total Environ. 2014, 478, 103–115. [Google Scholar] [CrossRef]
- Levitt, D.G.; Newell, D.L.; Stone, W.J.; Wykoff, D.S. Surface water–Groundwater connection at the Los Alamos Canyon weir site: Part 1. Monitoring site installation and tracer tests. Vadose Zone J. 2005, 4, 708–717. [Google Scholar] [CrossRef] [Green Version]
- Krause, S.; Bronstert, A.; Zehe, E. Groundwater–surface water interactions in a North German lowland floodplain–Implications for the river discharge dynamics and riparian water balance. J. Hydrol. 2007, 347, 404–417. [Google Scholar] [CrossRef]
- Kim, S.; Chung, S.; Park, H.; Cho, Y.; Lee, H. Analysis of environmental factors associated with cyanobacterial dominance after river weir installation. Water 2019, 11, 1163. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; An, K.G. Influence of Weir Construction on Chemical Water Quality, Physical Habitat, and Biological Integrity of Fish in the Geum River, South Korea. Pol. J. Environ. Stud. 2019, 28, 2175–2186. [Google Scholar] [CrossRef]
- Choi, H.S. Effect on water quality and fish habitat improvement of Wonju Cheon by instream flow increasing. J. Wetl. Res. 2008, 10, 57–68. (In Korean) [Google Scholar]
- Lee, J.; Lee, Y.; Woo, S.; Kim, W.; Kim, S. Evaluation of water quality interaction by dam and weir operation using SWAT in the Nakdong River Basin of South Korea. Sustainability 2020, 12, 6845. [Google Scholar] [CrossRef]
- Koo, M.H.; Kim, J.W. Impacts of weir opening in Four Major Rivers on agricultural groundwater use. In Proceedings of the Korean Society of Agricultural Engineers Conference, Hongcheon-gun, Korea, 10 October 2019; p. 282. (In Korean). [Google Scholar]
- Oh, J.O.; Lee, J.J.; Jun, S.M. A Study on Groundwater Level Fluctuation in Surroundings by Operational Water Level of Hapcheon-Changnyeong Weir. Crisisonomy 2020, 16, 29–39, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Lee, H.; Koo, M.H.; Lee, J.; Kim, K. Changes in Stream–Aquifer Interactions Due to Gate Opening of the Juksan Weir in Korea. Water 2021, 13, 1639. [Google Scholar] [CrossRef]
- Korea Water Resources Corporation. Groundwater Basic Survey Report of Yeoju Area; Korea Water Resources Corporation: Daejeon, Korea, 2015. (In Korean) [Google Scholar]
- Ministry of Land, Transport and Maritime Affairs. River Basic Plan of Han River; Ministry of Land, Transport and Maritime Affairs: Sejong, Korea, 2011. (In Korean) [Google Scholar]
- Korea Institute of Geoscience and Mineral Resources Korea. 1:50,000 Geological Report of the Ipo Sheet; Korea Institute of Geoscience and Mineral Resources Korea: Daejeon, Korea, 1989. (In Korean) [Google Scholar]
- Korea Water Resources Corporation. Report of Development of Groundwater Flow Model and Standardization of Water Supply Alternatives in Han and Yeongsan River Basins; Korea Water Resources Corporation: Daejeon, Korea, 2019. (In Korean) [Google Scholar]
- Jeon, S.K.; Koo, M.H.; Kim, Y.; Kang, I.O. Statistical analysis of aquifer characteristics using pumping test data of national groundwater monitoring wells for Korea. J. Soil Groundw. Environ. 2005, 10, 32–44, (In Korean with English abstract). [Google Scholar]
- Jenkins, C.T. Computation of Rate and Volume of Stream Depletion by Wells; U.S.G.S.: Arlington, VA, USA, 1968; p. 17. [Google Scholar]
- Koo, M.H.; Lee, D.H. A numerical analysis of the water level fluctuation method for quantifying groundwater recharge. J. Geol. Soc. Korea 2002, 38, 407–420. (In Korean) [Google Scholar]
- Ministry of Land, Infrastructure and Transport. Performance Guidelines for Groundwater; Ministry of Land, Infrastructure and Transport: Sejong, Korea, 2015. (In Korean) [Google Scholar]
- Korea Water Resources Corporation. Groundwater Annual Report; Korea Water Resources Corporation: Daejeon, Korea, 2018. (In Korean) [Google Scholar]
- Korea Institute of Geoscience and Mineral Resources. Research Report of Advancement in the Utilization of Waterside Groundwater; Korea Institute of Geoscience and Mineral Resources: Daejeon, Korea, 2012. (In Korean) [Google Scholar]
- Waterloo Hydrogeologic. Visual MODFLOW Premium 4.2 User’s Manual; Waterloo Hydrogeologic: Waterloo, ON, Canada, 2006. [Google Scholar]
- Stefania, G.A.; Rotiroti, M.; Fumagalli, L.; Simonetto, F.; Capodaglio, P.; Zanotti, C.; Bonomi, T. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): The effect of groundwater abstraction on surface-water resources. Hydrogeol. J. 2018, 26, 147–162. [Google Scholar] [CrossRef]
- Zhang, D.; Han, D.; Song, X. Impacts of the Sanmenxia dam on the interaction between surface water and groundwater in the lower Weihe River of Yellow River watershed. Water 2020, 12, 1671. [Google Scholar] [CrossRef]
- Matula, S.; Mekonnen, G.B.; Báťková, K.; Nešetřil, K. Simulations of groundwater-surface water interaction and particle movement due to the effect of weir construction in the sub-watershed of the river Labe in the town of Děčín. Environ. Monit. Assess. 2014, 186, 7755–7770. [Google Scholar] [CrossRef] [PubMed]
- Conant, J.B.; Robinson, C.E.; Hinton, M.J.; Russell, H.A. A framework for conceptualizing groundwater-surface water interactions and identifying potential impacts on water quality, water quantity, and ecosystems. J. Hydrol. 2019, 574, 609–627. [Google Scholar] [CrossRef]
- Hillel, N.; Wine, M.L.; Laronne, J.B.; Licha, T.; Be’eri-Shlevin, Y.; Siebert, C. Identifying spatiotemporal variations in groundwater-surface water interactions using shallow pore water chemistry in the Lower Jordan River. Adv. Water Resour. 2019, 131, 103388. [Google Scholar] [CrossRef]
- Thin, K.C.; Khaing, M.M.; Aye, K.M. Design and performance analysis of centrifugal pump. World Acad. Sci. Eng. Technol. 2008, 46, 422–429. [Google Scholar]
- Rakibuzzaman, M.; Suh, S.H.; Kim, K.W.; Kim, H.H.; Cho, M.T.; Yoon, I.S. A study on multistage centrifugal pump performance characteristics for variable speed drive system. Procedia Eng. 2015, 105, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Meneses, J.F.; Canham, A.E. A water-curtain heating system for plastic greenhouses. J. Agric. Engin. Res. 1992, 52, 193–200. [Google Scholar] [CrossRef]
- Kim, H.K.; Kim, Y.S.; Jeon, J.G.; Paek, Y.; Lee, J.H.; Khoshimkhujaev, B.; Kim, Y.C. Evaluation of optimal water flow and temperature in response to outdoor air temperature in plastic greenhouse with recirculated water curtain system. J. Mech. Sci. Technol. 2017, 31, 3043–3051. [Google Scholar] [CrossRef]
Classification | Number of Wells | Pumping Rates | Total Pumping Rates | ||
---|---|---|---|---|---|
Agricultural use | Field crop (non-rice) | 73 | 447 | 886 | 1371 |
Rice field | 79 | 250 | |||
Gardening | 431 | 189 | |||
Living | Household | 200 | 160 | 258 | |
General purpose | 22 | 86 | |||
School | 1 | 12 | |||
Other uses | Industrial use | 6 | 192 | 227 | |
Others | 7 | 35 |
Alluvium | ||||
---|---|---|---|---|
Upper Unit | Middle Unit | Bedrock | Riverbed | |
Hydraulic conductivity (m/day) | 44 | 8.6 | 0.3 | - |
Conductance of boundary (m2/day) | 50 | 20 | 10 |
River Water Level (m) | Area (km2) | Number of Centrifugal Pumps | |
---|---|---|---|
Non-seasonal pumping period | 28 | 0.13 | 7 |
25.3 | 0.29 | 12 | |
Seasonal pumping period | 28 | 0.66 | 54 |
25.3 | 1.04 | 72 |
Period | Area (km2) | Number of Groundwater Pumping Wells (API ≤ 0.8) | |||
---|---|---|---|---|---|
Centrifugal Pump | Underwater Pump | Unidentified Pump Type | Total | ||
Non-seasonal pumping period | 0.48 | 7 | 54 | 0 | 61 |
Seasonal pumping period | 1.02 | 46 | 186 | 2 | 234 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Lee, E.; Kim, Y.; Lee, S.-H.; Koo, M.-H. Effects of Weir Operation on Seasonal Groundwater Use: A Case Study of the Han River, South Korea. Water 2022, 14, 646. https://doi.org/10.3390/w14040646
Lee H, Lee E, Kim Y, Lee S-H, Koo M-H. Effects of Weir Operation on Seasonal Groundwater Use: A Case Study of the Han River, South Korea. Water. 2022; 14(4):646. https://doi.org/10.3390/w14040646
Chicago/Turabian StyleLee, Hyeonju, Eunhee Lee, Yongcheol Kim, Soo-Hyoung Lee, and Min-Ho Koo. 2022. "Effects of Weir Operation on Seasonal Groundwater Use: A Case Study of the Han River, South Korea" Water 14, no. 4: 646. https://doi.org/10.3390/w14040646
APA StyleLee, H., Lee, E., Kim, Y., Lee, S. -H., & Koo, M. -H. (2022). Effects of Weir Operation on Seasonal Groundwater Use: A Case Study of the Han River, South Korea. Water, 14(4), 646. https://doi.org/10.3390/w14040646