Morphology Recovery and Convergence of Topographic Evolution in the Natori River Mouth after the 2011 Tohoku Tsunami
Abstract
:1. Introduction
2. Field Site, Materials and Methods
2.1. Field Site
2.2. Materials and Methods
2.2.1. Image Processing and Shoreline Analysis
2.2.2. Empirical Orthogonal Function (EOF) Analysis
3. Results
3.1. Overall Morphology Change
3.1.1. Sandy Beach
3.1.2. Sand Spit
3.2. Topography Recovery
4. Discussion
4.1. Morphology Recovery and the Effect of Intrusion Process
4.2. Convergence of the Topography after the Tsunami
4.3. Future Management Implication
5. Conclusions
- (1)
- The sandy beach and sand spit in the Natori River mouth were eroded severely after the 2011 Tsunami. The rapid recovery in these areas was observed during the early stage of the recovery process and the sediment intrusion into river channel occurred inside the river mouth.
- (2)
- The recovery rate of the sandy beach and sand spit was weakened after 2014. Afterwards, there was no significant sediment deposition in these areas until recent years. It suggests the river mouth has reached an equilibrium state in which the sediment volume can be preserved within the littoral system.
- (3)
- By the calculation of cross-shore transport rate and EOF analysis, the convergence process of topography, represented by the first spatial mode of the deeper bed elevation (y ≥ 350 m), was supported by the dominance of onshore sediment movement during the recovery, while the first temporal mode indicates that the convergence had completed until 2015 and the significant topography change after the tsunami was restrained.
- (4)
- After the nourishment of the sand spit in 2016, the river mouth, including the sandy beach and the sand spit, is now restricted between the wave-dissipating concrete block and the jetties. Without additional sediment flux from the river, the river mouth would preserve a quasi-equilibrium of sediment volume. The morphology of the river mouth is now maintained by the local longshore and cross-shore movements which are similar to the coastal processes in the embayed beach or straight beach with the constructions on both ends. In the future, the mouth area would require a longer period to compensate for the erosion induced by the tsunami due to the lack of updrift sediment transport and a small amount of annual sediment discharge.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mori, N.; Takahashi, T.; Yasuda, T.; Yanagisawa, H. Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Tanaka, H.; Tinh, N.X.; Umeda, M.; Hirao, R.; Pradjiko, E.; Mano, A.; Udo, K. Coastal and estuarine morphology changes induced by the 2011 Great East Japan earthquake tsunami. Coast. Eng. J. 2012, 54, 1250010-1–1250010-25. [Google Scholar] [CrossRef]
- Suppasri, A.; Koshimura, S.; Imai, K.; Mas, E.; Gokon, H.; Muhari, A.; Imamura, F. Damage characteristic and field survey of the 2011 Great East Japan Tsunami in Miyagi Prefecture. Coast. Eng. J. 2012, 54, 1250005-1–1250005-30. [Google Scholar] [CrossRef]
- Tappin, D.R.; Evans, H.M.; Jordan, C.J.; Richmond, B.; Sugawara, D.; Goto, K. Coastal changes in the Sendai area from the impact of 2011Tohoku-oki tsunami: Interpretations of time series satellite images, helicopter-borne video footage and field observation. Sediment. Geol. 2012, 282, 151–174. [Google Scholar] [CrossRef]
- Koshimura, S.; Hayashi, S.; Gokon, H. The impact of the 2011Tohoku earthquake tsunami disaster and implications to the reconstruction. Soils Found. 2014, 54, 560–572. [Google Scholar] [CrossRef] [Green Version]
- Dawson, A.G. Geomorphological effects of tsunami run-up and backwash. Geomorphology 1994, 10, 83–94. [Google Scholar] [CrossRef]
- Bryant, E.A.; Young, R.W.; Price, D.M. Tsunami as a Major Control on Coastal Evolution, Southeastern Australia. J. Coast. Res. 1996, 12, 831–840. [Google Scholar]
- Choowong, M.; Phantuwongraj, S.; Charoentitirat, T.; Chutakositkano, B.; Yumuang, S.; Charusiri, P. Beach recovery after 2004 Indian Ocean tsunami from Phang-Nga Thailand. Geomorphology 2009, 104, 134–142. [Google Scholar] [CrossRef]
- Liew, S.C.; Gupta, A.; Wong, P.P.; Kwoh, L.K. Recovery from a large tsunami mapped over time: The Aceh coast, Sumatra. J. Geomorphol. 2010, 114, 520–529. [Google Scholar] [CrossRef]
- Catalán, P.A.; Cienfuegos, R.; Villagrán, M. Perspectives on the long-term equilibrium of a wave dominated coastal zone affected by tsunamis: The case of central Chile. J. Coast. Res. 2014, 71, 55–61. [Google Scholar] [CrossRef]
- Monecke, K.; Meilianda, E.; Walstra, D.J.; Hill, E.M.; McAdoo, B.G.; Qiu, Q.; Storms, J.E.A.; Masputri, A.S.; Mayasari, C.D.; Nasir, M.; et al. Postseismic coastal development in Aceh, Indonesia-field observations and numerical modeling. Mar. Geol. 2017, 392, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Martínez, C.; Sepúlveda-Zúñiga, E.; Villagrán, M.; Rojas, O.; Gómez, M.; López, P.; Rojas, C. Coastal Evolution in a Wetland Affected by Large Tsunamigenic Earthquakes in South-Central Chile: Criteria for Integrated Coastal Management. Water 2021, 13, 1467. [Google Scholar] [CrossRef]
- Udo, K.; Sugawara, D.; Tanaka, H.; Imai, K.; Mano, A. Impact of the 2011 Tohoku earthquake and tsunami on beach morphology along the northern Sendai Coast. Coast. Eng. J. 2012, 54, 1250009. [Google Scholar] [CrossRef]
- Udo, K.; Tojo, K.; Takeda, Y.; Tanaka, H.; Mano, A. Characteristics of Shoreline Retreat Due to the 2011 Tohoku Earthquake Tsunami and Its Recovery after Three Years. In Tsunamis and Earthquakes in Coastal Environments; Santiago-Fandino, V., Tanaka, H., Spiske, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 113–123. [Google Scholar]
- Tanaka, H.; Adityawan, M.B.; Mano, A. Morphological changes at the Nanakita River mouth after the Great East Japan Tsunami of 2011. Coast. Eng. 2014, 86, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Adityawan, M.B.; Dao, N.X.; Tanaka, H.; Mano, A.; Udo, K. Morphological changes along the Ishinomaki coast induced by the 2011 Great East Japan Tsunami and the relationship with coastal structures. Coast. Eng. J. 2014, 56, 1450016. [Google Scholar] [CrossRef]
- Yamashita, K.; Sugawara, D.; Takahashi, T.; Imamura, F.; Saito, Y.; Imato, Y.; Kai, T.; Uehara, H.; Kato, T.; Nakata, K.; et al. Numerical Simulations of Large-Scale Sediment Transport Caused by the 2011 Tohoku Earthquake Tsunami in Hirota Bay, Southern Sanriku Coast. Coast. Eng. J. 2016, 58, 1640015. [Google Scholar] [CrossRef] [Green Version]
- Hoang, V.C.; Tanaka, H.; Mitobe, Y. Longshore propagation erosion of beach in the vicinity of tsunami-induced concave shoreline. J. Hydro-Environ. Res. 2019, 23, 1–9. [Google Scholar] [CrossRef]
- Hoang, V.C.; Tanaka, H.; Mitobe, Y. Morphological recovery of beach severely damaged by the 2011 great east Japan tsunami. Estuar. Coast. Shelf Sci. 2019, 226, 106274. [Google Scholar] [CrossRef]
- Hiep, N.T.; Tanaka, H.; Tinh, N.X. Centennial to Multi-Decadal Morphology Change and Sediment Budget Alteration with Consideration of the Impacts of the 2011 Tohoku Earthquake Tsunami along the Nobiru Coast, Japan. J. Mar. Sci. Eng. 2021, 9, 265. [Google Scholar] [CrossRef]
- Hiep, N.T.; Tanaka, H.; Tinh, N.X. Morphology recovery of the Abukuma River mouth after the 2011 Tohoku tsunami under the interaction between sand spit and sand terrace. Coast. Eng. J. 2021, 63, 467–484. [Google Scholar] [CrossRef]
- Sawamoto, M. Sediment Movement in Beaches: An Example on Sendai Coast. In Lecture Notes of the 37th Summer Seminar on Hydraulic Engineering, Course B.; Japan Society of Civil Engineers: Tokyo, Japan, 2001; pp. 1–20. (In Japanese) [Google Scholar]
- Saitoh, Y.; Tamura, T.; Nakano, T. Geochemical constraints on the sources of beach sand, southern Sendai Bay, northeast Japan. Mar. Geol. 2017, 387, 97–107. [Google Scholar] [CrossRef]
- Kanaya, G.; Suzuki, T.; Kikuchi, E. Spatio-temporal variations in macrozoobenthic assemblage structures in a river-affected lagoon (Idoura Lagoon, Sendai Bay, Japan): Influences of freshwater inflow. Estuar. Coast. Shelf Sci. 2011, 92, 169–179. [Google Scholar] [CrossRef]
- Widyaningtia; Tanaka, H.; Kanayama, S. Depth of closure determination in the vicinity of coastal structure. In Proceedings of the 33rd International Conference on Coastal Engineering, Santander, Spain, 1–6 July 2012; p. 15. [Google Scholar]
- Uda, T. Beach Erosion in Japan; Sankaido Press: Tokyo, Japan, 1997; p. 242. (In Japanese) [Google Scholar]
- Kang, H.; Tanaka, H. Monitoring of long-term shoreline evolution on Sendai Coast. In Proceedings of the 4th Congress Environmental Hydraulics and the 14th APD-IAHR Congress, Hongkong, 15–18 December 2004; pp. 1101–1107. [Google Scholar]
- Tu, N.T. Study on Formation Process of Sand Bar at the River Entrance. Ph.D. Dissertation, Tohoku University, Sendai, Japan, 2007; p. 108. [Google Scholar]
- Tanaka, H.; Tinh, N.X.; Hiep, N.T.; Kayane, K.; Roh, M.; Umeda, M.; Sasaki, M.; Kawagoe, S.; Tsuchiya, M. Intrusion distance and flow discharge in rivers during the 2011 Tohoku Tsunami. J. Mar. Sci. Eng. 2020, 8, 882. [Google Scholar] [CrossRef]
- Ito, K.; Katayama, A.; Shizuka, K.; Monna, N. Effects of the Great East Japan Tsunami on Fish Populations and Ecosystem Recovery. The Natori River; Northeastern Japan. In Tsunamis and Earthquakes in Coastal Environments; Santiago-Fandino, V., Tanaka, H., Spiske, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 201–216. [Google Scholar]
- Tanaka, H.; Kuwahara, N.; Sato, K.; Shuto, N. Numerical modelling of 2-D flow and sediment movement in the vicinity of Natori River mouth. In Flow Modeling and Turbulence Measurement IV.; Chen, C., Ed.; A.A. Balkema: Rotterdam, The Netherlands, 1996; pp. 813–820. [Google Scholar]
- Tinh, N.X.; Wang, J.; Tanaka, H.; Ito, K. Response of salinity intrusion to the hydrodynamic condtions and river mouth morphological changes induced by the 2011 tsunami. J. Sci. Technol. Civ. Eng. 2020, 14, 1–16. [Google Scholar]
- Matsui, S.; Okuyama, Y.; Ishikawa, J.; Shishido, H.; Kobayashi, Y.; Mizuno, T.; Hara, F.; Jimbo, M. Project of resilient coastal leeve in Sendai Bay south coast example of ingenuity according to the site condition in Idoura Area. J. Ocean Eng. JSCE 2017, 73, I19–I24. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Burningham, H.; French, J. Understanding coastal change using shoreline trend analysis supported by cluster-based segmentation. Geomorphology 2017, 282, 131–149. [Google Scholar] [CrossRef]
- Dick, J.E.; Dalrymple, R.A. Coastal Changes at Bethany Beach, Delaware. In Proceedings of the 19th International Coastal Engineering Conference, Houston, TX, USA, 3–7 September 1984; pp. 1650–1667. [Google Scholar]
- Yates, M.L.; Guza, R.T.; O’Reilly, W.C. Equilibrium shoreline response: Observations and modeling. J. Geophys. Res. 2009, 114, C09014. [Google Scholar] [CrossRef] [Green Version]
- Ludka, B.C.; Guza, R.T.; O’Reilly, W.C.; Yates, M.L. Field evidence of beach profile evolution toward equilibrium. J. Geophys. Res. Oceans 2015, 120, 7574–7597. [Google Scholar] [CrossRef] [Green Version]
- Tinh, N.X.; Tanaka, H.; Larson, M. Analytical solution for time-dependent shoreline position response to the tectonic recovery process in the Sendai Plain, Japan, after the 2011 Great East Japan Earthquake. Cont. Shelf Res. 2021, 231, 104603. [Google Scholar] [CrossRef]
- Bruun, P. Coast Erosion and the Development of Beach Profiles; Beach Erosion Board (Technical Memo. N° 44); US Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1954; p. 79. [Google Scholar]
- Dean, R.G. Equilibrium Beach Profiles: U.S. Atlantic and Gulf Coasts. Ocean Engineering; Technical Report N° 12; University of Delaware: Newark, DE, USA, 1977. [Google Scholar]
- Dean, R.G. Equilibrium beach profiles: Characteristics and applications. J. Coast. Res. 1990, 7, 53–84. [Google Scholar]
- Bodge, K.R. Representing equilibrium beach profiles with an exponential expression. J. Coastal Res. 1992, 8, 47–55. [Google Scholar]
- Inman, D.L.; Elwany, M.H.S.; Jekins, S.A. Shorerise and bar-berm profiles on ocean beaches. J. Geophys. Res. 1993, 98, 18181–18199. [Google Scholar] [CrossRef]
- Wang, P.; Davis, R.A. A Beach Profile Model for a Barred Coast-Case Study front Sand Key, West-Central Florida. J. Coast. Res. 1998, 14, 981–991. [Google Scholar]
- Anthony, E.J.; Aagaard, T. The lower shoreface: Morphodynamics and sediment connectivity with the upper shoreface and beach. Earth-Sci. Rev. 2020, 210, 103334. [Google Scholar] [CrossRef]
- Warrick, J.A. Littoral Sediment from Rivers: Patterns, Rates and Processes of River Mouth Morphodynamics. Front. Earth Sci. 2020, 8, 355. [Google Scholar] [CrossRef]
- Tajima, Y.; Takagawa, T.; Sato, S.; Takewaka, S. Collapse and recovery process of the sand spit at the Tenryu River mouth on the Pacific Coast of Japan. Coast. Eng. J. 2018, 60, 532–547. [Google Scholar] [CrossRef]
- Roelvink, J.A.; Stive, M.J.F. Bar-generating cross-shore flow mechanisms on a beach. J. Geophys. Res. Oceans 1989, 94, 4785–4800. [Google Scholar] [CrossRef]
- Aagaard, T. Sediment supply to beaches: Cross-shore sand transport on the lower shoreface. J. Geophys. Res. Earth Surf. 2014, 119, 913–926. [Google Scholar] [CrossRef]
- Wei, Z.; Dalrymple, R.A.; Xu, M.; Garnier, R.; Derakhti, M. Short-crested waves in the surf zone. J. Geophys. Res. Oceans 2017, 122, 4143–4162. [Google Scholar] [CrossRef] [Green Version]
- Komar, P.D. Computer Models of Delta Growth due to Sediment Input from Rivers and Longshore Transport. Geol. Soc. Am. Bull. 1973, 84, 2217–2226. [Google Scholar] [CrossRef]
- Giosan, L.; Bhattacharya, J.P. River Deltas—Concepts, Models, and Examples; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 2005. [Google Scholar]
- Nienhuis, J.H.; Ashton, A.D.; Giosan, L. What makes a delta wave-dominated? Geology 2015, 43, 511–514. [Google Scholar] [CrossRef] [Green Version]
- Nienhuis, J.H.; Ashton, A.D. Mechanics and rates of tidal inlet migration: Modeling and application to natural examples: Inlet Migration. J. Geophys. Res. Earth Surf. 2016, 121, 2118–2139. [Google Scholar] [CrossRef]
- Nienhuis, J.H.; Ashton, A.D.; Nardin, W.; Fagherazzi, S.; and Giosan, L. Alongshore sediment bypassing as a control on river mouth morphodynamics: Littoral Bypassing. J. Geophys. Res. Earth Surf. 2016, 121, 664–683. [Google Scholar] [CrossRef] [Green Version]
- Duc Anh, N.Q.; Tanaka, H.; Tam, H.S.; Tinh, N.X.; Tung, T.T.; Viet, N.T. Comprehensive Study of the Sand Spit Evolution at Tidal Inlets in the Central Coast of Vietnam. J. Mar. Sci. Eng. 2020, 8, 722. [Google Scholar] [CrossRef]
- Allard, J.; Bertin, X.; Chaumillon, E.; Pouget, F. Sand spit rhythmic development: A potential record of wave climate variations? Arçay Spit, western coast of France. Mar. Geol. 2008, 253, 107–131. [Google Scholar] [CrossRef]
- Ashton, A.D.; Nienhuis, J.; Ells, K. On a neck, on a spit: Controls on the shape of free spits. Earth Surf. Dyn. 2016, 4, 193–210. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Lee, H.S. Influence of jetty construction on morphology and wave set-up at a river mouth. Coast. Eng. J. 2003, 45, 659–683. [Google Scholar] [CrossRef]
- Posamentier, H.W.; Allen, G.P.; James, D.P.; Tesson, M. Forced regressions in a sequence stratigraphic framework: Concepts, examples, and exploration significance. Am. Assoc. Petrol. Geol. Bull. 1992, 76, 1687–1709. [Google Scholar]
- Tamura, T.; Nanayama, F.; Saito, Y.; Murakami, F.; Nakashima, R.; Watanabe, K. Intra-shoreface erosion in response to rapid sea-level fall: Depositional record of a tectonically uplifted strand plain, Pacific coast of Japan. Sedimentology 2007, 54, 1149–1162. [Google Scholar] [CrossRef]
- Aagaard, T.; Hughes, M.G. Equilibrium shoreface profiles: A sediment transport approach. Mar. Geol. 2017, 390, 321–330. [Google Scholar] [CrossRef]
- Cowell, P.J.; Thom, B.G. Morphodynamics of coastal evolution. In Coastal Evolution: Late Quaternary Shoreline Morphodynamics; Carter, R.W.G., Woodroffe, C.D., Eds.; Cambridge University Press: Cambridge, UK, 1994; pp. 33–86. [Google Scholar]
- Stive, M.J.F.; de Vriend, H.J. Modeling shoreface profile evolution. Mar. Geol. 1995, 126, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Wright, L.D. Morphodynamics of Inner Continental Shelves; CRC Press: Boca Raton, FL, USA, 1995; p. 241. [Google Scholar]
- Harley, M.D.; Turner, I.L.; Short, A.D. New insights into embayed beach rotation: The importance of wave exposure and cross-shore processes. J. Geophys. Res. Earth Surf. 2015, 120, 1470–1484. [Google Scholar] [CrossRef] [Green Version]
- Tinh, N.X.; Thanh, T.M.; Tanaka, H.; Viet, N.T.; Mitobe, Y.; Dien, D.C. Numerical investigation of the effect of seasonal variations of depth-of-closure on shoreline evolution. Int. J. Sediment. Res. 2021, 36, 1–16. [Google Scholar]
- Jara, M.S.; González, M.; Medina, R. Shoreline evolution model from a dynamic equilibrium beach profile. Coast. Eng. 2015, 99, 1–14. [Google Scholar] [CrossRef]
- Wang, P.; Kraus, N.C. Beach Profile Equilibrium and Patterns of Wave Decay and Energy Dissipation across the Surf Zone Elucidated in a Large-Scale Laboratory Experiment. J. Coast. Res. 2005, 21, 552–1534. [Google Scholar] [CrossRef]
- Marinho, B.; Coelho, C.; Larson, M.; Hanson, H. Cross-shore modelling of multiple nearshore bars at a decadal scale. Coast. Eng. 2020, 159, 103722. [Google Scholar] [CrossRef]
- Udo, K.; Takeda, Y. Projections of Future Beach Loss in Japan Due to Sea-Level Rise and Uncertainties in Projected Beach Loss. Coast. Eng. J. 2017, 59, 1740006. [Google Scholar] [CrossRef] [Green Version]
- Takeda, Y.; Udo, K. Effect of Spatial Resolution on Nationwide Projection of Future Beach Loss Rate in Japan. J. Coast. Res. 2020, 95, 1310–1314. [Google Scholar] [CrossRef]
- Koshimura, S.; Shuto, N. Response to the 2011 Great East Japan Earthquake and Tsunami disaster. Philos. Trans. R. Soc. A 2015, 373, 20140373. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiep, N.T.; Tanaka, H.; Tinh, N.X. Morphology Recovery and Convergence of Topographic Evolution in the Natori River Mouth after the 2011 Tohoku Tsunami. Water 2022, 14, 715. https://doi.org/10.3390/w14050715
Hiep NT, Tanaka H, Tinh NX. Morphology Recovery and Convergence of Topographic Evolution in the Natori River Mouth after the 2011 Tohoku Tsunami. Water. 2022; 14(5):715. https://doi.org/10.3390/w14050715
Chicago/Turabian StyleHiep, Nguyen Trong, Hitoshi Tanaka, and Nguyen Xuan Tinh. 2022. "Morphology Recovery and Convergence of Topographic Evolution in the Natori River Mouth after the 2011 Tohoku Tsunami" Water 14, no. 5: 715. https://doi.org/10.3390/w14050715
APA StyleHiep, N. T., Tanaka, H., & Tinh, N. X. (2022). Morphology Recovery and Convergence of Topographic Evolution in the Natori River Mouth after the 2011 Tohoku Tsunami. Water, 14(5), 715. https://doi.org/10.3390/w14050715