Evaluation of Land-Use Changes as a Result of Underground Coal Mining—A Case Study on the Upper Nitra Basin, West Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coefficient of Ecological Stability of the Landscape
- -
- CES < 0.10—area with maximum disturbance of natural structures, basic ecological functions must be intensively and permanently replaced by technical interventions;
- -
- CES 0.10–0.30—above-average land use, with clear disturbance of natural structures;
- -
- CES 0.30–1.00—land intensively used mainly by large-scale agricultural production, weakening of self-regulatory processes causes their considerable ecological lability;
- -
- CES > 1.00—almost balanced country, in which the technical objects are relatively in line with the preserved natural structures.
2.2. The Selected Landscape Metrics (Shannon’s Diversity Index and Shannon’s Evenness Index)
3. Study Area
4. Results
- 1949
- 1976
- 1990
- 2002
- 2010
- 2017
Hydric Ecosystem Changes
5. Discussion
5.1. Evaluation Changes to the Mining Landscape
5.2. Managed versus Spontaneous Succession Restoration
6. Conclusions
- -
- Given the existing legislation, we would propose to preserve those wetlands that have a conservation perspective for the future. The basic criterion should therefore be whether the wetland is connected to watercourses in order to ensure the supply of water to the wetland ecosystems;
- -
- Revitalization of depressed areas on which grounding was carried out. Focus on locations where there was individual housing construction in the past;
- -
- Optimization of ownership of land (redemption into state ownership) that has been affected by mining activities and will no longer fulfill the original land use (especially wetland ecosystems);
- -
- Design management measures for wetland ecosystems such as habitats of anthropogenic origin. Conditions will be created for maintaining landscape diversity;
- -
- Construction of an educational trail for educational activities and relaxation use, as the area is located near the towns of Prievidza, Nováky and also the spa town of Bojnice.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antrop, M. Sustainable landscapes: Contradiction, fiction or utopia? Landsc. Urban Plan. 2006, 75, 187–197. [Google Scholar] [CrossRef]
- Sklenička, P.; Charvátová, E. Stand continuity- a useful parameter for ecological networks in post-mining landscapes. Ecol. Eng. 2003, 20, 287–296. [Google Scholar] [CrossRef]
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Demirel, N.; Düzgün, Ş.; Emil, M.K. Landuse change detection in a surface coal mine area using multi-temporal high-resolution satellite images. Int. J. Min. Reclam. Environ. 2011, 25, 342–349. [Google Scholar] [CrossRef]
- Skaloš, J.; Kašparová, I. Landscape memory and landscape change in relation to mining. Ecol. Eng. 2012, 43, 60–69. [Google Scholar] [CrossRef]
- Wu, W.-B.; Yao, J.; Kang, T.-J. Study on land use changes of the coal mining area based on TM image. J. Coal Sci. Eng. 2008, 14, 287–290. [Google Scholar] [CrossRef]
- Hu, X.; Hassink, R. Exploring adaptation and adaptability in uneven economic resilience: A tale of two Chinese mining regions. Camb. J. Reg. Econ. Soc. 2017, 10, 527–541. [Google Scholar] [CrossRef]
- Chudý, F.; Slámová, M.; Tomaštík, J.; Prokešová, R.; Mokroš, M. Identification of Micro-Scale Landforms of Landslides Using Precise Digital Elevation Models. Geosciences 2019, 9, 117. [Google Scholar] [CrossRef] [Green Version]
- Gallay, I.; Olah, B.; Gallayová, Z.; Lepeška, T. Monetary Valuation of Flood Protection Ecosystem Service Based on Hydrological Modelling and Avoided Damage Costs. An Example from the Čierny Hron River Basin, Slovakia. Water 2021, 13, 198. [Google Scholar] [CrossRef]
- Martinec, P.; Schejbalová, B. History and environmental impact of mining in the Ostrava—Karvina coal field (Upper Silesian coal basin, Czech Republic). Geol. Belg. 2004, 7, 215–223. [Google Scholar]
- Mulková, M.; Popelka, P.; Popelková, R. Landscape changes in the central part of the Karviná region from the first half of the 19th century to the beginning of the 21st century. Ekol. Bratisl. 2012, 31, 75–91. [Google Scholar] [CrossRef]
- Kunc, J.; Martinát, S.; Tonev, P.; Frantál, B. Destiny of urban brownfields: Spatial patterns and perceived consequences of post-socialistic deindustrialization. Transylv. Rev. Adm. Sci. 2014, 41E, 109–128. [Google Scholar]
- Pełka-Gościniak, J. Restoring nature in mining areas of the Silesian Upland (Poland). Earth Surf. Process. Landf. 2006, 31, 1685–1691. [Google Scholar] [CrossRef]
- Krzysztofik, R.; Tkocz, M.; Spórna, T.; Kantor-Pietraga, I. Some dilemmas of post-industrialism in a region of traditional industry: The case of the Katowice conurbation, Poland. Morav. Geogr. Rep. 2016, 24, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Antwi, E.K.; Boakye-Danquah, J.; Asabere, S.B.; Takeuchi, K.; Wiegleb, G. Land cover transformation in two post-mining landscapes subjected to different ages of reclamation since dumping of spoils. SpringerPlus 2014, 3, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Spreckels, V. Monitoring of coal mining subsidence by HRSC-A DATA. In Proceedings of the IAPRS 2000, Volume XXXIII, Amsterdam, The Netherlands, 16–23 July 2000; pp. 1452–1458, (CD-ROM). [Google Scholar]
- Krümmelbein, J.; Bens, O.; Raab, T.; Naeth, M.A. A history of lignite coal mining and reclamation practices in Lusatia, eastern Germany. Can. J. Soil Sci. 2012, 92, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Longoni, L.; Papini, M.; Brambilla, D.; Arosio, D.; Zanzi, L. The risk of collapse in abandoned mine sites: The issue of data uncertainty. Open Geosci. 2016, 8, 246–258. [Google Scholar] [CrossRef]
- Loupasakis, C.; Angelitsa, V.; Rozos, D.; Spanou, N. Mining geohazards—land subsidence caused by the dewatering of opencast coal mines: The case study of the Amyntaio coal mine, Florina, Greece. Nat. Hazards 2013, 70, 675–691. [Google Scholar] [CrossRef]
- Sahu, P.; Lokhande, R.D. An Investigation of Sinkhole Subsidence and its Preventive Measures in Underground Coal Mining. Procedia Earth Planet. Sci. 2015, 11, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Latifovic, R.; Fytas, K.; Chen, J.; Paraszczak, J. Assessing land cover change resulting from large surface mining development. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 29–48. [Google Scholar] [CrossRef]
- Fischer, C. Use of GIS and multitemporal imaging spectrometer data for modelling and mapping environmental changes in mining areas. In Proceedings of the Symposium on Geospatial Theory, Processing and Applications, Ottawa, ON, Canada, 9–12 July 2002; Available online: https://www.isprs.org/proceedings/xxxiv/part4/pdfpapers/350.pdf (accessed on 20 December 2021).
- Bian, Z.; Inyang, H.I.; Daniels, J.L.; Otto, F.; Struthers, S. Environmental issues from coal mining and their solutions. Min. Sci. Technol. 2010, 20, 215–223. [Google Scholar] [CrossRef]
- Wiegleb, G.; Felinks, B. Primary succession in post-mining landscapes of Lower Lusatia—Chance or necessity. Ecol. Eng. 2001, 17, 199–217. [Google Scholar] [CrossRef]
- Peh, N.; Plut, D. Sustainable landscape management in Slovenia: Environmental improvements for the Velenje coal mining community 1991–2000. GeoJournal 2001, 54, 569–578. [Google Scholar]
- Tokgoz, N. Case study of the Agacli landslide–gully complex during post-coal-mining reclamation and afforestation. Environ. Earth Sci. 2009, 59, 1559–1567. [Google Scholar] [CrossRef]
- Lei, M.; Qi-yan, F.; Lai, Z.; Ping, L.; Qing-jun, M. Environmental cumulative effects of coal underground mining. Procedia Earth Planet. Sci. 2009, 1, 1280–1284. [Google Scholar] [CrossRef] [Green Version]
- Akiwumi, F.A.; Butler, D.R. Mining and environmental change in Sierra Leone, West Africa: A remote sensing and hydrogeomorphological study. Environ. Monit. Assess. 2007, 142, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Dawley, S.; Stennig, A.; Pike, A. Mapping Corporations, Connecting Communities: Remaking Steel Geographies in Northern England and Southern Poland. Eur. Urban Reg. Stud. 2008, 15, 265–287. [Google Scholar] [CrossRef] [Green Version]
- Kunzer, C.; Voigt, S.; Morth, D. Investigating land cover changes in two chinese coal mining environments using partial unmixing. In Remote Sensing & GIS for Environmental Studies; Erasmi, S., Cyffka, B., Kappas, M., Eds.; Göttinger Geographische Abhandlungen: Göttingen, Germany, 2005; Volume 113, pp. 31–37. [Google Scholar]
- Martinec, P.; Schejbalová, B.; Hortvík, K.; Maníček, J. The effects of coal mining on the landscapes of the Ostrava region. Morav. Geogr. Rep. 2005, 13, 13–26. [Google Scholar]
- Hietel, E.; Waldhardt, R.; Otte, A. Analysing land-cover changes in relation to environmental variables in Hesse, Germany. Landsc. Ecol. 2004, 19, 473–489. [Google Scholar] [CrossRef]
- Pan, D.; Domon, G.; de Blois, S.; Bouchard, A. Temporal (1958–1993) and spatial patterns of land use changes in Haut-Saint-Laurent (Quebec, Canada) and their relation to landscape physical attributes. Landsc. Ecol. 1999, 14, 35–52. [Google Scholar] [CrossRef]
- Hietala-Koivu, R. Landscape and modernizing agriculture: A case study of three areas in Finland in 1954–1998. Agric. Ecosyst. Environ. 2002, 91, 273–281. [Google Scholar] [CrossRef]
- Hietel, E.; Waldhardt, R.; Otte, A. Linking socio-economic factors, environment and land cover in the German Highlands, 1945–1999. J. Environ. Manag. 2005, 75, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.S.; Thenail, C.; Kristensen, S.P. Landscape changes in agrarian landscapes in the 1990s: The interaction between farmers and the farmed landscape. A case study from Jutland, Denmark. J. Environ. Manage. 2004, 71, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.-M.; Suárez-Seoane, S.; Calabuig, E.D.L. Modelling the risk of land cover change from environmental and socio-economic drivers in heterogeneous and changing landscapes: The role of uncertainty. Landsc. Urban Plan. 2011, 101, 108–119. [Google Scholar] [CrossRef]
- Karlik, L.; Marián, G.; Falťan, V.; Havlíček, M. Vineyard zonation based on natural terroir factors using multivariate statistics—Case study Burgenland (Austria). OENO One 2018, 52, 105–117. [Google Scholar] [CrossRef]
- Weis, K.; Hroncek, P.; Tometzova, D.; Gregorova, B.; Pribil, M.; Jesensky, M.; Cech, V. Analysis of notice boards (panels) as general information media in the outdoor mining tourism. Acta Montan. Slovaca 2019, 24, 269–283. [Google Scholar]
- Calvo-Iglesias, M.S.; Fra.Paleo, U.; Crecente-Maseda, R.; Díaz-Varela, R.A. Directions of Change in Land Cover and Landscape Patterns from 1957 to 2000 in Agricultural Landscapes in NW Spain. Environ. Manag. 2006, 38, 921–933. [Google Scholar] [CrossRef]
- Petit, C.; Lambin, E. Impact of data integration technique on historical land-use/land-cover change: Comparing historical maps with remote sensing data in the Belgian Ardennes. Landsc. Ecol. 2002, 17, 117–132. [Google Scholar] [CrossRef]
- Tischendorf, L. Can landscape indices predict ecological processes consistently? Landsc. Ecol. 2001, 16, 235–254. [Google Scholar] [CrossRef]
- Muchová, Z. Assessment of land ownership fragmentation by multiple criteria. Surv. Rev. 2017, 51, 265–272. [Google Scholar] [CrossRef]
- Kubínsky, D.; Weis, K.; Fuska, J.; Lehotský, M.; Petrovič, F. Changes in retention characteristics of 9 historical artificial water reservoirs near Banská Štiavnica. Slovakia. Open Geosci. 2015, 7, 880–887. [Google Scholar] [CrossRef]
- Petrovič, F.; Stránovsky, P.; Muchová, Z.; Falťan, V.; Skokanová, H.; Havlíček, M.; Špulerová, J. Landscape-ecological optimization of hydric potential in foothills region with dispersed settlements—A case study of Nová Bošáca, Slovakia. Appl. Ecol. Environ. Res. 2017, 15, 379–400. [Google Scholar] [CrossRef]
- Wrbka, T.; Erb, K.; Schulz, N.B.; Peterseil, J.; Hahn, C.; Haberl, H. Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy 2004, 21, 289–306. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A. Compative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol. Appl. 2002, 12, 335–345. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape Ecology: What Is the State of the Science? Annu. Rev. Ecol. Evol. Syst. 2005, 36, 319–344. [Google Scholar] [CrossRef]
- Pei, W.; Yao, S.; Knight, J.F.; Dong, S.; Pelletier, K.; Rampi, L.P.; Wang, Y.; Klassen, J. Mapping and detection of land use change in a coal mining area usung object-based image analysis. Environ. Earth Sci. 2017, 76, 125. [Google Scholar] [CrossRef]
- Buczyńska, A. Remote sensing and GIS technologies in land reclamation and landscape planning processes on post-mining areas in the Polish and world literature. AIP Conf. Proc. 2020, 2209, 040002. [Google Scholar] [CrossRef]
- Kuta, R.; Kučerová, R.; Pavelek, Z.; Dirner, V. Assessment of mining activities with respect to the environmental protection. Acta Mt. Slovaca 2017, 1, 79–93. [Google Scholar]
- Wang, L.; Jia, Y.; Yao, Y.; Xu, D. Identification and evaluation of land use vulnerability in a coal mining area under the coupled human-environment. Open Geosci. 2019, 11, 64–76. [Google Scholar] [CrossRef]
- Tropek, R.; Kadlec, T.; Hejda, M.; Kocarek, P.; Skuhrovec, J.; Malenovsky, I.; Vodka, S.; Spitzer, L.; Banar, P.; Konvicka, M. Technical reclamations are wasting the conservation potential of post-mining sites. A case study of black coal spoil dumps. Ecol. Eng. 2012, 43, 13–18. [Google Scholar] [CrossRef]
- Harabiš, F. High diversity of odonates in post-mining areas: Meta-analysis uncovers potential pitfalls associated with the formation and management of valuable habitats. Ecol. Eng. 2017, 90, 438–446. [Google Scholar] [CrossRef]
- Frouz, J.; Dvorščík, P.; Vávrová, A.; Doušová, O.; Kadochová, Š.; Matějíček, L. Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites. Ecol. Eng. 2015, 84, 233–239. [Google Scholar] [CrossRef]
- Xiao, W.; Fu, Y.; Wang, T.; Lv, X. Effects of land use transitions due to underground coal mining on ecosystem services in high groundwater table areas: A case study in the Yanzhou coalfield. Land Use Policy 2018, 71, 213–221. [Google Scholar] [CrossRef]
- Cao, Y.; Bai, Z.; Sun, Q.; Zhou, W. Rural settlement changes in compound land use areas: Characteristics and reasons of changes in a mixed mining-rural-settlement area in Shanxi Province, China. Habitat Int. 2017, 61, 9–21. [Google Scholar] [CrossRef]
- Wu, Z.; Lei, S.; Yan, Q.; Bian, Z.; Lu, Q. Landscape ecological network construction controlling surface coal mining effect on landscape ecology: A case study of a mining city in semi-arid steppe. Ecol. Indic. 2021, 133, 108403. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, F.; Cong, K.; Liu, X. Scenario simulation of land use and land cover change in mining area. Sci. Rep. 2021, 11, 12910. [Google Scholar] [CrossRef]
- Lei, K.; Pan, H.; Lin, C. A landscape approach towards ecological restoration and sustainable development of mining areas. Ecol. Eng. 2016, 90, 320–325. [Google Scholar] [CrossRef]
- Vrablikova, J.; Wildova, E.; Vrablik, P. Sustainable Development and Restoring the Landscape after Coal Mining in the Northern Part of the Czech Republic. J. Environ. Prot. 2016, 7, 1483–1496. [Google Scholar] [CrossRef] [Green Version]
- Deshaies, M. Metamorphosis of Mining Landscapes in the Lower Lusatian Lignite Basin (Germany): New uses and new image of a mining region. Les. Cah. Rech. Arch. Urbaine Paysagère 2020, 7, 4018. [Google Scholar] [CrossRef]
- Cunningham, M.A. Accuracy assessment of digitized and classified land cover data for wildlife habitat. Landsc. Urban Plan. 2006, 78, 217–228. [Google Scholar] [CrossRef]
- Pinto, A.T.; Gonçalves, J.A.; Beja, P.; Pradinho Honrado, J. From Archived Historical Aerial Imagery to Informative Orthophotos: A Framework for Retrieving the Past in Long-Term Socioecological Research. Remote Sens. 2019, 11, 1388. [Google Scholar] [CrossRef] [Green Version]
- Feranec, J.; Hazeu, G.; Christensen, S.; Jaffrain, G. Corine land cover change detection in Europe (case studies of the Netherlands and Slovakia). Land Use Policy 2007, 24, 234–247. [Google Scholar] [CrossRef]
- Míchal, I. Principy krajinářského hodnocení území (in Czech). In Architektúra a Urbanizmus 1982, XVI/Z; VEDA SAV: Bratislava, Slovakia; pp. 65–87.
- Belčáková, I.; Diviaková, A.; Belaňová, E. Ecological Footprint in relation to Climate Change Strategy in Cities. Mater. Sci. Eng. 2017, 245, 62021. [Google Scholar] [CrossRef]
- Ivan, P.; Macura, V.; Belčáková, I. Various approaches to evaluation of ecological stability. In Proceedings of the SGEM 2014, GeoConference on Ecology, Economics, Education and Legislation: Conference Proceedings, Albena, Bulgaria, 17–26 June 2014; SGEM: Sofia, Bulgaria, 2014; Volume I, pp. 799–805, ISBN 978-619-7105-17-9. [Google Scholar]
- Belčáková, I. New approaches to the integration of ecological, social and economic aspects in land-use planning. Ekológia—Bratisl. 2003, 22, 183–189. [Google Scholar]
- Miklós, L.; Špinerová, A.; Belčáková, I.; Offertálerová, M.; Miklósová, V. Ecosystem Services: The Landscape-Ecological Base and Examples. Sustainability 2020, 12, 10167. [Google Scholar] [CrossRef]
- Izakovičová, Z. Ecological Interpretations and Evaluation of Encounters of interests in Landscape. Ekológia—Bratisl. 1995, 14, 261–275. [Google Scholar]
- Izakovičová, Z.; Miklós, L.; Miklósová, V.; Petrovič, F. The Integrated Approach to Landscape Management—Experience from Slovakia. Sustainability 2019, 11, 4554. [Google Scholar] [CrossRef] [Green Version]
- Miklós, L.; Izakovičová, Z.; Offertálerová, M.; Miklósová, V. The institutional tools of integrated landscape management in Slovakia for mitigation of climate change and other natural disasters. Eur. Countrys. 2017, 9, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Petlušová, V.; Petluš, P.; Ševčík, M.; Hreško, J. The Importance of Environmental Factors for the Development of Water Erosion of Soil in Agricultural Land: The Southern Part of Hronská Pahorkatina Hill Land, Slovakia. Agronomy 2021, 11, 1234. [Google Scholar] [CrossRef]
- Petlušová, V.; Petluš, P.; Hreško, J. The effect of agricultural land use on soil erosion processes at upland landscape in Slovakia. J. Environ. Biol. 2017, 38, 999–1007. [Google Scholar] [CrossRef]
- Rempel, R.S.; Kaukinen, D.; Carr, A.P. Patch analyst 5.1. In Ontario Ministry of Natural Resources; Centre for Northern Forest Ecosystem Research: Thunder Bay, ON, Canada, 2012. [Google Scholar]
- Zlinska, A.; Gross, P. Age and lithology determination in the Handlovska kotlina Basin Palaeogene deposits, based on the FGHn-1 (Handlova) well reinterpretation. Acta Geol. Slovaca 2013, 5, 141–153. [Google Scholar]
- Halmo, J.; Bogdan, P.; Slobodník, V.; Boroška, F. Košsko-Novácke Mokrade—Historia a Súčasný Stav (In Slovak); Hornonitrianske Bane Prievidza, a.s. Baňa Nováky, odšt. Závod Nováky: Nováky, Slovakia, 2005; 20p. (In Slovak) [Google Scholar]
- Schwarz, J.; Slobodník, V.; Halmo, J. Exploatácia Uhlia v 11. Ťažobnom Poli—Hornonitrianske Bane Prievidza, a.s. 2006. Available online: https://www.enviroportal.sk/sk/eia/detail/exploatacia-uhlia-v-11-tazobnom-poli-hornonitrianske-bane-prievidza-ba (accessed on 20 December 2021). (In Slovak).
- David, S.; Mojses, M.; Petrovič, F.; Ambros, M.; Balaž, I.; Bugár, G.; Gajdoš, P.; Gerhátová, K.; Hreško, J.; Majský, J.; et al. Vplyv ťažby Uhlia na Krajinu a Biodiverzitu Košských Mokradí (Hornonitrianska kotlina); Ústav krajinnej ekológie SAV: Nitra, Slovakia, 2013; 154p. (In Slovak) [Google Scholar]
- Svitok, M.; Hrivnák, R.; Oťáhelová, H.; Dúbravková, D.; Paľove-Balang, P.; Slobodník, V. The Importance of Local and Regional Factors on the Vegetation of Created Wetlands in Central Europe. Wetlands 2011, 31, 663–674. [Google Scholar] [CrossRef]
- Marschalko, M.; Yilmaz, I.; Křístková, V.; Fuka, M.; Kubečka, K.; Bouchal, T. An indicative method for determination of the most hazardous changes in slopes of the subsidence basins in underground coal mining area in Ostrava (Czech Republic). Environ. Monit. Assess. 2012, 185, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Michaeli, E.; Boltižiar, M. Selected Localities of Environmental Loads in the Slovak Republic. Geogr. Cassoviensis 2010, 2, 114–119. [Google Scholar]
- Michaeli, E.; Solár, V.; Maxin, M.; Vilček, J.; Boltižiar, M. The Nature of the Technosols on the Waste from Nickel Production. Sustainability 2021, 13, 406. [Google Scholar] [CrossRef]
- Michaeli, E.; Boltižiar, M.; Ivanová, M. Geoecological Structure of the Dump of Technological Waste (Fe-Concentrate) et Sereď. Folia Geogr. 2009, XLIX, 180–197. [Google Scholar]
- Michaeli, E.; Maxin, M.; Solár, V.; Vilček, J.; Boltižiar, M. Geomorphological Processes at the Industrial Sludge Landfill in Sered, Slovakia. Sustainability 2021, 13, 6605. [Google Scholar] [CrossRef]
- Martinát, S.; Navrátil, J.; Dvořák, P.; Klusáček, P.; Kulla, M.; Kunc, J.; Havlíček, M. The expansion of coal mining in the depresion areas—A way to development? Hum. Geogr. 2014, 8, 5–15. [Google Scholar]
- Wechsung, F.; Krysanova, V.; Flechsig, M.; Schaphoff, S. May land use change reduce the water deficiency problem caused by reduced brown coal mining in the state of Brandenburg? Landsc. Urban Plan. 2000, 51, 177–189. [Google Scholar] [CrossRef]
- Hendychova, M.; Kabrna, M. An analysis of 200-year-long changes in a landscape affected by large-scale surface coal mining: History, present and future. Appl. Geogr. 2016, 74, 151–159. [Google Scholar] [CrossRef]
- Guan, J.; Yu, P. Does Coal Mining Have Effects on Land Use Changes in a Coal Resource-Based City? Evidence from Huaibei City on the North China Plain. Int. J. Environ. Res. Public Health 2021, 18, 11616. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, H.; Yin, P.; Bu, N.; Li, G. Impact of Underground Coal Mining on Regional Landscape Pattern Change Based on Life Cycle: A Case Study in Peixian, China. Pol. J. Environ. Stud. 2019, 28, 4455–4465. [Google Scholar] [CrossRef]
- Drobilová, L. Development dynamics of localities severly affected by antropogenic activities on the example of Doly Bílina. J. Landsc. Ecol. 2009, 2, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Sikdar, P.K.; Chakraborty, S.; Adhya, E.; Paul, P.K. Land Use/Land Cover Changes and Groundwater Potential Zoning in and around Raniganj coal mining area, Bardhaman District, West Bengal –A GIS and Remote Sensing Approach. J. Spat. Hydrol. 2004, 4, 1–24. [Google Scholar]
- Keken, Z.; Panagiotidis, D.; Skaloš, J. The influence of damming on landscape structure change in the vicinity of flooded areas: Case studies in Greece and the Czech Republic. Ecol. Eng. 2015, 74, 448–457. [Google Scholar] [CrossRef]
- Sheng, J.; Li-Zhong, L. Discussion on theory and methods of land-use planning in mining area. Procedia Earth Planet. 2009, 1, 956–962. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.K.; Singh, R.; Singh, G. Impact of coal mining and industrial activities on land use pattern in Angul-talcher region of Orissa, India. Int. J. Eng. Sci. Technol. 2010, 2, 7771–7784. [Google Scholar]
- Krzysztofik, R.; Runge, J.; Kantor-Pietraga, I. Paths of Environmental and Economic Reclamation: The Case of Post-Mining Brownfields. Pol. J. Environ. Stud. 2011, 21, 219–223. [Google Scholar]
- David, S. Krajinnoekologické, environmentálne a sociálno-ekonomické dôsledky ťažby uhlia v katastri obce Koš. Zivotn. Prostr. 2010, 44, 40–44. (In Slovak) [Google Scholar]
- Bradshaw, A. Restoration of mined lands—Using natural processes. Ecol. Eng. 1997, 8, 255–269. [Google Scholar] [CrossRef]
- Duží, B.; Jakubínsky, J. Brownfield dilemas in the transformation of post-communist cities: A case study of Ostrava, Czech Republic. Hum. Geogr. 2013, 7, 53–64. [Google Scholar]
- Ambrozy, M.; Králik, R.; Tavilla, I.; Roubalová, M. Sustainable life conditions from the view of logic, physics and astronomy. Eur. J. Sci. Theol. 2019, 15, 145–155. [Google Scholar]
- Menegaki, M.; Kaliampakos, D. Evaluating mining landscape: A step forward. Ecol. Eng. 2012, 43, 26–33. [Google Scholar] [CrossRef]
- Koch, H.; Kaltofen, M.; Grünewald, U.; Messner, F.; Karkuschke, M.; Zwirner, O.; Schramm, M. Scenarios of water resources management in the Lower Lusatian mining district, Germany. Ecol. Eng. 2005, 24, 49–57. [Google Scholar] [CrossRef]
- Jakubcová, A.; Grežo, H.; Hreško, J. Identification of areas with significant flood risk at the confluence of Danube and Ipel rivers (southern Slovakia). Nat. Hazards 2016, 75, 849–867. [Google Scholar] [CrossRef]
- Bell, L. Establishment of native ecosystems after mining—Australian experience across diverse biogeographic zones. Ecol. Eng. 2001, 17, 179–186. [Google Scholar] [CrossRef]
- Sklenička, P.; Lhota, T. Landscape heterogeneity—A quantitative criterion for landscape reconstruction. Landsc. Urban Plan. 2002, 58, 147–156. [Google Scholar] [CrossRef]
- Conesa, H.M.; Schulin, R.; Nowack, B. Mining landscape: A cultural tourist opportunity or an environmental problem? The study case of the Cartagena—La Unión Mining District (SE Spain). Ecol. Econ. 2008, 64, 690–700. [Google Scholar] [CrossRef]
- Antwi, E.K.; Krawczynski, R.; Wiegleb, G. Fetecting the effect of disturbance on habitat diversity and land cover change in a post-mining area using GIS. Landsc. Urban Plan. 2008, 87, 22–32. [Google Scholar] [CrossRef]
- Doležalová, J.; Vojar, J.; Smolová, D.; Solský, M.; Kopecký, O. Technical reclamation and spontaneous succession produce different water habitats: A case study from Czech post-mining sites. Ecol. Eng. 2012, 43, 5–12. [Google Scholar] [CrossRef]
- Bröring, U.; Mrzljak, J.; Niedringhaus, R.; Wiegleb, G. Soil zoology I: Arthropod communities in open landscapes of former brown coal mining areas. Ecol. Eng. 2005, 24, 121–133. [Google Scholar] [CrossRef]
- Bröring, U.; Wiegleb, G. Soil zoology II: Colonization, distribution, and abundance of terrestrial Heteroptera in open landscapes of former brown coal mining areas. Ecol. Eng. 2005, 24, 135–147. [Google Scholar] [CrossRef]
- Schultz, F.; Wiegleb, G. Development options of natural habitats in a post-mining landscape. Land Degrad. Dev. 2000, 11, 99–110. [Google Scholar] [CrossRef]
- Svobodova, K.; Sklenicka, P.; Molnarová, K.J.; Salek, M. Visual preferences for physical attributes of mining and post-mining landscapes with respect to the sociodemographic characteristics of respondents. Ecol. Eng. 2012, 43, 34–44. [Google Scholar] [CrossRef]
- Basic Strategy, Priorities and Possibilities. Available online: https://energy.ec.europa.eu/system/files/2019-04/4_wg1_sk_0.pdf (accessed on 20 December 2021).
- Available online: https://www.mirri.gov.sk/sekcie/cko/makroregionalne-strategie-v-podmienkach-sr/karpatska-strategia/zakladne-informacie (accessed on 20 December 2021).
Classified Year | Geospatial Data | Source | Format | Spatial Resolution | Processing |
---|---|---|---|---|---|
1949 | Aerial photographs | Archive of the Topographic Institute of the Ministry of Defence (purchased data) | 8-bit grayscale raster (TIFF), 23 × 23 cm | 11,100 × 11,100 pixels, scale ~1:27,000 | Radiometric pre-processing, orthorectification (0.5 m/pixel), manual vectorization and classification of land-cover features |
1976 | Aerial photographs | Archive of the Topographic Institute of the Ministry of Defence (purchased data) | 8-bit grayscale raster (TIFF), 16 × 16 cm | 8550 × 8550 pixels, scale ~1:37,000 | Radiometric pre-processing, orthorectification (0.5 m/pixel), manual vectorization and classification of land-cover features |
1990 | Aerial photographs | Archive of the Topographic Institute of the Ministry of Defence (purchased data) | 8-bit grayscale raster (TIFF), 22 × 22 cm | 10,800 × 10,800 pixels, scale ~1:26,000 | Radiometric pre-processing, orthorectification (0.5 m/pixel), manual vectorization and classification of land-cover features |
2002 | Colour Orthophotography | Geodis Slovakia s.r.o./Eurosense s.r.o. (purchased data) | georeferenced RGB raster (JPEG) | 1.5 m/pixel | Manual vectorization and classification of land-cover features |
2004 | Situation of damaged areas (map) | Mining company Hornonitrianske bane Prievidza, a.s. (borrowed for scanning process) | Paper Print | 1:10,000 | Scanning (300 DPI), georeferencing, manual vectorization and classification of hydric features only |
2010 | Colour Orthophotography | Geodis Slovakia s.r.o./Eurosense s.r.o. (purchased data) | georeferenced RGB raster (TIFF, JPEG) | 0.5 m/pixel | Manual vectorization and classification of land-cover features |
2012 | Colour Orthophotography | Eurosense s.r.o. (purchased data) | georeferenced RGB raster (TIFF, JPEG) | 0.5 m/pixel | Manual vectorization and classification of hydric features only |
2015 | Colour Orthophotography | Eurosense s.r.o. (purchased data) | georeferenced RGB raster (TIFF, JPEG) | 0.5 m/pixel | Manual vectorization and classification of hydric features only |
2017 | Colour Orthophotography | GKÚ Bratislava, NLC (open-source data) | georeferenced RGB raster (TIFF, JPEG) | 0.25 m/pixel | Manual vectorization and classification of land-cover features |
2020 | Multispectral satellite imagery (Sentinel-2) | ESA online portal (Copernicus Open Access Hub) | georeferenced raster (JP2) | 10 m/pixel | Vectorization of recent changes or newly appeared water areas (illustrative purpose) |
Additional geospatial data: | |||||
1949, 1976, 1990 | DMR 5.0 (digital terrain model) | Product of Aerial Laser Scanning: ÚGKK SR (open-source data) | Float32 GeoTIFF | 1 m/pixel | Used in orthorectification process and layout contour basemap |
1949 | Military Topographic maps (1955–1961) | geoportal.gov.sk—National Geoportal (open-source data) | raster WMS layer | 1:5000 | Helpful in georeferencing historical aerial photos and photointerpretation as thematic information source |
1976 | Military Topographic maps (1970) | geoportal.gov.sk—National Geoportal (open-source data) | raster WMS layer | 1:10,000 | Helpful in georeferencing historical aerial photos and photointerpretation as thematic information source |
1990 | Civil Topographic maps (1990) | geoportal.gov.sk—National Geoportal (open-source data) | raster WMS layer | 1:10,000 | Helpful during photointerpretation and land-cover classification |
2017 | Land Parcel Identification System (LPIS) | data.gov.sk—Central Portal of Public Services (open-source data) | vector layer (ESRI polygon shapefile) | _ | Helpful during photointerpretation as thematic information source—in classification arable land, grasslands, and other agriculture land such as orchards, etc. |
2017 | ZBGIS topographic map | GKÚ Bratislava (open-source data) | georeferenced RGB raster (TIFF) | 1:5000 | Helpful during photointerpretation as thematic information source and land-cover classification |
Year | 1880 | 1890 | 1900 | 1910 | 1921 | 1930 | 1950 | 1961 |
Citizens | 687 | 850 | 964 | 1238 | 1309 | 1645 | 2227 | 2835 |
Year | 1970 | 1980 | 1991 | 2001 | 2009 | 2011 | 2014 | 2020 |
Citizens | 3174 | 3110 | 809 | 881 | 999 | 1177 | 1149 | 1150 |
Area (Hectares/Percent) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Land Cover | 1949 | 1976 | 1990 | 2002 | 2010 | 2017 | ||||||
Woodlands | 11.67 | 0.86 | 12.31 | 0.91 | 21.87 | 1.61 | 25.23 | 1.86 | 34.83 | 2.56 | 47.58 | 3.5 |
Grasslands | 95.71 | 7.4 | 167.77 | 12.34 | 229.11 | 16.86 | 236.6 | 17.41 | 230.61 | 19.81 | 200.69 | 14.77 |
Arable land (mosaic) | 981.83 | 72.24 | 56.57 | 4.16 | 18.91 | 1.39 | 29.17 | 2.15 | 29.39 | 2.16 | 25.25 | 1.86 |
Arable land (large blocks) | 0.00 | 0.00 | 831.74 | 61.2 | 852.57 | 62.74 | 820.51 | 60.38 | 797.99 | 58.72 | 812.12 | 59.76 |
Gardens and orchards | 51.42 | 3.78 | 86.77 | 6.38 | 49.41 | 3.64 | 54.16 | 3.99 | 48.99 | 3.61 | 33.22 | 2.44 |
Municipal, leisure and sport greenery | 1.55 | 0.11 | 10.32 | 0.76 | 11.24 | 0.83 | 9.8 | 0.67 | 14.52 | 1.7 | 22.13 | 1.63 |
Residential areas | 33.15 | 2.44 | 47.92 | 3.53 | 31.02 | 2.28 | 19.18 | 1.41 | 19.73 | 1.45 | 17.75 | 1.31 |
Houses | 8.86 | 0.65 | 12.62 | 0.93 | 8.5 | 0.63 | 4.1 | 0.3 | 4.37 | 0.32 | 4.25 | 0.31 |
Yards | 24.29 | 1.79 | 35.3 | 2.6 | 22.52 | 1.66 | 15.17 | 1.12 | 15.36 | 1.13 | 13.5 | 0.99 |
Production and services areas | 9.74 | 0.72 | 20.91 | 1.54 | 34.06 | 2.51 | 35.26 | 2.59 | 36.32 | 2.67 | 37.57 | 2.76 |
Buildings | 2.17 | 0.16 | 3.49 | 0.26 | 8.36 | 0.62 | 7.95 | 0.59 | 8.4 | 0.62 | 9.25 | 0.68 |
Grounds | 7.58 | 0.56 | 17.42 | 1.28 | 25.69 | 1.89 | 27.31 | 2.1 | 27.92 | 2.5 | 28.32 | 2.8 |
Bare soil and destructed areas | 1.9 | 0.08 | 32.95 | 2.42 | 10.8 | 0.79 | 6.41 | 0.47 | 8.8 | 0.59 | 19.29 | 1.42 |
Transport network | 23.58 | 1.73 | 29.25 | 2.15 | 32.81 | 2.41 | 31.28 | 2.3 | 30.48 | 2.24 | 30.4 | 2.21 |
Paved roads | 6.71 | 0.49 | 12.77 | 0.94 | 20.72 | 1.52 | 20.93 | 1.54 | 19.97 | 1.47 | 20.69 | 1.52 |
(km) | 13.59 | 16.60 | 21.72 | 22.08 | 20.91 | 21.96 | ||||||
Unpaved roads | 15.4 | 1.11 | 11.8 | 0.82 | 6.45 | 0.47 | 4.72 | 0.35 | 4.87 | 0.36 | 3.98 | 0.29 |
(km) | 72.64 | 25.32 | 14.43 | 10.34 | 10.41 | 8.68 | ||||||
Railways | 1.83 | 0.13 | 5.4 | 0.4 | 5.63 | 0.41 | 5.63 | 0.41 | 5.63 | 0.41 | 5.36 | 0.39 |
(km) | 3.40 | 5.89 | 6.20 | 6.20 | 6.20 | 5.47 | ||||||
Water bodies | 10.78 | 0.79 | 10.98 | 0.81 | 10.73 | 0.79 | 20.42 | 1.5 | 30.25 | 2.23 | 38.1 | 2.8 |
Water courses | 10.78 | 0.79 | 9.81 | 0.72 | 10.27 | 0.76 | 10.7 | 0.74 | 10.7 | 0.74 | 8.62 | 0.63 |
(km) | 38.69 | 25.76 | 25.32 | 24.54 | 23.86 | 21.40 | ||||||
Stagnant water | 0 | 0 | 1.18 | 0.09 | 0.45 | 0.03 | 10.35 | 0.76 | 20.18 | 1.48 | 29.48 | 2.17 |
Wet areas | 138.54 | 10.19 | 51.55 | 3.79 | 56.41 | 4.15 | 71.63 | 5.27 | 77.74 | 5.72 | 75.21 | 5.53 |
Riparian zones | 138.54 | 10.19 | 49.71 | 3.66 | 55.18 | 4.6 | 59.56 | 4.38 | 61.92 | 4.56 | 50.65 | 3.73 |
Wet depressions | 0 | 0 | 1.83 | 0.13 | 1.23 | 0.09 | 12.7 | 0.89 | 15.82 | 1.16 | 24.56 | 1.81 |
1358.93 | 100 | 1358.93 | 100 | 1358.93 | 100 | 1358.93 | 100 | 1358.93 | 100 | 1358.93 | 100 |
Year | 1949 | 1976 | 1990 | 2002 | 2010 | 2017 |
---|---|---|---|---|---|---|
Number of lakes | 0 | 6 | 4 | 22 | 27 | 28 |
Year | 1949 | 1976 | 1990 | 2002 | 2010 | 2017 |
---|---|---|---|---|---|---|
Coefficient of ecological stability | 0.32 | 0.38 | 0.42 | 0.46 | 0.57 | 0.44 |
Land-Cover Data | SDI | SEI |
---|---|---|
LC 1949 | 1.2561 | 0.4434 |
LC 1976 | 1.4555 | 0.4781 |
LC 1990 | 1.3900 | 0.4566 |
LC 2002 | 1.4231 | 0.4674 |
LC 2010 | 1.4578 | 0.4788 |
LC 2017 | 1.4599 | 0.4795 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mojses, M.; Petrovič, F.; Bugár, G. Evaluation of Land-Use Changes as a Result of Underground Coal Mining—A Case Study on the Upper Nitra Basin, West Slovakia. Water 2022, 14, 989. https://doi.org/10.3390/w14060989
Mojses M, Petrovič F, Bugár G. Evaluation of Land-Use Changes as a Result of Underground Coal Mining—A Case Study on the Upper Nitra Basin, West Slovakia. Water. 2022; 14(6):989. https://doi.org/10.3390/w14060989
Chicago/Turabian StyleMojses, Matej, František Petrovič, and Gabriel Bugár. 2022. "Evaluation of Land-Use Changes as a Result of Underground Coal Mining—A Case Study on the Upper Nitra Basin, West Slovakia" Water 14, no. 6: 989. https://doi.org/10.3390/w14060989
APA StyleMojses, M., Petrovič, F., & Bugár, G. (2022). Evaluation of Land-Use Changes as a Result of Underground Coal Mining—A Case Study on the Upper Nitra Basin, West Slovakia. Water, 14(6), 989. https://doi.org/10.3390/w14060989