Human-Dominated Land Use Change in a Phosphate Mining Area and Its Impact on the Water Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Research Methods
2.3.1. SWAT Calibration and Uncertainty Programs
2.3.2. Sequential Uncertainty Fitting Version Method
2.3.3. Generalized Likelihood Uncertainty Estimation Method
2.3.4. Parameter Solutions Method
2.3.5. Particle Swarm Optimization Method
2.3.6. Land Use Transfer Matrix
- (1)
- conversion from one type to another;
- (2)
- a first transformation of one type into a second type and then to a third type;
- (3)
- a first transformation into a second type and then back to the first type;
- (4)
- a transformation from one secondary type to another within a type.
2.3.7. Sensitivity Analysis
3. Results and Discussion
3.1. Sensitivity Analysis of Parameters
3.2. Runoff Simulation Analysis at the Mining Area Outlet
3.3. Simulation of Total Nitrogen and Total Phosphorus Loads of Nonpoint Source Pollution at Outlet
3.3.1. Calibration and Validation
3.3.2. Probability Density of Behavior Parameters
3.3.3. Parameter Uncertainty Analysis of Total Nitrogen and Total Phosphorus Loads
3.4. Effect of Land Use Change on the Phosphate Mining Area
3.4.1. Land Use Change from before to after Phosphate Rock Mining (Pre–Post)
3.4.2. Land Use Change from after Phosphate Mining (Post) to 2014 (Reclamation)
3.5. Simulated Runoff Changes before and after the Mining of Phosphate
3.6. Effects of Land Use Change on the Total Phosphorus and Total Nitrogen Loads in the Phosphate Mining Area
4. Conclusions
5. Future
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magnan, A.; Duvat, V. Phosphate mining risks atoll culture. Nature 2015, 522, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, R.; Zhang, Y.; Guo, J.; Guo, Z.; Xiao, Y. Development strategy of phosphate rock in China under global allocation of resources. Strateg. Study Chin. Acad. Eng. 2019, 21, 128–132. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Wu, H.N.; Shen, S.L.; Horpibulsuk, S.; Xu, Y.S.; Zhou, Q.H. Environmental impacts caused by phosphate mining and ecological restoration: A case history in Kunming, China. Nat. Hazards 2014, 74, 755–770. [Google Scholar] [CrossRef]
- Pan, S.; Liu, D.; Wang, Z.; Zhao, Q.; Zou, H.; Hou, Y.; Liu, P.; Xiong, L. Runoff Responses to Climate and Land Use/Cover Changes under Future Scenarios. Water 2017, 9, 475. [Google Scholar] [CrossRef] [Green Version]
- Lamoreaux, P.E. Water Development for Phosphate Mining in a Karst Setting in Florida-A Complex Environmental Problem. Environ. Geol. Water Sci. 1989, 14, 117–153. [Google Scholar] [CrossRef]
- Kuo, Y.M.; Muñoz-Carpena, R. Simplified modeling of phosphorus removal by vegetative filter strips to control runoff pollution from phosphate mining areas. J. Hydrol. 2009, 378, 343–354. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Cui, G.; Cao, Y. Water quality attribution and simulation of non-point source pollution load flux in the Hulan River basin. Sci. Rep. 2020, 10, 3012. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Lin, Z.; Zhang, R. Impact of phosphate mining and separation of mined materials on the hydrology and water environment of the Huangbai River basin, China. Sci. Total Environ. 2016, 543, 347–356. [Google Scholar] [CrossRef]
- Reta, G.; Dong, X.; Li, Z.; Su, B.; Hu, X.; Bo, H.; Yu, D.; Wan, H.; Liu, J.; Li, Y.; et al. Environmental impact of phosphate mining and beneficiation: Review. J. Hydrol. 2018, 2, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Beavers, C.; Ellis, R.; Hanlon, C.D.E.; MacDonald, G. An overview of Phosphate Mining and Reclamation in Florida. Master’s Thesis, University of Florida, Gainesville, FL, USA, 2013. [Google Scholar]
- Phosphate|Florida Department of Environmental Protection. Available online: https://floridadep.gov/water/mining-mitigation/content/phosphate (accessed on 21 February 2022).
- Murphy, K.E.; Rains, M.C.; Kittridge, M.G.; Stewart, M.T.; Ross, M.A. Hydrology of Clay Settling Areas and Surrounding Landscapes in the Phosphate Mining District, Peninsular Florida 1. J. Am. Water Resour. Assoc. 2008, 44, 980–995. [Google Scholar]
- Pechenik, N. Lateral Macropore Dominated Flow on a Clay Settling Area in the Phosphate Mining District, Peninsular Florida. Master’s Thesis, University of South Florida, Tampa, FL, USA, 2009. [Google Scholar]
- Duan, S.; Banger, K.; Toor, G.S. Evidence of Phosphate Mining and Agriculture Influence on Concentrations, Forms, and Ratios of Nitrogen and Phosphorus in a Florida River. Water 2021, 13, 1064. [Google Scholar] [CrossRef]
- Brown, M.T. Landscape restoration following phosphate mining: 30 years of co-evolution of science, industry and regulation. Ecol. Eng. 2005, 24, 309–329. [Google Scholar] [CrossRef]
- Zhang, J.; Ross, M. Hydrologic modeling impacts of post-mining land use changes on streamflow of Peace River, Florida. Chin. Geogr. Sci. 2015, 25, 728–738. [Google Scholar] [CrossRef] [Green Version]
- Peace River and Phosphate Mining. Available online: http://www.sarasota.wateratlas.usf.edu/upload/documents/EndangeredPeaceRiver.pdf (accessed on 21 February 2022).
- Kelly, M. Florida River Flow Patterns and the Atlantic Multidecadal Oscillation. River Res. Appl. 2008, 24, 598–616. [Google Scholar] [CrossRef]
- Lewelling, B.R.; Tihansky, A.B.; Kindinger, J.L. Assessment of the Hydraulic Connection between Ground Water and the Peace River, West-Central Florida; US Geological Survey: Reston, VA, USA, 1998.
- Hammett, K.M. Land Use, Water Use, Streamflow Characteristics, and Water-Quality Characteristics of the Charlotte Harbor Inflow Area, Florida; USGPO: Washington, DC, USA, 1990.
- Smyntek, P.M.; Lamagna, N.; Cravotta, C.A., III; Strosnider, W.H. Mine drainage precipitates attenuate and conceal wastewater-derived phosphate pollution in stream water. Sci. Total Environ. 2022, 815, 152672. [Google Scholar] [CrossRef]
- Gabay, T.; Rotem, G.; Gillor, O.; Ziv, Y. Understanding changes in biocrust communities following phosphate mining in the Negev Desert. Environ. Res. 2022, 207, 112200. [Google Scholar] [CrossRef]
- Gbedzi, D.D.; Ofosu, E.A.; Mortey, E.M.; Mortey, E.M.; Obiri-Yeboah, A.; Nyantakyi, K.E.; Siabi, E.K.; Abdallah, F.; Domfeh, M.K.; Amankwah-Minkah, A. Impact of mining on land use land cover change and water quality in the Asutifi North District of Ghana, West Africa. Environ. Chall. 2022, 6, 100441. [Google Scholar] [CrossRef]
- Siddiqui, A.U.; Jain, M.K. Change analysis in land use land cover due to surface mining in Jharia coalfield through Landsat time series data. Mater. Today Proc. 2022, 49, 3462–3468. [Google Scholar] [CrossRef]
- Khare, D.; Patra, D.; Mondal, A.; Kundu, S. Impact of landuse/land cover change on run-off in the catchment of a hydro power project. Appl. Sci. 2017, 7, 787–800. [Google Scholar] [CrossRef]
- Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J.C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; et al. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resour. Res. 2017, 53, 5209–5219. [Google Scholar] [CrossRef] [Green Version]
- Guzha, A.C.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nóbrega, R.L.B. Impacts of land use and landcover change on surface runoff, discharge and low flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Dile, Y.T.; Daggupati, P.; George, C.; Srinivasan, R.; Arnold, J. Introducing a new open source GIS user interface for the SWAT model. Environ. Model. Softw. 2016, 85, 129–138. [Google Scholar] [CrossRef]
- Fukunaga, D.C.; Cecílio, R.A.; Zanetti, S.S.; Oliveira, L.T.; Caiado, M.A.C. Application of the SWAT hydrologic model to a tropical watershed at Brazil. Catena 2015, 125, 206–213. [Google Scholar] [CrossRef]
- Martinez-Escobar, D.F.; Mallela, J. Assessing the impacts of phosphate mining on coral reef communities and reef development. Sci. Total Environ. 2019, 692, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- Samreen, S.; Kausar, S. Phosphorus Fertilizer: The original and commercial sources. In Phosphorus-Recovery and Recycling; Springer Nature: Berlin/Heidelberg, Germany, 2019; pp. 1–14. [Google Scholar]
- Tihansky, A.B. Sinkholes, west-central Florida. Land Subsid. United States US Geol. Surv. Circ. 1999, 1182, 121–140. [Google Scholar]
- America’s Most Endangered Rivers of 2004. Available online: https://www.americanrivers.org/wp-content/uploads/2016/02/2004-mer-report.pdf (accessed on 21 February 2022).
- LPDAAC—Homepage. Available online: https://lpdaac.usgs.gov/ (accessed on 21 February 2022).
- Southwest Florida Water Management District Geospatial Open Data Portal. Available online: https://data-swfwmd.opendata.arcgis.com/ (accessed on 21 February 2022).
- Global Data|SWAT|Soil & Water Assessment Tool. Available online: https://swat.tamu.edu/data/ (accessed on 21 February 2022).
- NASA POWER|Prediction of Worldwide Energy Resources. Available online: https://power.larc.nasa.gov/ (accessed on 21 February 2022).
- USGS Water Data for the Nation. Available online: https://waterdata.usgs.gov/nwis (accessed on 21 February 2022).
- Arnold, J.G.; Williams, J.R.; Srinivasan, R.; King, K.W. Soil and Water Assessment Tool; Soil and Water Research Laboratory: Temple, TX, USA, 1996; p. 808. [Google Scholar]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Rostamian, R.; Jaleh, A.; Afyuni, M.; Mousavi, S.F.; Heidarpour, M.; Jalalian, A.; Abbaspour, K.C. Application of a SWAT model for estimating runoff and sediment in two mountainous basins incentral Iran. Hydrol. Sci. J. 2008, 53, 977–988. [Google Scholar] [CrossRef]
- Sloboda, M.; Swayne, D. Autocalibration of environmental process models using a PAC learning hypothesis. In International Symposium on Environmental Software Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 528–534. [Google Scholar]
- Khoi, D.N.; Thom, V.T. Parameter uncertainty analysis for simulating streamflow in a river catchment of Vietnam. Glob. Ecol. Conserv. 2015, 4, 538–548. [Google Scholar] [CrossRef] [Green Version]
- Van, G.A.; Meixner, T.A. Global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models. J. Hydroinformatics 2007, 9, 277–291. [Google Scholar]
- Li, C. Particle Swarm Optimization in Stationary and Dynamic Environments. Ph.D. Thesis, University of Leicester, Leicester, UK, 2011. [Google Scholar]
- López, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land-cover and land-use change in the urban fringe a case in Morelia city, Mexico. Landsc. Urban Plan. 2001, 55, 271–285. [Google Scholar] [CrossRef]
- Liu, B.; Pan, L.; Qi, Y.; Guan, X.; Li, J. Land Use and Land Cover Change in the Yellow River Basin from 1980 to 2015 and Its Impact on the Ecosystem Services. Land 2021, 10, 1080. [Google Scholar] [CrossRef]
- Azócar, G.; Romero, H.; Sanhueza, R.; Vega, C.; Aguayo, M.; Muñoz, M.D. Urbanization patterns and their impacts on social restructuring of urban space in Chilean mid-cities: The case of Los Angeles, Central Chile. Land Use Policy 2007, 24, 199–211. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Li, X.B. Discussion on the method of regional land use change index model. Acta Geogr. Sinica 2003, 58, 643–650. [Google Scholar]
- Vaghefi, S.A.; Mousavi, S.J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran. Hydrol. Process. 2014, 28, 2018–2032. [Google Scholar] [CrossRef]
- Chen, H.; Luo, Y.; Potter, C.; Moran, P.J.; Grieneisen, M.L.; Zhang, M. Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT. Water Res. 2017, 121, 374–385. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP-2012. In SWAT Calibration and Uncertainty Program—A User Manual; Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2012. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Xue, L.; Yang, F.; Yang, C.; Wei, G.; Li, W.; He, X. Hydrological simulation and uncertainty analysis using the improved TOPMODEL in the arid Manas River basin, China. Sci. Rep. 2018, 8, 4512–4521. [Google Scholar] [CrossRef] [Green Version]
Data Type | Source | Format |
---|---|---|
Digital elevation model (DEM) data | Land Processes Distributed, NASA (30 m resolution) [35] | GRID |
Land use data | Florida Southwest Water Management District (SWFWMD) [36] | GRID |
Soil type data | SWAT US SSURGO Soils Database [37] | GRID |
Meteorological data | NASA POWER Project [38] | TXT |
Hydrological data | US Geological Survey (USGS) [39] | TXT |
Parameter Name | Physical Meaning | Modification | Ranges | T-Stat | p-Value | Order |
---|---|---|---|---|---|---|
GW_DELAY | Groundwater delay time | v | 0~150 | −68.63 | 0.00 | 1 |
CH_K2 | Effective hydraulic conductivity in main channel alluvium | v | 0~350 | 48.04 | 0.00 | 2 |
ALPHA_BF | Baseflow alpha factor | v | 0.4~1 | −25.19 | 0.00 | 3 |
HRU_SLP | Average slope steepness | v | 0~0.05 | −12.10 | 0.00 | 4 |
CN2 | Initial SCS runoff curve number for moisture condition II | r | −1~−0.2 | 3.18 | 0.00 | 5 |
ESCO | Soil evaporation compensation factor | v | 0.1~0.5 | 2.15 | 0.03 | 6 |
SLSUBBSN | Average slope length | r | 0~1 | 2.06 | 0.04 | 7 |
SOL_AWC | Available water capacity of the soil layer | r | 0.5~1 | −1.14 | 0.26 | 8 |
Index | Period | SUFI-2 | PSO | GLUE | ParaSol |
---|---|---|---|---|---|
Nash–Sutcliffe efficiency coefficient (NSE) | calibration validation | 0.65 | 0.65 | 0.65 | 0.64 |
0.76 | 0.68 | 0.70 | 0.67 | ||
Determination coefficient (R2) | calibration validation | 0.65 | 0.65 | 0.65 | 0.66 |
0.79 | 0.76 | 0.77 | 0.77 | ||
p-factor | calibration validation | 0.51 | 0.33 | 0.48 | 0.26 |
0.46 | 0.31 | 0.29 | 0.25 | ||
r-factor | calibration validation | 0.45 | 0.44 | 0.23 | 0.24 |
0.42 | 0.38 | 0.16 | 0.23 |
Uncertainty Method | Index | Period | Total Nitrogen Load | Total Phosphorus Load |
---|---|---|---|---|
SUFI-2 | NSE | calibration validation | 0.62 | 0.6 |
0.75 | 0.76 | |||
R2 | calibration validation | 0.63 | 0.6 | |
0.75 | 0.75 | |||
GLUE | NSE | calibration validation | 0.64 | 0.6 |
0.76 | 0.75 | |||
R2 | calibration validation | 0.66 | 0.6 | |
0.77 | 0.77 |
Year | Urban | Mining Land | Cultivated | Grassland | Forest | Water Area | |
---|---|---|---|---|---|---|---|
Area/km2 | Pre | 5.42 | 0.28 | 50.85 | 0.5 | 1.93 | 10.26 |
Post | 5.23 | 0.68 | 51.48 | 0.04 | 4.22 | 7.59 | |
Reclamation | 5.13 | 11.07 | 9.71 | 29.53 | 4.34 | 9.45 | |
Proportion/% | Pre | 7.83 | 0.4 | 73.44 | 0.72 | 2.79 | 14.82 |
Post | 7.55 | 0.98 | 74.35 | 0.06 | 6.09 | 10.96 | |
Reclamation | 7.41 | 15.99 | 14.03 | 42.65 | 6.27 | 13.65 |
Land Use Type | Pre–Post | Post–Reclamation | ||
---|---|---|---|---|
Changed Area/km2 | Variation Range/% | Changed Area/km2 | Variation Range/% | |
Urban | −0.19 | −3.51 | −0.1 | −1.91 |
Mining land | 0.4 | 142.86 | 10.39 | 1527.94 |
Cultivated land | 0.63 | 1.24 | −41.77 | −81.14 |
Grassland | −0.46 | −92 | 29.49 | 73725 |
Forest | 2.29 | 118.65 | 0.12 | 2.84 |
Water area | −2.67 | −26.02 | 1.86 | 24.51 |
Land Use | Arable Land | Forest | Grassland | Mining | Urban | Water Area | Total |
---|---|---|---|---|---|---|---|
Arable land | 50.10 | 0.09 | 0.04 | 0.28 | 0.27 | 0.08 | 50.86 |
Forest | 0.14 | 1.69 | 0.07 | 0.00 | 0.03 | 1.93 | |
Grassland | 0.09 | 0.41 | 0.00 | 0.00 | 0.50 | ||
Mining Land | 0.28 | 0.00 | 0.28 | ||||
Urban | 0.48 | 0.06 | 4.87 | 0.01 | 5.42 | ||
Water | 0.67 | 1.96 | 0.06 | 0.10 | 7.47 | 10.26 | |
Total | 51.48 | 4.22 | 0.04 | 0.68 | 5.23 | 7.59 | 69.24 |
Land Use | Arable Land | Forest | Grassland | Mining | Urban | Water Area | Total |
---|---|---|---|---|---|---|---|
Arable land | 9.68 | 3.12 | 28.67 | 8.65 | 0.68 | 0.67 | 51.47 |
Forest | 0 | 1.15 | 0.16 | 0.95 | 0.07 | 1.88 | 4.22 |
Grassland | 0 | 0.03 | 0.01 | 0.04 | |||
Mining land | 0.68 | 0.68 | |||||
Urban | 0.03 | 0 | 0.61 | 0.11 | 4.37 | 0.1 | 5.23 |
Water area | 0 | 0.03 | 0.08 | 0.67 | 0.01 | 6.8 | 7.59 |
Total | 9.71 | 4.34 | 29.53 | 11.07 | 5.13 | 9.45 | 69.23 |
Time | Site | NSE | R2 |
---|---|---|---|
Calibration | SW-4 | 0.72 | 0.76 |
SW-6 | 0.68 | 0.74 | |
SWQ-4 | 0.69 | 0.71 | |
Verification | SWQ-2 | 0.67 | 0.66 |
USGS02295637 | 0.64 | 0.8 |
Site | Pre | Post | 2014 | Pre–Post Variation (m3/s) | Pre–Post Change (%) | Post–Reclamation Variation (m3/s) | Post–Reclamation Change (%) |
---|---|---|---|---|---|---|---|
SW-4 | 637.24 | 825.03 | 821.61 | 187.79 | 29.47 | −3.42 | 0.00 |
SW-6 | 638.99 | 860.11 | 855.17 | 221.12 | 34.60 | −4.94 | −0.01 |
SWQ-4 | 108.66 | 83.18 | 78.08 | −25.48 | −23.45 | −5.1 | −0.06 |
SWQ-2 | 232.29 | 234.98 | 232.32 | 2.69 | 1.16 | −2.66 | −0.01 |
USGS02295637 | 17,293.72 | 9660.85 | 9555.03 | −7632.87 | −44.14 | −105.82 | −0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, M.; Song, Y. Human-Dominated Land Use Change in a Phosphate Mining Area and Its Impact on the Water Environment. Water 2022, 14, 1074. https://doi.org/10.3390/w14071074
Zhang J, Liu M, Song Y. Human-Dominated Land Use Change in a Phosphate Mining Area and Its Impact on the Water Environment. Water. 2022; 14(7):1074. https://doi.org/10.3390/w14071074
Chicago/Turabian StyleZhang, Jing, Mingliang Liu, and Yongyu Song. 2022. "Human-Dominated Land Use Change in a Phosphate Mining Area and Its Impact on the Water Environment" Water 14, no. 7: 1074. https://doi.org/10.3390/w14071074
APA StyleZhang, J., Liu, M., & Song, Y. (2022). Human-Dominated Land Use Change in a Phosphate Mining Area and Its Impact on the Water Environment. Water, 14(7), 1074. https://doi.org/10.3390/w14071074