Contribution of Glacier Runoff during Heat Waves in the Nooksack River Basin USA
Abstract
:1. Introduction
2. Study Area
3. Methods and Data Sources
3.1. Glacier Mass Balance
3.2. USGS Stream Data
3.3. SNOTEL Data
3.4. ERA5 Data
4. Results
4.1. Glacier Ablaiton
4.2. Ablation Modelling
4.3. Nooksack River Discharge and Stream Temperature
4.4. ERA5 Temperature Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abatzoglou, J.; Rupp, D.; Mote, P. Seasonal climate variability and change in the Pacific Northwest of the United States. J. Clim. 2014, 27, 2125–2142. [Google Scholar] [CrossRef]
- Pelto, M.S. Impact of climate change on North Cascade alpine glaciers, and alpine runoff. Northwest Sci. 2008, 82, 65–75. [Google Scholar] [CrossRef]
- Pelto, M.S. How Unusual Was 2015 in the 1984–2015 Period of the North Cascade Glacier Annual Mass Balance? Water 2018, 10, 543. [Google Scholar] [CrossRef] [Green Version]
- Isaak, D.J.; Wollrab, S.; Horan, D.; Chandler, G. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Change 2012, 113, 499–524. [Google Scholar] [CrossRef] [Green Version]
- Fountain, A.; Tangborn, W.V. The effect of glaciers on streamflow variations. Water Resour. Res. 1985, 21, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Dery, S.; Stahl, K.; Moore RWhitfield, W.; Menounos, B.; Burford, J.E. Detection of runoff timing changes in pluvial, nival, and glacial rivers of western Canada. Water Resour. Res. 2009, 45, W04426. [Google Scholar] [CrossRef]
- Stahl, K.; Moore, D. Influence of watershed glacier coverage on summer streamflow in British Columbia, Canada. Water Resour. Res. 2006, 42, W06201. [Google Scholar] [CrossRef]
- Moore, R.; Pelto, B.; Menounos, B.; Hutchinson, D. Detecting the Effects of Sustained Glacier Wastage on Streamflow in variably Glacierized Catchments. Front. Earth Sci. 2020, 8, 136. [Google Scholar] [CrossRef]
- Nolin, A.W.; Phillippe, J.; Jefferson, A.; Lewis, S.L. Present-day and future contributions of glacier runoff to summertime flows in a Pacific Northwest watershed: Implications for water resources. Water Resour. Res. 2010, 46, W12509. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Das, T.; Dettinger, M.D.; Cayan, D.R.; Pierce, D.W.; Barnett, T.P.; Bala, G.; Mirin, A.; Wood, A.W.; Bonfils, C.; et al. Detection and attribution of streamflow timing changes to climate change in the western United States. J. Clim. 2009, 22, 3838–3855. [Google Scholar] [CrossRef]
- Granshaw, F.; Fountain, A. Glacier change (1958–1998) in the North Cascades National Park Complex, Washington, USA. J. Glaciol. 2006, 52, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Pelto, M.S. Skykomish River, Washington: Impact of ongoing glacier retreat on streamflow. Hydrol. Process. 2011, 25, 3356–3363. [Google Scholar] [CrossRef]
- Luce, C.; Staab, B.; Kramer, M.; Wenger, S.; Isaak, D.; McConnell, C. Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest. Water Resour. Res. 2014, 50, 3428–3443. [Google Scholar] [CrossRef] [Green Version]
- Grah, O.; Beaulieu, J. The effect of climate change on glacier ablation and baseflow support in the Nooksack River basin and implications on Pacific salmonid species protection and recovery. In Climate Change and Indigenous Peoples in the United States; Springer: Cham, Switzerland, 2013. [Google Scholar] [CrossRef]
- Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R.S.; Clague, J.J.; Vuille, M.; Buytaert, W.; Cayan, D.R.; Greenwood, G.; et al. Toward mountains without permanent snow and ice. Earth’s Future 2017, 5, 418–435. [Google Scholar] [CrossRef]
- Bach, A.J. Snowshed contributions to the Nooksack River watershed, North Cascades range, Washington. Geogr. Rev. 2002, 92, 192–212. [Google Scholar] [CrossRef]
- Harper, J.T. Glacier Terminus Fluctuations on Mount Baker, Washington, USA, 1940–1990, and Climatic Variations. Arct. Alp. Res. 1993, 25, 332–340. [Google Scholar] [CrossRef]
- Pelto, M.S.; Hedlund, C. The terminus behavior and response time of North Cascade glaciers, Washington, USA. J. Glaciol. 2001, 47, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Pelto, M.S. Climate Driven Retreat of Mount Baker Glaciers and Changing Water Resources. In Briefs in Climate Studies; Springer: Cham, Switzerland, 2015; ISBN 978-3-319-22605-7. [Google Scholar] [CrossRef]
- Pelto, M.S.; Brown, C. Mass balance loss of Mount Baker, Washington glaciers 1990–2010. Hydrol. Process. 2012, 26, 2601–2607. [Google Scholar] [CrossRef]
- Cogley, J. Effective sample size for glacier mass balance. Geogr. Ann. Ser. A Phys. Geogr. 1999, 81, 497–507. [Google Scholar] [CrossRef]
- Pelto, M. The impact of sampling density on glacier mass balance determination. Hydrol. Process. 2000, 14, 3215–3225. [Google Scholar] [CrossRef]
- Huss, M.; Dhulst, L.; Bauder, A. New long-term mass-balance series for the Swiss Alps. J. Glaciol. 2015, 61, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Thibert, E.; Blanc, R.; Vincent, C.; Eckert, N. Glaciological and volumetric mass-balance measurements: Error analysis over 51 years for Glacier de Sarennes glacier, French Alps. J. Glaciol. 2008, 54, 522–532. [Google Scholar] [CrossRef] [Green Version]
- Hock, R. Glacier melt: A review of processes and their modelling. Prog. Phys. Geogr. 2005, 29, 362–391. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Matthews, T.; Perry, L.B.; Koch, I.; Aryal, D.; Khadka, A.; Shrestha, D.; Abernathy, K.; Elmore, A.C.; Seimon, A.; Tait, A.; et al. Going to Extremes: Installing the World’s Highest Weather Stations on Mount Everest. Bull. Am. Meteorol. Soc. 2020, 101, E1870–E1890. [Google Scholar]
- Dutra, E.; Muñoz Sabater, J.; Boussetta, S.; Komori, T.; Hirahara, S.; Balsamo, G. Environmental lapse rate for high-resolution land surface downscaling: An application to ERA5. Earth Space Sci. 2020, 7, e2019EA000984. [Google Scholar] [CrossRef] [Green Version]
- Bidlake, W.R.; Josberger, E.G.; Savoca, M.E. Modelled and Measured Glacier Change and Related Glaciological, Hydrological, and Meteorological Conditions at South Cascade Glacier, Washington, Balance and Water Years 2006 and 2007; Science Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2010. [Google Scholar]
- Matthews, T.; Hodgkins, R.; Wilby, R.L.; Guðmundsson, S.; Pálsson, F.; Björnsson, H.; Carr, S. Conditioning temperature-index model parameters on synoptic weather types for glacier melt simulations. Hydrol. Process. 2015, 29, 1027–1045. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, E.A.; Lea, E.V.; Nelitz, M.A.; Knudson, J.M.; Moore, R.D. Identifying Temperature Thresholds Associated with Fish Community Changes in British Columbia, Canada, to Support Identification of Temperature Sensitive Streams. River Res. Appl. 2016, 32, 330–347. [Google Scholar] [CrossRef]
- Atlas, W.; Seitz, K.M.; Jorgenson, J.; Millard-Martin, B.; Housty, W.; Ramos-Espinoza, D.; Burnett, N.; Reid, M.; Moore, J. Thermal sensitivity and flow-mediated migratory delays drive climate risk for coastal sockeye salmon. Facets 2021, 6, 71–89. [Google Scholar] [CrossRef]
- Crozier, L.; McClure, M.; Beechie, T.; Bograd, S.; Boughton, D.; Carr, M.; Cooney, T.D.; Dunham, J.B.; Greene, C.M.; Haltuch, M.A.; et al. Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem. PLoS ONE 2019, 14, e0217711. [Google Scholar] [CrossRef] [Green Version]
- Tennant, D.L. Instream Flow Regimens for Fish, Wildlife, Recreation, and Related Environmental Resources. In Instream Flow Needs; Osborne, J., Allman, C., Eds.; American Fisheries Society, Western Division: Bethesda, MD, USA, 1976; Volume 2, pp. 359–373. [Google Scholar]
- Rieman, B.; Isaak, D.; Adams, S.; Horan, D.; Nagel, D.; Luce, C.; Myers, D. Anticipated climate warming effects on bull trout habitats and populations across the interior Columbia River basin. Trans. Am. Fish. Soc. 2007, 136, 1552–1565. [Google Scholar] [CrossRef]
- Washington Department of Fish and Wildlife. Salmon Scape. Available online: http://apps.wdfw.wa.gov/salmonscape/map.html (accessed on 10 February 2018).
- Washington Department of Fish and Wildlife. Salmon Score. Available online: https://fortress.wa.gov/dfw/score/ (accessed on 10 February 2018).
- Ryan, J. Heat-loving bacteria kills thousands of Washington salmon. KUOW, 10/15/2021. Available online: https://www.kuow.org/stories/heat-loving-bacteria-kills-thousands-of-washington-salmon (accessed on 20 November 2021).
- Philip, S.Y.; Kew, S.F.; van Oldenborgh, G.J.; Anslow, F.S.; Seneviratne, S.I.; Vautard, R.; Coumou, D.; Ebi, K.L.; Arrighi, J.; Singh, R.; et al. Rapid attribution analysis of the extraordinary heatwave on the Pacific Coast of the US and Canada June 2021. Earth Syst. Dynam. Discuss. 2021, preprint. [Google Scholar] [CrossRef]
Basin | USGS Station ID | Mean Elevation m a.s.l. | Basin Area km2 | Glacier Cover % | Discharge Records | Stream Temperature Records |
---|---|---|---|---|---|---|
Nooksack | 12213100 | 800 | 2036 | 1.1 | 1970–2013 | None |
SF Nooksack | 12210000 | 914 | 334 | 0 | 2008–2013 | 2008–2013 |
NF Nooksack | 12205000 | 1311 | 272 | 6.1 | 1950–2013 | 2008–2013 |
Dates | Snow Ablation Rate-Measure (m w.e.d−1) | Snow Ablation Rate-Model (m w.e.d−1) | Ice Ablation Rate-Model (m w.e.d−1) | Ice Ablation Rate-Measure (m w.e.d−1) |
---|---|---|---|---|
8−6−2013 to 8−13−2013 | 0.049 | 0.045 | 0.064 | 0.073 |
7−27−2014 to 8−7−2014 | 0.055 | 0.053 | 0.075 | 0.077 |
7−29−2015 to 8−4−2015 | 0.057 | 0.053 | 0.075 | 0.078 |
7−25−2016 to 7−30−2016 | 0.053 | 0.054 | None | None |
8−12−2016 to 8−21−2016 | 0.048 | 0.050 | 0.070 | 0.067 |
7−31−2017 to 8−12−2017 | 0.056 | 0.060 | 0.084 | 0.078 |
8−5−2018 to 8−10−2018 | 0.061 | 0.051 | 0.072 | None |
8−4−2019 to 8−9−2019 | 0.051 | 0.051 | 0.072 | 0.073 |
7−29−2020 to 8−5−2020 | 0.055 | 0.053 | 0.075 | None |
Start Date | End Date | NFK Discharge (%) | SFK Discharge (%) | NFK Temp (°C) | SFK Temp (°C) | NFK Glacier Ablation (md−1) | Glacier Discharge (m3s−1) | NFK Discharge (m3s−1) | Glacier Runoff (%) |
---|---|---|---|---|---|---|---|---|---|
7/20/09 | 8/5/09 | 50% | −34% | 1 | 4.7 | 0.058 | 8.46 | 28.05 | 30% |
7/25/10 | 8/1/10 | 7% | −25% | 0.3 | 1.0 | 0.048 | 7.00 | 41.7 | 17% |
8/14/10 | 8/19/10 | 19% | −14% | 0.7 | 1.8 | 0.055 | 8.02 | 29.2 | 27% |
9/5/11 | 9/14/11 | 30% | −8% | 0.4 | 1.2 | 0.055 | 8.02 | 24.2 | 33% |
7/7/12 | 7/14/12 | 40% | −29% | 0.2 | 1.5 | 0.057 | 8.31 | 88.6 | 9% |
8/11/12 | 8/19/12 | 18% | −16% | 0.3 | 1.5 | 0.063 | 9.18 | 35.3 | 26% |
8/6/13 | 8/13/13 | 15% | −14% | 0.6 | 0.7 | 0.045 | 6.56 | 25.5 | 26% |
7/7/14 | 7/18/14 | 13% | −29% | 2.1 | 4.7 | 0.054 | 7.87 | 45.9 | 17% |
7/27/14 | 8/7/14 | 5% | −44% | 0.8 | 2.7 | 0.053 | 7.72 | 25.3 | 31% |
6/25/15 | 7/21/15 | 53% | −30% | 0.7 | 3.9 | 0.051 | 7.26 | 18.8 | 39% |
7/29/15 | 8/4/15 | 16% | −16% | 0.6 | 1.4 | 0.053 | 7.54 | 13 | 58% |
7/25/16 | 7/30/16 | 10% | −11% | 0.8 | 1.6 | 0.054 | 7.69 | 24.2 | 32% |
8/12/16 | 8/21/16 | 18% | −20% | 0.7 | 1.7 | 0.05 | 7.12 | 17.5 | 41% |
7/31/17 | 8/12/17 | 13% | −22% | 0.5 | 0.06 | 8.26 | 21.8 | 38% | |
8/26/17 | 9/8/17 | 20% | −11% | 1 | 0 | 0.055 | 7.57 | 16.4 | 46% |
7/12/18 | 7/18/18 | 4% | −16% | 0.6 | 1.4 | 0.053 | 7.30 | 29.3 | 25% |
7/22/18 | 8/2/18 | 19% | −18% | 1 | 4 | 0.057 | 7.85 | 25.6 | 31% |
8/5/18 | 8/10/18 | 11% | −9% | 0.6 | 2.1 | 0.059 | 8.12 | 22.4 | 36% |
8/14/18 | 8/23/18 | 2% | −19% | 0.5 | 1 | 0.052 | 7.16 | 19.3 | 37% |
8/4/19 | 8/9/19 | 10% | −20% | 0.6 | 1.2 | 0.051 | 7.02 | 17.3 | 41% |
7/26/20 | 8/3/20 | 47% | −21% | 0.6 | 2.6 | 0.053 | 7.30 | 26.6 | 27% |
8/15/20 | 8/20/20 | 69% | −12% | 1.5 | 4.2 | 0.059 | 8.13 | 17.2 | 47% |
6/25/21 | 7/1/21 | 27% | −21% | 0.8 | 2 | 0.072 | 9.92 | 73.1 | 14% |
7/26/21 | 8/6/21 | 22% | −19% | 0.3 | 1.2 | 0.055 | 7.58 | 26.3 | 34% |
Avg. | 24% | −20% | 0.7 | 2.0 | 0.055 | 7.66 | 27.08 | 32% |
Date | Lapse Rate (°C km−1) | Maximum Temperature (°C) |
---|---|---|
6/30/2021 | −5.99 | 18.88 |
6/29/2021 | −7.89 | 18.66 |
6/28/2021 | −7.47 | 17.55 |
7/1/2021 | −4.12 | 15.86 |
9/5/1988 | −6.71 | 15.53 |
7/13/2002 | −6.54 | 15.33 |
6/27/2021 | −6.53 | 15.33 |
9/4/1988 | −7.87 | 14.95 |
7/22/2006 | −7.10 | 14.86 |
9/3/1988 | −7.70 | 14.49 |
9/7/2017 | −6.14 | 14.39 |
6/28/2015 | −7.67 | 14.36 |
9/5/2017 | −7.53 | 14.33 |
6/26/2021 | −5.87 | 14.29 |
9/6/2017 | −7.13 | 14.12 |
8/10/2018 | −6.66 | 14.04 |
9/23/2009 | −6.54 | 13.81 |
6/27/2015 | −6.50 | 13.70 |
5/29/1983 | −8.29 | 13.64 |
7/31/2020 | −7.24 | 13.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelto, M.S.; Dryak, M.; Pelto, J.; Matthews, T.; Perry, L.B. Contribution of Glacier Runoff during Heat Waves in the Nooksack River Basin USA. Water 2022, 14, 1145. https://doi.org/10.3390/w14071145
Pelto MS, Dryak M, Pelto J, Matthews T, Perry LB. Contribution of Glacier Runoff during Heat Waves in the Nooksack River Basin USA. Water. 2022; 14(7):1145. https://doi.org/10.3390/w14071145
Chicago/Turabian StylePelto, Mauri S., Mariama Dryak, Jill Pelto, Tom Matthews, and L. Baker Perry. 2022. "Contribution of Glacier Runoff during Heat Waves in the Nooksack River Basin USA" Water 14, no. 7: 1145. https://doi.org/10.3390/w14071145
APA StylePelto, M. S., Dryak, M., Pelto, J., Matthews, T., & Perry, L. B. (2022). Contribution of Glacier Runoff during Heat Waves in the Nooksack River Basin USA. Water, 14(7), 1145. https://doi.org/10.3390/w14071145