Satellite Detection of Surface Water Extent: A Review of Methodology
Abstract
:1. Introduction
2. Data Sources
Satellite | Sensor | Spatial Resolution | Time Resolution | Application |
---|---|---|---|---|
Optical Data | ||||
Terra/Aqua | MODIS | 250 m | 2 times/day | Remote sensing mapping of large-scale water bodies [24,28] |
Landsat 4,5 | TM | 30 m | 16 d | Land use and land cover change, water body monitoring, water color remote sensing [37,38,39] |
Landsat 7 | ETM+ | 30 m | 16 d | |
Landsat 8/9 | OLI | 15, 30 m | 8 d | |
Sentinel-2 | MSI | 10, 20, 60 m | 5 d | High-precision water system map, water body monitoring [40,41] |
Sentinel-3 | OLCI | 300 m | 2 d | |
GF-1 | WFV | 16 m | 2 d | Water quality monitoring, water body extraction [42,43] |
GF-2 | MSS | 3.2 m | 5 d | |
HJ-1A/B | CCD | 30 m | 2 d | Disaster monitoring and forecasting [44] |
IRS-P6 | LISS-3 | 23.5 m | 24 d | Land use and land cover change [45] |
Radar Data | ||||
GF-3 | SAR | 1–500 m | 1.5–3 d | Water extraction [46] |
Sentinel-1 | SAR | 5 m | 12 d | Flood monitoring [47,48] |
Envisat | ASAR | 30 m | 35 d | Lake ice and sea ice detection [49,50] |
3. Water Extraction Method
3.1. Threshold Segmentation
3.1.1. Single Band Threshold
3.1.2. Multiband Threshold Method
Water Index | Formula | Describe |
---|---|---|
NDWI [14] | Information that suppresses vegetation; can be affected by shadows, land, and buildings | |
NDWI3 [75] | Town | |
MNDWI [15] | Cities and towns, effectively suppressing shadows | |
EWI [76] | Semi-arid areas | |
NWI [77] | Simple threshold setting | |
GNDWI [16] | Suitable for complex river water bodies | |
TVWI [78] | Universal, the threshold can be set stably to 0 | |
AWEI [80] | Suitable for areas with more shadows |
3.2. Machine Learning Methods
3.2.1. Support Vector Machine
3.2.2. Decision Tree
3.2.3. Object-Oriented Classification
3.2.4. Deep Learning
4. Applications of Common Methods on Landsat-8 Imagery
4.1. Material and Methods
4.2. Performance of Algorithms on Extracting Water Extents
5. Conclusions
- Medium- and low-resolution images have a short revisit period and strong real-time performance, but the approximate resolution limits the accuracy of water body extraction. High-resolution images can obtain fine water body extraction results, but the time resolution is low, and the data are difficult to obtain. This problem of temporal and spatial resolution mismatch limits the accuracy of water body information extraction and real-time monitoring. At present, there are an increasing number of remote sensing data to choose from, and the fusion of multisource remote sensing data brings more possibilities for water body extraction;
- Water bodies do not always appear in the form of pure pixels in images. River networks, small rivers, and water and land boundaries mostly appear as mixed pixels. These water bodies are more difficult to identify [98]. Although higher-spatial resolution images can reduce these problems, they are still inevitable. When extracting the water body from a mixed pixel, not only are the abundances of the end members of the water body required, but also the position distribution of the water body must be known. Some scholars have made efforts in this regard [99], obtaining high-precision water maps through mixed pixel decomposition and super-resolution mapping;
- There are various methods of water extraction, but they lack universality. One reason is that there are widespread differences in the parameters of many remote sensing sensors at present, and different classification rules are often set for remote sensing images from different sensors. This makes the water extraction method not very versatile and poor in generalization. Another reason is that the spectral characteristics of water in the natural environment are affected by sediment, chlorophyll, etc., and many methods cannot take into account plains, mountainous areas, and urban areas. In addition, compared with ocean waters with simple optical properties, inland waters have more complex optical properties, which vary greatly with regions and seasons, and lack satellite remote sensors specifically for inland waters [100];
- There is no uniform evaluation standard for the results of water extraction, which is not conducive to a comparison between various methods. One of the current accuracy evaluation methods is based on the results of field investigation or manual interpretation, and the other is based on the extraction results of other images, using a confusion matrix, Kappa coefficient [101], and other parameters to evaluate the extraction results. Establishing a unified evaluation standard and standardizing the data quality evaluation system will make the water extraction method more mature and will accelerate its popularization and application;
- The large volume of remote sensing data and complicated processing has resulted in a concentration of research in a small area or local area. With the rapid changes in network and computer technology, cloud storage and cloud computing technologies have developed rapidly. The emergence of the NASA Earth Exchange (NEX), Amazon Web Services (AWS), and Google Earth Engine (GEE) have changed the traditional remote sensing processing method. Remote sensing images and high-performance computing power form a large-scale, long-term sequence. Remote sensing data analysis provides a new approach [102]. Currently, a large number of researchers are conducting scientific research utilizing GEE’s cloud platform [103,104].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Guo, S.; Li, S. Summary on Extraction of Water Body from Remote Sensing Image and Flood Monitoring. Water Conserv. Informatiz. 2012, 3, 18–25. [Google Scholar]
- Danesh-Yazdi, M.; Bayati, M.; Tajrishy, M.; Chehrenegar, B. Revisiting bathymetry dynamics in Lake Urmia using extensive field data and high-resolution satellite imagery. J. Hydrol. 2021, 603, 17. [Google Scholar] [CrossRef]
- Das, N.; Bhattacharjee, R.; Choubey, A.; Ohri, A.; Gaur, S. Time series analysis of automated surface water extraction and thermal pattern variation over the Betwa river, India. Adv. Space Res. 2021, 68, 1761–1788. [Google Scholar] [CrossRef]
- Dang, B.; Li, Y.S. MSResNet: Multiscale Residual Network via Self-Supervised Learning for Water-Body Detection in Remote Sensing Imagery. Remote Sens. 2021, 13, 3122. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Grant, L.; Vanderkelen, I.; Gudmundsson, L.; Tan, Z.; Perroud, M.; Stepanenko, V.M.; Debolskiy, A.V.; Droppers, B.; Janssen, A.B.G.; Woolway, R.I.; et al. Attribution of global lake systems change to anthropogenic forcing. Nat. Geosci. 2021, 14, 849–854. [Google Scholar] [CrossRef]
- Cao, Z.G.; Ma, R.H.; Duan, H.T.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, M.; Wood, E.F. On Creating Global Gridded Terrestrial Water Budget Estimates from Satellite Remote Sensing. Surv. Geophys. 2016, 37, 249–268. [Google Scholar] [CrossRef]
- Al Bitar, A.; Parrens, M.; Fatras, C.; Luque, S.P.; IEEE. Global Weekly Inland Surfanc Water Dynamics From L-Ban Microwave. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Electr Network, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 5089–5092. [Google Scholar]
- Li, D.; Wu, B.; Chen, B.; Xue, Y.; Zhang, Y. Review of water body information extraction based on satellite remote sensing. J. Tsinghua Univ. Sci. Technol. 2020, 60, 147–161. [Google Scholar] [CrossRef]
- Li, Y.; Ding, J.; Yan, R. Extraction of small river information based on China-made GF-1 remote sense images. Resour. Sci. 2015, 37, 408–416. [Google Scholar]
- Verpoorter, C.; Kutser, T.; Tranvik, L. Automated mapping of water bodies using Landsat multispectral data. Limnol. Oceanogr. Methods 2012, 10, 1037–1050. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 2007, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. A study on information extraction of water body with the modified normalized difference water index (MNDWI). J. Remote Sens. 2005, 9, 589–595. [Google Scholar]
- Shen, Z.; Xia, L.; Li, J.; Luo, J.; Hu, X. Automatic and high-precision extraction of rivers from remotely sensed images with Gaussian normalized water index. J. Image Graph. 2013, 18, 421–428. [Google Scholar]
- Zhang, D.; Yang, S.; Wang, Y.; Zheng, W. Refined water body information extraction of Three Gorges reservoir by using GF-1 satellite data. Yangtze River 2019, 50, 233–239. [Google Scholar] [CrossRef]
- Chen, C.; Fu, J.; Sui, X.; Lu, X.; Tan, A. Construction and application of knowledge decision tree after a disaster for water body information extraction from remote sensing images. J. Remote Sens. 2018, 22, 792–801. [Google Scholar] [CrossRef]
- He, H.; Huang, X.; Li, H. Water Body Extraction of High Resolution Remote Sensing Image based on Improved U-Net Networ. J. Geo-Inf. Sci. 2020, 22, 2010–2022. [Google Scholar] [CrossRef]
- Anping, L.; Lijun, C.; Jun, C.; Chaoying, H.; Xin, C.; Jin, C.; Shu, P.; Fangdi, S.; Peng, G. High-resolution remote sensing mapping of global land water. Sci. China: Earth Sci. 2014, 44, 1634–1645. [Google Scholar]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Abrams, M.; Crippen, R.; Fujisada, H. ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD). Remote Sens. 2020, 12, 1156. [Google Scholar] [CrossRef] [Green Version]
- Pickens, A.H.; Hansen, M.C.; Hancher, M.; Stehman, S.V.; Tyukavina, A.; Potapov, P.; Marroquin, B.; Sherani, Z. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 2020, 243, 111792. [Google Scholar] [CrossRef]
- Khandelwal, A.; Karpatne, A.; Marlier, M.E.; Kim, J.; Lettenmaier, D.P.; Kumar, V. An approach for global monitoring of surface water extent variations in reservoirs using MODIS data. Remote Sens. Environ. 2017, 202, 113–128. [Google Scholar] [CrossRef]
- Tortini, R.; Noujdina, N.; Yeo, S.; Ricko, M.; Birkett, C.M.; Khandelwal, A.; Kumar, V.; Marlier, M.E.; Lettenmaier, D.P. Satellite-based remote sensing data set of global surface water storage change from 1992 to 2018. Earth Syst. Sci. Data 2020, 12, 1141–1151. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhang, W.; Cao, C.; Zhang, F.; Shen, Q.; Zhang, X.; Zhang, B. A dataset of remote-sensed Forel-Ule Index for global inland waters during 2000–2018. Sci. Data 2021, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, M.; Guo, H.; Allen, S.; Kargel, J.S.; Haritashya, U.K.; Watson, C.S. Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017. Earth Syst. Sci. Data 2021, 13, 741–766. [Google Scholar] [CrossRef]
- Lu, S.; Ma, J.; Ma, X.; Tang, H.; Baig, M. Time series of the Inland Surface Water Dataset in China (ISWDC) for 2000–2016 derived from MODIS archives. Earth Syst. Sci. Data 2019, 11, 1099–1108. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef] [Green Version]
- Puttinaovarat, S.; Khaimook, K.; Polnigongit, W.; Horkaew, P.; IEEE. Robust Water Body Extraction from Landsat Imagery by using Gradual Assignment of Water Index and DSM. In Proceedings of the IEEE 2015 International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia, 19–21 October 2015; pp. 122–126. [Google Scholar]
- Ning, F.S.; Lee, Y.C. Combining Spectral Water Indices and Mathematical Morphology to Evaluate Surface Water Extraction in Taiwan. Water 2021, 13, 2774. [Google Scholar] [CrossRef]
- Yan, Z.; Jinwei, D. Remote Sensing of Land Surface Water Monitoring research progress. J. Geo-Inf. Sci. 2019, 21, 1768–1778. [Google Scholar]
- Huang, C.; Chen, Y.; Zhang, S.Q.; Wu, J.P. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.Q.; Yesou, H. Remote Sensing of Floodpath Lakes and Wetlands: A Challenging Frontier in the Monitoring of Changing Environments. Remote Sens. 2018, 10, 1955. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Li, Z.; Gao, F.; Yu, M. A review of remote sensing image water extraction. Remote Sens. Land Resour. 2021, 33, 9–19. [Google Scholar] [CrossRef]
- Lymburner, L.; Botha, E.; Hestir, E.; Anstee, J.; Sagar, S.; Dekker, A.; Malthus, T. Landsat 8: Providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sens. Environ. 2016, 185, 108–118. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Finlay, J.C.; Bauer, M.E. Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sens. Environ. 2016, 185, 119–128. [Google Scholar] [CrossRef]
- Fetene, A.; Teshager, M.A. Watershed characteristics and physico-chemical analysis of lakes and reservoirs in North Western, Ethiopia. Sustain. Water Resour. Manag. 2020, 6, 98. [Google Scholar] [CrossRef]
- Wang, Z.F.; Liu, J.G.; Li, J.B.; Zhang, D.D. Multi-Spectral Water Index (MuWI): A Native 10-m Multi-Spectral Water Index for Accurate Water Mapping on Sentinel-2. Remote Sens. 2018, 10, 1643. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Duan, H.T.; Cao, Z.G.; Xue, K.; Qi, T.C.; Ma, J.G.; Liu, D.; Song, K.S.; Huang, C.L.; Song, X.Y. Sentinel-3 OLCI observations of water clarity in large lakes in eastern China: Implications for SDG 6.3.2 evaluation. Remote Sens. Environ. 2020, 247, 17. [Google Scholar] [CrossRef]
- Wen, S.; Wang, Q.; Li, Y.-M.; Zhu, L.; Lu, H.; Lei, S.-H.; Ding, X.-L.; Miao, S. Remote Sensing Identification of Urban Black-Odor Water Bodies Based on High-Resolution Images:A Case Study in Nanjing. Huan Jing Ke Xue=Huanjing Kexue 2018, 39, 57–67. [Google Scholar] [CrossRef]
- Xu, J.; Gao, C.; Wang, Y.Q. Extraction of Spatial and Temporal Patterns of Concentrations of Chlorophyll-a and Total Suspended Matter in Poyang Lake Using GF-1 Satellite Data. Remote Sens. 2020, 12, 622. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Liu, J.S.; Zhang, M.X.; Hu, L.J.; Chen, J.J. Outburst flood forecasting by monitoring glacier-dammed lake using satellite images of Karakoram Mountains, China. Quat. Int. 2017, 453, 24–36. [Google Scholar] [CrossRef]
- Gumma, M.K.; Mohammad, I.; Nedumaran, S.; Whitbread, A.; Lagerkvist, C.J. Urban Sprawl and Adverse Impacts on Agricultural Land: A Case Study on Hyderabad, India. Remote Sens. 2017, 9, 1136. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.Z.; Qingwei, Z.; Hua, C.; Erxue, C.; Lei, Z.; Fei, Y.; Kuan, T. Study on water information extraction using domestic GF-3 image. J. Remote Sens. 2019, 23, 555–565. [Google Scholar] [CrossRef]
- Cian, F.; Marconcini, M.; Ceccato, P. Normalized Difference Flood Index for rapid flood mapping: Taking advantage of EO big data. Remote Sens. Environ. 2018, 209, 712–730. [Google Scholar] [CrossRef]
- Yu, G.; Yuqing, Y. Rapid extraction and change analysis of flood inundation area based on Sentinel-1 SAR image. In Proceedings of the Jiangsu Society of Surveying and Mapping, 2020 Annual Academic Meeting, Nanjing, China, 11 December 2020; p. 4. [Google Scholar]
- Mazur, A.K.; Wahlin, A.K.; Krezel, A. An object-based SAR image iceberg detection algorithm applied to the Amundsen Sea. Remote Sens. Environ. 2017, 189, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Engram, M.; Arp, C.D.; Jones, B.M.; Ajadi, O.A.; Meyer, F.J. Analyzing floating and bedfast lake ice regimes across Arctic Alaska using 25 years of space-borne SAR imagery. Remote Sens. Environ. 2018, 209, 660–676. [Google Scholar] [CrossRef]
- Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.J.; Bates, P.D.; Mason, D.C. A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2417–2430. [Google Scholar] [CrossRef] [Green Version]
- Huadong, G.; Lu, Z. Sixty Years of Radar Remote Sensing: Four Phases of Development. J. Remote Sens. 2019, 23, 1023–1035. [Google Scholar] [CrossRef]
- Zhu, J.; Guo, H.; Fan, X.; Ding, C.; Ligang, L.; Yulong, L. High-resolution SAR image water detection based on texture and imaging knowledge. Water Sci. Prog. 2006, 17, 525–530. [Google Scholar] [CrossRef]
- Ying, D.; Hong, Z.; Chao, W.; Meng, L. Object-oriented combining texture and polarization decomposition Polarized SAR water extraction method. Remote Sens. Technol. Appl. 2016, 31, 714–723. [Google Scholar] [CrossRef]
- Horkaew, P.; Puttinaovarat, S. Entropy-Based Fusion of Water Indices and DSM Derivatives for Automatic Water Surfaces Extraction and Flood Monitoring. ISPRS Int. J. Geo-Inf. 2017, 6, 301. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Xue, D.; Zhang, L.; Su, L. Research on water extraction methods based on Sentinel-1A satellite SAR data. Geospat. Inf. 2018, 16, 37–40. [Google Scholar] [CrossRef]
- Wang, X.; Jin, R.; Lin, J.; Zeng, X.; Zhao, Z. Automatic algorithm for extracting lake boundaries in Qinghai-Tibet Plateau on Cloudy Landsat TM/OLI image and DEM. Remote Sens. Technol. Appl. 2020, 35, 882–892. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, J.; Lu, K.; Yunxiao, S.; Linlin, Z. Research and Application of Flood Submerged Information Precise Extraction Based on Typical Remote Sensing Image Fusion Method. Catastrophe 2017, 32, 183–186+204. [Google Scholar] [CrossRef]
- Xin, G. Water Change Detection Based on Pixel-Level Fusion of Optics and SAR Images. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2019. [Google Scholar]
- Chang, T.; Kuo, C.J. Texture analysis and classification with tree-structured wavelet transform. IEEE Trans Image Process 1993, 2, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. Stud. Media Commun. 1973, 6, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Feng, M.; Xiao, T.; Wang, C. A Narrow River Extraction Method Based on Linear Feature Enhancement in TM Image. Acta Geod. Et Cartogr. Sin. 2014, 43, 705–710. [Google Scholar] [CrossRef]
- Wang, B.; Fan, D. Research progress of deep learning in classification and recognition of remote sensing images. Bull. Surv. Mapp. 2019, 2, 99–102, 136. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, L.; Li, X.; Xu, C.; Wu, Y.; Xie, D.; Liu, L. Water Body Extraction from High-Resolution Satellite Remote Sensing Images Based on Deep Learning. Geogr. Geo-Inf. Sci. 2019, 35, 43–49. [Google Scholar] [CrossRef]
- Frazier, P.S.; Page, K.J. Water body detection and delineation with Landsat TM data. Photogramm. Eng. Remote Sens. 2000, 66, 1461–1467. [Google Scholar] [CrossRef]
- Bi, H.; Wang, S.; Zeng, J.; Zhao, Y.; Wang, H.; Yin, H. Comparison and Analysis of Several Common Water Extraction Methods Based on TM Image. Remote Sens. Inf. 2012, 27, 77–82. [Google Scholar] [CrossRef]
- Yu, R.; Chao, Z.; Tingxi, L. Application and Prospect of Remote Sensing Technology in Lake Water Extraction. In Proceedings of the National Water Resources Reasonable Allocation and Optimal Scheduling and Water Environment Pollution Prevention and Control Technology Exchange Seminar, Xining, Qinghai, China, 1 August 2011; p. 6. [Google Scholar]
- Cao, Y.; Liu, C. Study on flood monitoring using EnviSat ASAR data. Geogr. Geogr. Inf. Sci. 2006, 22, 13–15. [Google Scholar]
- Santoro, M.; Wegmuller, U.; Lamarche, C.; Bontemps, S.; Defoumy, P.; Arino, O. Strengths and weaknesses of multi-year Envisat ASAR backscatter measurements to map permanent open water bodies at global scale. Remote Sens. Environ. 2015, 171, 185–201. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Shifeng, H.; Jiren, L. Research on extraction of water body from ENVISAT ASAR images:a modified Otsu threshold method. J. Nat. Disasters 2010, 19, 139–145. [Google Scholar] [CrossRef]
- Rister, M. Superoxide anion and superoxide dismutase activity in arthritic conditions. Agents Actions Suppl. 1981, 8, 137–143. [Google Scholar] [CrossRef]
- Du, Y.Y.; Zhou, C.H. Automatically Extracting Remote Sensing Information for Water Bodies. J. Remote Sens. 1998, 2, 264–269. [Google Scholar]
- Duong, N.D. Water Body Extraction From Multi Spectral Image By Spectral Pattern Anakysis. In Proceedings of the 22nd Congress of the International-Society-for-Photogrammetry-and-Remote-Sensing, Melbourne, Australia, 25 August–1 September 2012; pp. 181–186. [Google Scholar]
- Ouma, Y.O.; Tateishi, R. A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: An empirical analysis using Landsat TM and ETM+ data. Int. J. Remote Sens. 2006, 27, 3153–3181. [Google Scholar] [CrossRef]
- Yan, P.; Zhang, Y. A Study on Information Extraction of Water System in Semi-arid Regions with the Enhanced Water Index (EWI) and GIS Based Noise Remove Techniques. Remote Sens. Inf. 2007, 6, 62–67. [Google Scholar]
- Feng, D. A New Method for Fast Information Extraction of Water Bodies Using Remotely Sensed Data. Remote Sens. Technol. Appl. 2009, 24, 167–171. [Google Scholar]
- Zhu, X.; Ding, J.; Xia, N.; Guo, J.; Zhang, S.; Yang, T.; Wang, J.; Li, X. Temperature vegetation water index: A novel stabilized threshold method for lake surface water mapping. Resour. Sci. 2019, 41, 790–802. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Jia, S.; Xue, D.; Chengrao, L.I.; Zheng, J.; Wanqiu, L.I. Study on new method for water area information extraction based on Sentinel-1 data. Yangtze River 2019, 50, 213–217. [Google Scholar] [CrossRef]
- Rao, P.; Wang, J. Water Extraction Based on the Optimal Subregion and the Optimal Indexes Combined. J. Geo-Inf. Sci. 2017, 19, 702–712. [Google Scholar] [CrossRef]
- Wen, Z.F.; Zhang, C.; Shao, G.F.; Wu, S.J.; Atkinson, P.M. Ensembles of multiple spectral water indices for improving surface water classification. Int. J. Appl. Earth Obs. 2021, 96, 102278. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; The Nature of Statistical Learning Theory; University of Minnesota: Minneapolis, MN, USA, 1995. [Google Scholar]
- Liu, Q.; Huang, C.; Shi, Z.; Zhang, S. Probabilistic River Water Mapping from Landsat-8 Using the Support Vector Machine Method. Remote Sens. 2020, 12, 1374. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, D.; Gao, Y.; Gong, W. A study of extraction method of mountain surface water based on OLI data and decision tree method. Eng. Surv. Mapp. 2017, 26, 45. [Google Scholar] [CrossRef]
- Hay, G.J.; Niemann, K.O. Visualizing 3-D texture: A three-dimensional approach to model forest texture. Can. J. Remote Sens. 1994, 20, 90–101. [Google Scholar]
- Tang, L.; Liu, W.; Yang, D.; Chen, L.; Yangmei, S.U.; Xianli, X.U. Flooding Monitoring Application Based on the Object-oriented Method and Sentinel-1A SAR Data. J. Geo-Inf. Sci. 2018, 20, 377–384. [Google Scholar]
- Gao, R.; Ouyang, J.; Chen, L.; Yang, J. SPOT7 image classification of Hedi reservoir. Sci. Surv. Mapp. 2019, 44, 90–99. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Xue, X.; Jiang, Y.; Shen, Q. Deep learning for remote sensing image classification: A survey. WIREs Data Min. Knowl. Discov. 2018, 8, e1264. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Han, L.; Han, X. High Spatial Resolution Remote Sensing Image Classification Based on Deep Learning. Acta Opt. Sin. 2016, 36, 0428001. [Google Scholar]
- Liang, Z.; Wu, Y.; Yang, H.; YAO, X. Full-automatic Water Extraction Method for Remote Sensing Imagery Based on Densely Connected Fully Convolutional Neural Network. Remote Sens. Inf. 2020, 35, 68–77. [Google Scholar] [CrossRef]
- Fang, H.; Jiang, Y.; Yuntao, Y.E.; Cao, Y. River Extraction from High-Resolution Satellite Images Combining Deep Learning and Multiple Chessboard Segmentation. Acta Sci. Nat. Univ. Pekin. 2019, 55, 692–698. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zhou, H.; Ye, H.P.; Wei, X.H. Comparative study on water extraction methods based on Sentinel-1/2: A case study of small water body in Sri Lanka. J. Univ. Chin. Acad. Sci. 2019, 36, 794–802. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U. Object-based water body extraction model using Sentinel-2 satellite imagery. Eur. J. Remote Sens. 2017, 50, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Kim, C. Spatiotemporal Saliency Detection Using Textural Contrast and Its Applications. IEEE Trans. Circuits Syst. Video Technol. 2014, 24, 646–659. [Google Scholar] [CrossRef]
- Yang, X.H.; Li, Y.; Wei, Y.; Chen, Z.L.; Xie, P. Water Body Extraction from Sentinel-3 Image with Multiscale Spatiotemporal Super-Resolution Mapping. Water 2020, 12, 2605. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.S.; Wu, Y.H.; Zhang, F.F. Recent research progress on long time series and large scale optical remote sensing of inland water. Natl. Remote Sens. Bull. 2021, 25, 37–52. [Google Scholar] [CrossRef]
- Gong, P.; Mu, L. Error Detection through Consistency Checking. Ann. GIS 2000, 6, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Hao, B.; Han, X.; Mingguo, M.; Shiwei, L. Research Progress on the Application of Google Earth Engine in Geoscience and Environmental Sciences. Remote Sens. Technol. Appl. 2018, 33, 600–611. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.G.; Tang, Z.H.; Ling, Z.Y.; Wu, Z.F. Long-Term Changes of Open-Surface Water Bodies in the Yangtze River Basin Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 2213. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tian, T.; Zeng, P.; Zhang, X.-Y.; Che, Y. Surface water change characteristics of Taihu Lake from 1984–2018 based on Google Earth Engine. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2020, 31, 3163–3172. [Google Scholar] [CrossRef]
Name | Time Span | Research Area | Spatial Resolution | References |
---|---|---|---|---|
Global Land 30-water | 2000, 2010 | Globe | 30 m | [20] |
Global Surface Water Data | 1984–2015 | Globe | 30 m | [21] |
ASTER Global Water Body Dataset | 2000–2013 | Globe | 30 m | [22] |
Global surface water dynamics | 1999–2018 | Globe | 30 m | [23] |
500 m 8-day Water Classification Maps | 2000–2015 | Globe | 500 m | [24] |
Global Lake/Reservoir Surface Inland Water Extent Mask Time Series | 1992–2018 | Globe | 500 m | [25] |
Global Lakes Forel-Ule Index Dataset | 2000–2018 | Globe | 500 m | [26] |
High Mountain Asia Glacial Lake Inventory database | 2008–2017 | Asia | 30 m | [27] |
Inland Surface Water Dataset in China | 2000–2016 | China | 500 m | [28] |
Open-surface Water Body Area in the contiguous United States | 1984–2016 | USA | 30 m | [29] |
Kernel Functions | Formula |
---|---|
Linear Kernel Function | |
Polynomial Kernel Function | |
Radial Basis Function | |
Sigmoid Kernel Functions |
Nam Co | NDWI | CART | SVM | Object- Oriented | Deep Learning |
---|---|---|---|---|---|
Overall Accuracy | 0.9951 | 0.9937 | 0.9963 | 0.9464 | 0.9878 |
Kappa | 0.9898 | 0.9869 | 0.9924 | 0.8905 | 0.9746 |
Huai River Basin | NDWI | CART | SVM | Object- Oriented | Deep Learning |
---|---|---|---|---|---|
Overall Accuracy | 0.9735 | 0.9788 | 0.9788 | 0.9788 | 0.9023 |
Kappa | 0.9466 | 0.9576 | 0.9576 | 0.9576 | 0.8065 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ma, R.; Cao, Z.; Xue, K.; Xiong, J.; Hu, M.; Feng, X. Satellite Detection of Surface Water Extent: A Review of Methodology. Water 2022, 14, 1148. https://doi.org/10.3390/w14071148
Li J, Ma R, Cao Z, Xue K, Xiong J, Hu M, Feng X. Satellite Detection of Surface Water Extent: A Review of Methodology. Water. 2022; 14(7):1148. https://doi.org/10.3390/w14071148
Chicago/Turabian StyleLi, Jiaxin, Ronghua Ma, Zhigang Cao, Kun Xue, Junfeng Xiong, Minqi Hu, and Xuejiao Feng. 2022. "Satellite Detection of Surface Water Extent: A Review of Methodology" Water 14, no. 7: 1148. https://doi.org/10.3390/w14071148
APA StyleLi, J., Ma, R., Cao, Z., Xue, K., Xiong, J., Hu, M., & Feng, X. (2022). Satellite Detection of Surface Water Extent: A Review of Methodology. Water, 14(7), 1148. https://doi.org/10.3390/w14071148