Synthetic and Natural Surfactants for Potential Application in Mobilization of Organic Contaminants: Characterization and Batch Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Synthetic and Biological Surfactants
2.1.2. Pine Wood Biochar
2.2. Critical Micelle Concentration (CMC) Measurement
2.3. Batch Configuration
2.4. Analytical Methods
2.5. Calculations
3. Results and Discussion
3.1. Critical Micelle Concentration (CMC) Determination
3.2. Batch Tests
3.2.1. Adsorption Isotherm Study in the Presence of Toluene as a Contaminant
3.2.2. Adsorption Isotherm Study in the Presence of Tetrachloroethylene as a Contaminant
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Hu, J.; Liu, H.; Zhou, C.; Tian, S. Electrochemically reversible foam enhanced flushing for PAHs-contaminated soil: Stability of surfactant foam, effects of soil factors, and surfactant reversible recovery. Chemosphere 2020, 260, 127645. [Google Scholar] [CrossRef] [PubMed]
- Steelman, C.M.; Meyer, J.R.; Wanner, P.; Swanson, B.J.; Conway-White, O.; Parker, B.L. The importance of transects for characterizing aged organic contaminant plumes in groundwater. J. Contam. Hydrol. 2020, 235, 103728. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Brusseau, M.L.; Fogg, G.E. Determining the long-term operational performance of pump and treat and the possibility of closure for a large TCE plume. J. Hazard. Mater. 2019, 365, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.; Liu, G.; Yang, X.; Ahmad, Z.; Zhong, H. Surfactant-enhanced aquifer remediation: Mechanisms, influences, limitations and the countermeasures. Chemosphere 2020, 252, 126620. [Google Scholar] [CrossRef]
- Liu, J.-W.; Wei, K.-H.; Xu, S.-W.; Cui, J.; Ma, J.; Xiao, X.-L.; Xi, B.-D.; He, X.-S. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review. Sci. Total Environ. 2021, 756, 144142. [Google Scholar] [CrossRef]
- Trellu, C.; Mousset, E.; Pechaud, Y.; Huguenot, D.; van Hullebusch, E.D.; Esposito, G.; Oturan, M.A. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review. J. Hazard. Mater. 2016, 306, 149–174. [Google Scholar] [CrossRef]
- Fu, Y.; Qin, C.; Gao, S.; Lv, C.; Zhang, C.; Yao, Y. Aquifer flushing using a SDS/1-butanol based in-situ microemulsion: Performance and mechanism for the remediation of nitrobenzene contamination. J. Hazard. Mater. 2022, 424, 127409. [Google Scholar] [CrossRef]
- Le Meur, M.; Cohen, G.J.; Laurent, M.; Höhener, P.; Atteia, O. Effect of NAPL mixture and alteration on 222Rn partitioning coefficients: Implications for NAPL subsurface contamination quantification. Sci. Total Environ. 2021, 791, 148210. [Google Scholar] [CrossRef]
- Liao, S.; Saleeba, Z.; Bryant, J.D.; Abriola, L.M.; Pennell, K.D. Influence of aqueous film forming foams on the solubility and mobilization of non-aqueous phase liquid contaminants in quartz sands. Water Res. 2021, 195, 116975. [Google Scholar] [CrossRef]
- Rossi, M.; Dell’Armi, E.; Lorini, L.; Amanat, N.; Zeppilli, M.; Villano, M.; Papini, M.P. Combined strategies to prompt the biological reduction of chlorinated aliphatic hydrocarbons: New sustainable options for bioremediation application. Bioengineering 2021, 8, 109. [Google Scholar] [CrossRef]
- Teramoto, E.H.; Pede, M.A.Z.; Chang, H.K. Impact of water table fluctuations on the seasonal effectiveness of the pump-and-treat remediation in wet–dry tropical regions. Environ. Earth Sci. 2020, 79, 435. [Google Scholar] [CrossRef]
- Maire, J.; Joubert, A.; Kaifas, D.; Invernizzi, T.; Marduel, J.; Colombano, S.; Cazaux, D.; Marion, C.; Klein, P.-Y.; Dumestre, A.; et al. Assessment of flushing methods for the removal of heavy chlorinated compounds DNAPL in an alluvial aquifer. Sci. Total Environ. 2018, 612, 1149–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciampi, P.; Esposito, C.; Cassiani, G.; Deidda, G.P.; Rizzetto, P.; Papini, M.P. A field-scale remediation of residual light non-aqueous phase liquid (LNAPL): Chemical enhancers for pump and treat. Environ. Sci. Pollut. Res. 2021, 28, 35286–35296. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Offiong, N.-A.; Chen, X.; Zhang, C.; Liang, X.; Sonu, K.; Dong, J. The role of surfactants in colloidal biliquid aphrons and their transport in saturated porous medium. Environ. Pollut. 2020, 265, 114564. [Google Scholar] [CrossRef]
- García-Cervilla, R.; Romero, A.; Santos, A.; Lorenzo, D. Surfactant-enhanced solubilization of chlorinated organic compounds contained in DNAPL from lindane waste: Effect of surfactant type and pH. Int. J. Environ. Res. Public Health 2020, 17, 4494. [Google Scholar] [CrossRef] [PubMed]
- Alasiri, H.S.; Sultan, A.S.; Chapman, W.G. Effect of surfactant headgroup, salts, and temperature on interfacial properties: Dissipative particle dynamics and experiment for the water/octane/surfactant system. Energy Fuels 2019, 33, 6678–6688. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Liu, X.; Chen, H.; Fang, Y. Retrieving oil and recycling surfactant in surfactant-enhanced soil washing. ACS Sustain. Chem. Eng. 2018, 6, 4981–4986. [Google Scholar] [CrossRef]
- Gaudin, T.; Rotureau, P.; Pezron, I.; Fayet, G. New QSPR models to predict the critical micelle concentration of sugar-based surfactants. Ind. Eng. Chem. Res. 2016, 55, 11716–11726. [Google Scholar] [CrossRef]
- Malkapuram, S.T.; Sharma, V.; Gumfekar, S.P.; Sonawane, S.; Sonawane, S.; Boczkaj, G.; Seepana, M.M. A review on recent advances in the application of biosurfactants in wastewater treatment. Sustain. Energy Technol. Assess. 2021, 48, 101576. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Q.; Yao, Y.; Chen, Z.; Zhou, J. Micro-bubbles enhanced removal of diesel oil from the contaminated soil in washing/flushing with surfactant and additives. J. Environ. Manag. 2021, 290, 112570. [Google Scholar] [CrossRef]
- Babaei, M.; Copty, N.K. Numerical modelling of the impact of surfactant partitioning on surfactant-enhanced aquifer remediation. J. Contam. Hydrol. 2019, 221, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Church, J.; Willner, M.R.; Renfro, B.R.; Chen, Y.; Diaz, D.; Lee, W.H.; Dutcher, C.S.; Lundin, J.G.; Paynter, D.M. Impact of interfacial tension and critical micelle concentration on bilgewater oil separation. J. Water Process Eng. 2021, 39, 101684. [Google Scholar] [CrossRef]
- Kłosowska-Chomiczewska, I.; Mędrzycka, K.; Hallmann, E.; Karpenko, E.; Pokynbroda, T.; Macierzanka, A.; Jungnickel, C. Rhamnolipid CMC prediction. J. Colloid Interface Sci. 2017, 488, 10–19. [Google Scholar] [CrossRef]
- Hinton, Z.R.; Alvarez, N.J. A molecular parameter to scale the Gibbs free energies of adsorption and micellization for nonionic surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2021, 609, 125622. [Google Scholar] [CrossRef]
- Hafidi, Z.; El Achouri, M. The effect of polar head and chain length on the physicochemical properties of micellization and adsorption of amino alcohol-based surfactants. J. Surfactants Deterg. 2019, 22, 663–672. [Google Scholar] [CrossRef]
- Gaudin, T.; Lu, H.; Fayet, G.; Berthauld-Drelich, A.; Rotureau, P.; Pourceau, G.; Wadouachi, A.; Van Hecke, E.; Nesterenko, A.; Pezron, I. Impact of the chemical structure on amphiphilic properties of sugar-based surfactants: A literature overview. Adv. Colloid Interface Sci. 2019, 270, 87–100. [Google Scholar] [CrossRef]
- Kanokkarn, P.; Shiina, T.; Santikunaporn, M.; Chavadej, S. Equilibrium and dynamic surface tension in relation to diffusivity and foaming properties: Effects of surfactant type and structure. Colloids Surf. A Physicochem. Eng. Asp. 2017, 524, 135–142. [Google Scholar] [CrossRef]
- Pérez, L.; Pons, R.; Oliveira de Sousa, F.F.; del Carmen Morán, M.; da Silva, A.R.; Pinazo, A. Green cationic arginine surfactants: Influence of the polar head cationic character on the self-aggregation and biological properties. J. Mol. Liq. 2021, 339, 116819. [Google Scholar] [CrossRef]
- Cheng, M.; Zeng, G.; Huang, D.; Yang, C.; Lai, C.; Zhang, C.; Liu, Y. Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds. Chem. Eng. J. 2017, 314, 98–113. [Google Scholar] [CrossRef]
- Befkadu, A.A.; Chen, Q. Surfactant-enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: A review. Pedosphere 2018, 28, 383–410. [Google Scholar] [CrossRef]
- Chen, W.; Schechter, D.S. Surfactant selection for enhanced oil recovery based on surfactant molecular structure in unconventional liquid reservoirs. J. Pet. Sci. Eng. 2021, 196, 107702. [Google Scholar] [CrossRef]
- Dominguez, C.M.; Romero, A.; Santos, A. Selective removal of chlorinated organic compounds from lindane wastes by combination of nonionic surfactant soil flushing and Fenton oxidation. Chem. Eng. J. 2019, 376, 120009. [Google Scholar] [CrossRef]
- Jesus, C.F.; Alves, A.A.; Fiuza, S.M.; Murtinho, D.; Antunes, F.E. Mini-review: Synthetic methods for the production of cationic sugar-based surfactants. J. Mol. Liq. 2021, 342, 117389. [Google Scholar] [CrossRef]
- Jahan, R.; Bodratti, A.M.; Tsianou, M.; Alexandridis, P. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv. Colloid Interface Sci. 2020, 275, 102061. [Google Scholar] [CrossRef] [PubMed]
- Madrid, F.; Ballesteros, R.; Lacorte, S.; Villaverde, J.; Morillo, E. Extraction of PAHS from an aged creosote-polluted soil by cyclodextrins and rhamnolipids. Side effects on removal and availability of potentially toxic elements. Sci. Total Environ. 2019, 653, 384–392. [Google Scholar] [CrossRef]
- Pironti, C.; Motta, O.; Ricciardi, M.; Camin, F.; Cucciniello, R.; Proto, A. Characterization and authentication of commercial cleaning products formulated with biobased surfactants by stable carbon isotope ratio. Talanta 2020, 219, 121256. [Google Scholar] [CrossRef] [PubMed]
- Zulkifli, N.N.; Mahmood, S.M.; Akbari, S.; Manap, A.A.A.; Kechut, N.I.; Elrais, K.A. Evaluation of new surfactants for en-hanced oil recovery applications in high-temperature reservoirs. J. Pet. Explor. Prod. Technol. 2020, 10, 283–296. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Sabatini, D.A. Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications. Int. J. Mol. Sci. 2011, 12, 1232–1244. [Google Scholar] [CrossRef]
- Feng, L.; Jiang, X.; Huang, Y.; Wen, D.; Fu, T.; Fu, R. Petroleum hydrocarbon-contaminated soil bioremediation assisted by isolated bacterial consortium and sophorolipid. Environ. Pollut. 2021, 273, 116476. [Google Scholar] [CrossRef]
- Chen, Q.; Bao, M.; Fan, X.; Liang, S.; Sun, P. Rhamnolipids enhance marine oil spill bioremediation in laboratory system. Mar. Pollut. Bull. 2013, 71, 269–275. [Google Scholar] [CrossRef]
- Bubić Pajić, N.; Ilić, T.; Nikolić, I.; Dobričić, V.; Pantelić, I.; Savić, S. Alkyl polyglucoside-based adapalene-loaded microemulsions for targeted dermal delivery: Structure, stability and comparative biopharmaceutical characterization with a conventional dosage form. J. Drug Deliv. Sci. Technol. 2019, 54, 101245. [Google Scholar] [CrossRef]
- Marchant, R.; Banat, I.M. Biosurfactants: A sustainable replacement for chemical surfactants? Biotechnol. Lett. 2012, 34, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Silvani, L.; Amanat, N.; Petrangeli Papini, M. Biochar from pine wood, rice husks and iron-eupatorium shrubs for remediation applications: Surface characterization and experimental tests for trichloroethylene removal. Materials 2021, 14, 1776. [Google Scholar] [CrossRef] [PubMed]
- Silvani, L.; di Palma, P.R.; Riccardi, C.; Eek, E.; Hale, S.E.; Viotti, P.; Petrangeli Papini, M. Use of biochar as alternative sorbent for the active capping of oil contaminated sediments. J. Environ. Chem. Eng. 2017, 5, 5241–5249. [Google Scholar] [CrossRef]
- Drelich, J.; Fang, C.; White, C.L. Measurement of interfacial tension in fluid-fluid systems. Encycl. Surf. Colloid Sci. 2002, 3, 3152–3166. [Google Scholar]
- Pal, N.; Samanta, K.; Mandal, A. A novel family of non-ionic Gemini surfactants derived from sunflower oil: Synthesis, characterization and physicochemical evaluation. J. Mol. Liq. 2018, 275, 638–653. [Google Scholar] [CrossRef]
- Bagheri, A.; Bagheri, A. Interfacial and micellization properties of pure surfactants with similar hydrocarbon chain length (C 16 H 33) and different polar head in aqueous medium. J. Appl. Chem. 2021, 15, 55–64. [Google Scholar]
- Rossi, M.M.; Matturro, B.; Amanat, N.; Rossetti, S.; Papini, M.P. Coupled adsorption and biodegradation of trichloroethylene on biochar from pine wood wastes: A combined approach for a sustainable bioremediation strategy. Microorganisms 2022, 10, 101. [Google Scholar] [CrossRef]
- Silvani, L.; Vrchotova, B.; Kastanek, P.; Demnerova, K.; Pettiti, I.; Papini, M.P. Characterizing biochar as alternative sorbent for oil spill remediation. Sci. Rep. 2017, 7, srep43912. [Google Scholar] [CrossRef]
- Amanat, N.; Matturro, B.; Villano, M.; Lorini, L.; Rossi, M.M.; Zeppilli, M.; Rossetti, S.; Petrangeli Papini, M. Enhancing the biological reductive dechlorination of trichloroethylene with PHA from mixed microbial cultures (MMC). J. Environ. Chem. Eng. 2022, 10, 107047. [Google Scholar] [CrossRef]
- Jiménez-Peñalver, P.; Koh, A.; Gross, R.; Gea, T.; Font, X. Biosurfactants from waste: Structures and interfacial properties of sophorolipids produced from a residual oil cake. J. Surfactants Deterg. 2020, 23, 481–486. [Google Scholar] [CrossRef]
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena, 4th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Gaudin, T.; Rotureau, P.; Pezron, I.; Fayet, G. Estimating the adsorption efficiency of sugar-based surfactants from QSPR models. Int. J. Quant. Struct. Relatsh. 2019, 4, 28–51. [Google Scholar] [CrossRef]
- Penfold, J.; Thomas, R.K.; Shen, H.-H. Adsorption and self-assembly of biosurfactants studied by neutron reflectivity and small angle neutron scattering: Glycolipids, lipopeptides and proteins. Soft Matter 2011, 8, 578–591. [Google Scholar] [CrossRef]
- Mańko, D.; Zdziennicka, A.; Jańczuk, B. Thermodynamic properties of rhamnolipid micellization and adsorption. Colloids Surf. B Biointerfaces 2014, 119, 22–29. [Google Scholar] [CrossRef]
- Chen, M.L.; Penfold, J.; Thomas, R.K.; Smyth, T.J.P.; Perfumo, A.; Marchant, R.; Banat, I.M.; Stevenson, P.; Parry, A.; Tucker, I.; et al. Solution self-assembly and adsorption at the air−water interface of the monorhamnose and dirhamnose rhamnolipids and their mixtures. Langmuir 2010, 26, 18281–18292. [Google Scholar] [CrossRef]
- Li, G.; Yi, X.; Jiang, J.; Zhang, Y.; Li, Y. Dynamic surface properties and dilational rheology of acidic and lactonic sophorolipids at the air-water interface. Colloids Surf. B Biointerfaces 2020, 195, 111248. [Google Scholar] [CrossRef]
- Martínez-Balbuena, L.; Arteaga-Jiménez, A.; Hernández-Zapata, E.; Márquez-Beltrán, C. Applicability of the Gibbs adsorption isotherm to the analysis of experimental surface-tension data for ionic and nonionic surfactants. Adv. Colloid Interface Sci. 2017, 247, 178–184. [Google Scholar] [CrossRef]
- Wang, Z.W.; Huang, D.Y.; Li, G.Z.; Zhang, X.Y.; Liao, L.L. Effectiveness of surface tension reduction by anionic surfactants—Quantitative structure–property relationships. J. Dispers. Sci. Technol. 2007, 24, 653–658. [Google Scholar] [CrossRef]
- Chen, W.; Wei, R.; Ni, J.; Yang, L.; Qian, W.; Yang, Y. Sorption of chlorinated hydrocarbons to biochars in aqueous environment: Effects of the amorphous carbon structure of biochars and the molecular properties of adsorbates. Chemosphere 2018, 210, 753–761. [Google Scholar] [CrossRef]
- Schreiter, I.J.; Schmidt, W.; Schüth, C. Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: Conclusions from single- and bi-solute experiments. Chemosphere 2018, 203, 34–43. [Google Scholar] [CrossRef]
- Ballesteros-Gómez, A.; Rubio, S. Hemimicelles of alkyl carboxylates chemisorbed onto magnetic nanoparticles: Study and application to the extraction of carcinogenic polycyclic aromatic hydrocarbons in environmental water samples. Anal. Chem. 2009, 81, 9012–9020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Z.; Liu, Y.; Zhong, H.; Xiao, R.; Zeng, G.; Liu, Z.; Cheng, M.; Lai, C.; Zhang, C.; Liu, G.; et al. Mechanisms for rhamnolipids-mediated biodegradation of hydrophobic organic compounds. Sci. Total Environ. 2018, 634, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-P.; Hu, Y.-Y.; Lin, H.; Ou, X.-L. Sorption and desorption of 17α-ethinylestradiol onto sediments affected by rhamnolipidic biosurfactants. J. Hazard. Mater. 2018, 344, 707–715. [Google Scholar] [CrossRef] [PubMed]
Material | APG1 | APG2 | SL | RL1 | RL2 |
---|---|---|---|---|---|
C 5%(v/v)/CMC | 13 | 90 | 19 | 169 | 15 |
Surfactant | γCMC (mN/m) | CMC (wt%) | Γmax × 1010 (mol/cm2) | πCMC (mN/m) | pC20 | CMC/C20 |
---|---|---|---|---|---|---|
APG1 | 39.925 | 0.0601 | 3.711 | 38.875 | 2.113 | 7.799 |
APG2 | 32.954 | 0.0071 | 4.212 | 39.846 | 2.978 | 6.704 |
SL | 39.451 | 0.0125 | 3.983 | 33.348 | 2.489 | 3.870 |
RL1 | 36.450 | 0.0013 | 6.446 | 36.349 | 3.317 | 2.785 |
RL2 | 34.945 | 0.0173 | 2.606 | 37.855 | 2.963 | 15.907 |
Surfactant Solution Concentration | ||||
---|---|---|---|---|
Material | Langmuir Parameters | 0.5 × CMC | 5 × CMC | 5% (v/v) |
APG1 | qmax (mg g−1) | 36.42 ± 3.9 | 20.28 ± 4.1 | 17.36 ± 5.3 |
KL (L mg−1) | 81 × 10−3 ± 21 × 10−3 | 53 × 10−2 ± 21 × 10−3 | 40 × 10−3 ± 23 × 10−3 | |
R2 | 0.94 | 0.89 | 0.78 | |
APG2 | qmax (mg g−1) | 29.58 ± 1.3 | 20.14 ± 1.4 | 14.36 ± 4.8 |
KL (L mg−1) | 55 × 10−2 ± 91 × 10−3 | 15 × 10−2 ± 36 × 10−3 | 55 × 10−3 ± 39 × 10−3 | |
R2 | 0.95 | 0.91 | 0.98 | |
SL | qmax (mg g−1) | 33.75 ± 1.5 | 30.77 ± 2.8 | 30.38 ± 2.6 |
KL (L mg−1) | 55 × 10−2 ± 88 × 10−3 | 14 × 10−2 ± 30 × 10−3 | 19 × 10−2 ± 70 × 10−3 | |
R2 | 0.96 | 0.94 | 0.95 | |
RL1 | qmax (mg g−1) | 51.31 ± 1.3 | 51.16 ± 2.5 | 22.53 ± 3.3 |
KL (L mg−1) | 46 × 10−2 ± 39 × 10−3 | 36 × 10−2 ± 56 × 10−3 | 14 × 10−2 ± 56 × 10−3 | |
R2 | 0.99 | 0.97 | 0.84 | |
RL2 | qmax (mg g−1) | 27.95 ± 1.5 | 27.44 ± 4.1 | 24.05 ± 3.4 |
KL (L mg−1) | 48 × 10−2 ± 98 × 10−3 | 75 × 10−3 ± 24 × 10−3 | 61 × 10−3 ± 18 × 10−3 | |
R2 | 0.93 | 0.91 | 0.93 | |
Reference test in the absence of surfactant | ||||
Isotherm Toluene-PWB | qmax (mg g−1) | 77.71 ± 2.5 | ||
KL (L mg−1) | 15 × 10−2 ± 55 × 10−3 | |||
R2 | 0.97 |
Surfactant Solution Concentration | ||||
---|---|---|---|---|
Material | Langmuir Parameters | 0.5 × CMC | 5 × CMC | 5% (v/v) |
APG1 | qmax (mg g−1) | 51.35 ± 4.1 | 28.68 ± 5.6 | 25.55 ± 5.4 |
KL (L mg−1) | 76 × 10−2 ± 12 × 10−3 | 5 × 10−2 ± 21 × 10−3 | 51 × 10−2 ± 20 × 10−3 | |
R2 | 0.98 | 0.83 | 0.9153 | |
APG2 | qmax (mg g−1) | 44.02 ± 2.5 | 39.42 ± 4.7 | 13.90 ± 2.5 |
KL (L mg−1) | 38 × 10−2 ± 68 × 10−3 | 85 × 10−3 ± 25 × 10−3 | 69 × 10−3 ± 28 × 10−3 | |
R2 | 0.96 | 0.91 | 0.86 | |
SL | qmax (mg g−1) | 39.32 ± 2.7 | 31.85 ± 3.3 | 25.30 ± 2.8 |
KL (L mg−1) | 58 × 10−2 ± 13 × 10−2 | 17 × 10−2 ± 28 × 10−3 | 90 × 10−3 ± 24 × 10−3 | |
R2 | 0.90 | 0.80 | 0.92 | |
RL1 | qmax (mg g−1) | 142.32 ± 30 | 90.75 ± 12.6 | 50.83 ± 4.6 |
KL (L mg−1) | 12 × 10−2 ± 44 × 10−3 | 18 × 10−2 ± 62 × 10−3 | 11 × 10−2 ± 19 × 10−3 | |
R2 | 0.92 | 0.91 | 0.98 | |
RL2 | qmax (mg g−1) | 43.00 ± 1.66 | 15.86 ± 1.62 | 15.87 ± 3.4 |
KL (L mg−1) | 35 × 10−2 ± 49 × 10−3 | 23 × 10−2 ± 83 × 10−3 | 27 × 10−2 ± 16 × 10−3 | |
R2 | 0.98 | 0.81 | 0.96 | |
Reference test in the absence of surfactant | ||||
Isotherm PCE-PWB | qmax (mg g−1) | 114.12 ± 7.8 | ||
KL (L mg−1) | 29 × 10−2 ± 48 × 10−3 | |||
R2 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amanat, N.; Barbati, B.; Rossi, M.M.; Bellagamba, M.; Buccolini, M.; Galantini, L.; Petrangeli Papini, M. Synthetic and Natural Surfactants for Potential Application in Mobilization of Organic Contaminants: Characterization and Batch Study. Water 2022, 14, 1182. https://doi.org/10.3390/w14081182
Amanat N, Barbati B, Rossi MM, Bellagamba M, Buccolini M, Galantini L, Petrangeli Papini M. Synthetic and Natural Surfactants for Potential Application in Mobilization of Organic Contaminants: Characterization and Batch Study. Water. 2022; 14(8):1182. https://doi.org/10.3390/w14081182
Chicago/Turabian StyleAmanat, Neda, Berardino Barbati, Marta M. Rossi, Marco Bellagamba, Marco Buccolini, Luciano Galantini, and Marco Petrangeli Papini. 2022. "Synthetic and Natural Surfactants for Potential Application in Mobilization of Organic Contaminants: Characterization and Batch Study" Water 14, no. 8: 1182. https://doi.org/10.3390/w14081182
APA StyleAmanat, N., Barbati, B., Rossi, M. M., Bellagamba, M., Buccolini, M., Galantini, L., & Petrangeli Papini, M. (2022). Synthetic and Natural Surfactants for Potential Application in Mobilization of Organic Contaminants: Characterization and Batch Study. Water, 14(8), 1182. https://doi.org/10.3390/w14081182