Migration Law of LNAPLs in the Groundwater Level Fluctuation Zone Affected by Freezing and Thawing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Column Experiment of Water and Heat Transport
2.2. Model Method
3. Results
3.1. Law of Soil Water and Heat Transfer during Freezing and Thawing
3.2. Migration and Retention Process of LNAPLs Affected by Freezing and Thawing
3.3. Analysis of Factors Affecting the Migration of LNAPLs
4. Conclusions
- (1)
- The temperature changes during freezing and thawing is the most fundamental factor controlling the migration of LNAPLs in the water level fluctuation zone. The LNAPLs near the water level during the freeze–thaw process migrate or remain with the fluctuation of the water level. Thus, the pollution range and diffusion degree of LNAPLs in the seasonal frozen soil area are greater than those in the non-frozen soil area.
- (2)
- The particle size and porosity of the medium as well as LNAPL composition type are the main factors that affect the migration of LNAPLs. In general, the finer and more closely packed the medium particles, the faster is the response of soil temperature and water level changes to freezing and thawing. The smaller the porosity, the greater is the capillary force generated above the water level during the freeze–thaw process and the greater are the amount of water migration, the amplitude of the water level, and the migration and diffusion range of LNAPLs. By contrast, the composition type of LNAPLs determines their retention process and phase change.
- (3)
- The coupling model in this study can provide a simulation method for the analysis of the migration and retention of LNAPLs in the water level fluctuation zone of seasonal frozen soil regions. The research results on the migration and retention mechanism and the factors affecting LNAPLs can be used as a theoretical basis for LNAPL pollution evaluation and treatment in areas subjected to freeze–thaw cycles. Considering that T2VOC lacks simulation functions for chemical adsorption and microbial degradation processes, the effect of temperature on chemical and biological processes is not reflected and requires further research.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.; Corapcioglu, M.Y. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table. J. Contam. Hydrol. 2003, 65, 137–158. [Google Scholar] [CrossRef]
- Singh, K.; Niven, R.K. Non-aqueous Phase Liquid Spills in Freezing and Thawing Soils: Critical Analysis of Pore-Scale Processes. Crit. Rev. Environ. Sci. Technol. 2013, 43, 551–597. [Google Scholar] [CrossRef]
- Lari, K.S.; Davis, G.B.; Rayner, J.L.; Bastow, T.P.; Puzon, G.J. Natural source zone depletion of LNAPL: A critical review supporting modelling approaches. Water Res. 2019, 157, 630–646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Barry, R.G.; Knowles, K.; Ling, F.; Armstrong, R.L. Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. In Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, 21–25 July 2003; A.A. Balkema Publishers: Amsterdam, The Netherland, 2003; Volume 2, pp. 1289–1294. [Google Scholar]
- Zhai, Y.; Han, Y.; Xia, X.; Li, X.; Lu, H.; Teng, Y.; Wang, J. Anthropogenic Organic Pollutants in Groundwater Increase Releases of Fe and Mn from Aquifer Sediments: Impacts of Pollution Degree, Mineral Content, and pH. Water 2021, 13, 1920. [Google Scholar] [CrossRef]
- Wei, C.; Yu, S.; Jichun, W.; Yaling, C.; Erxing, P.; Leonid, G. Soil hydrological process and migration mode influenced by the freeze-thaw process in the activity layer of permafrost regions in Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2021, 184, 103236. [Google Scholar] [CrossRef]
- Weaver, J. Assessment of sub-permafrost groundwater conditions at the Red Dog Mine, Alaska. In Proceedings of the Permafrost Vols 1 and 2, Zurich, Switzerland, 21–25 July 2003; pp. 1223–1228. [Google Scholar]
- Mohammed, A.A.; Bense, V.F.; Kurylyk, B.L.; Jamieson, R.C.; Johnston, L.H.; Jackson, A.J. Modeling Reactive Solute Transport in Permafrost-Affected Groundwater Systems. Water Resour. Res. 2021, 57, e2020WR028771. [Google Scholar] [CrossRef]
- Wang, T.H.; Zhang, H.; Lu, X.S. Experimental study on moisture migration in unsaturated loess under freezing effect. Appl. Mech. Mater. 2012, 204–208, 552–556. [Google Scholar] [CrossRef]
- Satoi, A.; Suzuki, T.; Nishimoto, S.; Yamashita, S. Improvement of high-moisture soil by repeated freezing and thawing. New Front. Chin. Jpn. Geotech. 2007, 471–478. [Google Scholar]
- Daniel, J.A.; Staricka, J.A. Frozen Soil Impact on Ground Water–Surface Water Interaction. Am. Water Resour. Assoc. 2000, 36, 151–160. [Google Scholar] [CrossRef]
- Lari, K.S.; Rayner, J.L.; Davis, G.B. A computational assessment of representative sampling of soil gas using existing groundwater monitoring wells screened across the water table. J. Hazard. Mater. 2017, 335, 197–207. [Google Scholar] [CrossRef]
- Lari, K.S.; Rayner, J.L.; Davis, G.B. Towards characterizing LNAPL remediation endpoints. J. Environ. Manag. 2018, 224, 97–105. [Google Scholar] [CrossRef]
- Sweeney, R.E.; Ririe, G.T. Small purge method to sample vapor from groundwater monitoring wells screened across the water table. Ground Water Monit. Remediat. 2017, 37, 51–59. [Google Scholar] [CrossRef]
- McDonald, R.; Knox, O.G.G. Cold region bioremediation of hydrocarbon contaminated soil: Do we know enough? Environ. Sci. Technol. 2014, 48, 9980–9981. [Google Scholar] [CrossRef]
- Camenzuli, D.; Wise, L.E.; Stokes, A.J.; Gore, D. Treatment of soil co-contaminated with inorganics and petroleum hydrocarbons using silica: Implications for remediation in cold regions. Cold Reg. Sci. Technol. 2017, 135, 8–15. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, X.; Zang, H.; Liu, P.; Sun, M. Numerical Simulation of Moisture and Heat Coupled Migration in Seasonal Freeze-thaw Soil Media. J. Pure Appl. Microbiol. 2013, 7, 151–158. [Google Scholar]
- Dai, L.; Guo, X.; Du, Y.; Zhang, F.; Ke, X.; Cao, Y.; Li, Y.; Li, Q.; Lin, L.; Cao, G. The Response of Shallow Groundwater Tables to Soil Freeze-Thaw Process on the Qinghai-Tibet Plateau. Groundwater 2018, 57, 602–611. [Google Scholar] [CrossRef]
- Iwakun, O.; Biggar, K.; Sego, D. Influence of cyclic freeze-thaw on the mobilization of LNAPLs and soluble oil in a porous media. Cold Reg. Sci. Technol. 2010, 64, 9–18. [Google Scholar] [CrossRef]
- Lari, K.S.; Davis, G.B.; Rayner, J.L. Towards a digital twin for characterising natural source zone depletion: A feasibility study based on the Bemidji site. Water Res. 2021, 208, 117853. [Google Scholar] [CrossRef]
- Ming, F.; Li, D.Q. One-dimensional water-heat coupling model and experiment of unsaturated frozen soil. J. Cent. South Univ. 2014, 45, 889–894. [Google Scholar]
- Tian, Z.; Lu, Y.; Horton, R.; Ren, T. A simplified de Vries-based model to estimate thermal conductivity of unfrozen and frozen soil. Eur. J. Soil Sci. 2016, 67, 564–572. [Google Scholar] [CrossRef]
- Zheng, C.; Šimůnek, J.; Zhao, Y.; Lu, Y.; Liu, X.; Shi, C.; Li, H.; Yu, L.; Zeng, Y.; Su, Z. Development of the Hydrus-1D freezing module and its application in simulating the coupled movement of water, vapor, and heat. J. Hydrol. 2021, 598, 126250. [Google Scholar] [CrossRef]
- Twarakavi, N.K.C.; Simunek, J.; Seo, S. Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW. Vadose Zone J. 2019, 7, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Rahbeh, M.; Srinivasan, R.; Mohtar, R. Numerical and conceptual evaluation of preferential flow in Zarqa River Basin, Jordan. Ecohydrol. Hydrobiol. 2018, 19, 224–237. [Google Scholar] [CrossRef]
- Shelia, V.; Simunek, J.; Hoogenbooom, G. Coupling DSSAT and HYDRUS-1D for simulations of soil water dynamics in the soil-plant-atmosphere system. J. Hydrol. Hydromech. 2017, 2066, 232–245. [Google Scholar] [CrossRef] [Green Version]
- Ling, M.; Heglie, J.; Mickelson, B. Estimate Dilution Factor with SEAWAT Modeling to Calculate Groundwater Cleanup Goals. In Proceedings of the World Environmental and Water Resources Congress 2017: Groundwater, Sustainability, and Hydro-Climate/Climate Change, Sacramento, CA, USA, 21–25 May 2017; pp. 36–50. [Google Scholar] [CrossRef]
- Steiner, C.; Heimlich, K.; Hilberg, S. Comparison of heat-plume predictions using two large-scale models of groundwater heatpump installations: FEFLOW vs. the A-WAV-model. Grundwasser 2016, 21, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, W.T.; Graupner, B.; Bauer, S. The coupled non-isothermal, multiphase-multicomponent flow and reactive transport simulator OpenGeoSys-ECLIPSE for porous media gas storage. Environ. Earth Sci. 2016, 75, 1347. [Google Scholar] [CrossRef]
- Imunek, J.; Van Genuchten, M.T.; Ejna, M. MTHYDRUS: Model Use, Calibration, and Validation. Trans. ASABE 2016, 55, 1261–1274. [Google Scholar] [CrossRef]
- Kanda, E.K.; Mabhaudhi, T.; Senzanje, A. Coupling Hydrological and Crop Models for Improved Agricultural Water Management—A Reveiw. Bulg. J. Agric. Sci. 2020, 24, 380–390. [Google Scholar]
- Zhao, Y.; Horn, R. Modeling of Coupled Water and Heat Transfer in Freezing and Thawing Soils, Inner Mongolia. Water 2016, 8, 424. [Google Scholar] [CrossRef]
- Zheng, F.; Zhai, Y.; Xia, X.; Yin, Z.; Du, Q.; Zuo, R.; Wang, J.; Teng, Y.; Xu, M. Simulation of Trinitrogen Migration and Transformation in the Unsaturated Zone at a Desert Contaminant Site (NW China) Using HYDRUS-2D. Water 2018, 10, 1363. [Google Scholar] [CrossRef] [Green Version]
- Xue, K.; Wen, Z.; Zhang, M.; Li, D.; Gao, Q. Relationship between matric potential, moisture migration and frost heave in freezing process of soil. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2017, 33, 176–183. [Google Scholar]
- Ge, S.; Mckenzie, J.; Voss, C.; Wu, Q. Exchange of groundwater and surface water mediated by permafrost response to seasonal and long-term air temperature variation. Geophys. Res. Lett. 2011, 38, 3138–3142. [Google Scholar] [CrossRef] [Green Version]
- Pruess, K.; Oldenburg, C.; Moridis, G. TOUGH2 User’s Guide, Version 2.0; Earth Sciences Division, Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1999; Volume 94720, p. 198. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Yamamoto, H.; Pruess, K. TMVOC-MP: A Parallel Numerical Simulator for Three-PhaseNon-Isothermal Flows of Multicomponent Hydrocarbon Mixtures Inporous/Fractured Media; U.S. Department of Energy Office of Scientific and Technical Information: Washington, DC, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Guarnaccia, J.; Pinder, G.; Fishman, M. NAPL: Simulator Documentation; EPA/600/R-97/102; National Risk Management Research Laboratory, USEPA: Ada, OK, USA, 1997; Volume 74820. [Google Scholar]
- Tao, J.H.; Shi, X.Q.; Kang, X.Y.; Xu, H.X.; Wu, J.C. Numerical analysis of influencing factors on the structure of light non-aqueous liquid pollution source area. Hydrogeol. Eng. Geol. 2018, 45, 132–140. (In Chinese) [Google Scholar] [CrossRef]
- Yang, M.X. Study on the Differentiation and Evolution Mechanism of Petroleum Organic Pollution Components in the Water Level Fluctuation Zone. Master’s Thesis, Jilin University, Changchun, China, 2014. (In Chinese). [Google Scholar]
- Dafny, E. TCE longevity in the vadose zone and loading to the groundwater-The case of episodic NAPL releases from near-surface source. Environ. Technol. Innov. 2017, 7, 128–140. [Google Scholar] [CrossRef]
- Pruess, K.; Battistelli, A. TMVOC, a Numerical Simulator for Three-Phase Non-Isothermal Flows of Multicomponent Hydrocarbon Mixtures in Saturated-Unsaturated Heterogeneous Media; Report LBNL-49375; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2002. [Google Scholar] [CrossRef] [Green Version]
- Hansson, K.; Šimůnek, J.; Mizoguchi, M.; Lundin, L.; van Genuchten, M. Water Flow and Heat Transport in Frozen Soil: Numerical Solution and Freeze-Thaw Applications. Vadose Zone J. 2004, 3, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Lekmine, G.; Lari, K.S.; Johnston, C.D.; Bastow, T.P.; Rayner, J.L.; Davis, G.B. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands. J. Contam. Hydrol. 2016, 196, 30–42. [Google Scholar] [CrossRef]
- Larsen, K.S.; Jonasson, S.; Michelsen, A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types. Appl. Soil Ecol. 2002, 21, 187–195. [Google Scholar] [CrossRef]
- Simunek, J.; Van Genuchten, M.T.; Sejna, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media; University of California, Department of Environmental Sciences: Berkeley, CA, USA, 2013. [Google Scholar]
Parameter | n | K (cm/s) | l | |||
---|---|---|---|---|---|---|
medium sand | 0.040 | 0.300 | 0.094 | 2.05 | 9.72 × 10−3 | 0.5 |
Parameter | Solid | Org. | b1 | b2 | b3 | |
---|---|---|---|---|---|---|
medium sand | 0.59 | 0.00 | 5.00 | 1.06376 × 1012 | −1.12254 × 1010 | 2.48832 × 1011 |
Influencing Factors | Corresponding Time of Water Level Change/h | Water Level Fluctuation Range/cm | LNAPLs Pollution Range/cm | The Speed of Migration of LNAPLs | Maximum Saturation of LNAPLs after Freeze-Thaw | |
---|---|---|---|---|---|---|
Media | coarse sand | 9.300 | 1.210 | 4 cm | fast | 0.227 |
Medium sand | 7.540 | 3.300 | 6 cm | slow | 0.145 | |
Fine sand | 7.380 | 5.250 | 8 cm | Extremely slow | 0.115 | |
Silty clay | 7.510 | 4.250 | 7 cm | slow | 0.195 | |
LNAPLs | Toluene | 7.540 | 3.300 | 6 cm | slow | 0.145 |
Chloroethane | 7.540 | 3.300 | 6 cm | fast | 0.134 | |
Ethylbenzene | 7.540 | 3.300 | 6 cm | slow | 0.15 |
Medium | LNAPLs Contamination Range (Isothermal/Freeze-Thaw) | Status of LNAPLs Near the Water Level | Maximum LNAPLs Saturation (Isothermal/Freeze-Thaw) |
---|---|---|---|
coarse sand | 4.3 cm/4 cm | similar | 0.137/0.127 |
Medium sand | 6.2 cm/6 cm | similar | 0.161/0.145 |
Fine sand | 8.0 cm/8 cm | similar | 0.130/0.115 |
Silty clay | 7.0 cm/7 cm | similar | 0.214/0.195 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Pan, M.; Chang, C.; Wang, A.; Wang, Y.; Lyu, H. Migration Law of LNAPLs in the Groundwater Level Fluctuation Zone Affected by Freezing and Thawing. Water 2022, 14, 1289. https://doi.org/10.3390/w14081289
Zhou J, Pan M, Chang C, Wang A, Wang Y, Lyu H. Migration Law of LNAPLs in the Groundwater Level Fluctuation Zone Affected by Freezing and Thawing. Water. 2022; 14(8):1289. https://doi.org/10.3390/w14081289
Chicago/Turabian StyleZhou, Jing, Minghao Pan, Chuping Chang, Ao Wang, Yongqi Wang, and Hang Lyu. 2022. "Migration Law of LNAPLs in the Groundwater Level Fluctuation Zone Affected by Freezing and Thawing" Water 14, no. 8: 1289. https://doi.org/10.3390/w14081289
APA StyleZhou, J., Pan, M., Chang, C., Wang, A., Wang, Y., & Lyu, H. (2022). Migration Law of LNAPLs in the Groundwater Level Fluctuation Zone Affected by Freezing and Thawing. Water, 14(8), 1289. https://doi.org/10.3390/w14081289