Content and Bioavailability of Hg in a Soil–Tea Plant System in Anxi Area, Southeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Pretreatment
2.2.1. Tea Leaf Sample
2.2.2. Soil Sample
2.3. Screening and Speciation Extraction of Soil Samples
2.3.1. Soil Sample Screening
2.3.2. Speciation Extraction of Soil Sample
2.4. Chemical Analyses of Soil and Tea Leaves
2.5. Statistical Analyses and Mapping
3. Results
3.1. Hg Content in Soil
3.2. Hg Content in Tea Leaves
3.3. Relationship of Total Hg in Soil and Tea Leaves
3.3.1. Correlation
3.3.2. Transfer Factor
3.4. Extracted Hg in Soil and Total Hg in Tea Leaves
3.5. Correlation between Extracted Hg and Other Indicators
4. Discussion
4.1. Factors Influencing Hg Content in Soil
4.1.1. Effect of Geological Background on Soil Hg Content
4.1.2. Effect of Soil Geochemical Properties on Soil Hg Content
4.2. Factors Influencing Bioavailability of Hg in Soil–Tea Plant System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, T.C.; You, S.J.; Yu, B.S.; Chen, C.M.; Chiu, Y.C. Treating High-Mercury-Containing Lamps Using Full-Scale Thermal Desorption Technology. J. Hazard. Mater. 2009, 162, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.F.; Dan, W.; Li, Z.G.; Zhang, L.M.; Feng, X.B. Mercury in Desulfurization Gypsum and Its Dependence on Coal Properties in Coal-Fired Power Plants. Fuel 2021, 293, 120413. [Google Scholar] [CrossRef]
- Rezaee, A.; Derayat, J.; Mortazavi, S.B.; Yamini, Y.; Jafarzadeh, M.T. Removal of Mercury from Chlor-Alkali Industry Wastewater Using Acetobacter Xylinum Cellulose. Am. J. Environ. Sci. 2005, 1, 102–105. [Google Scholar] [CrossRef]
- Shahid, M.; Khalid, S.; Bibi, I.; Bundschuh, J.; Niazi, N.K.; Dumat, C. A Critical Review of Mercury Speciation, Bioavailability, Toxicity and Detoxification in Soil-Plant Environment: Ecotoxicology and Health Risk Assessment. Sci. Total Environ. 2020, 711, 134749. [Google Scholar]
- Wang, Q.F.; Dan, W.; Li, Z.G.; Wang, Y.Y.; Yang, Y.; Liu, M.X.; Li, D.D.; Sun, G.Y.; Zeng, B.P. Concentrations, Leachability, and Health Risks of Mercury in Green Tea from Major Production Areas in China. Ecotoxicol. Environ. Saf. 2022, 232, 113279. [Google Scholar] [CrossRef]
- Huang, J.-H.; Shetaya, W.H.; Osterwalder, S. Determination of (Bio)-available mercury in soils: A review. Environ. Pollut. 2020, 263, 114323. [Google Scholar] [CrossRef]
- Wang, X.; Tam, N.F.-Y.; Fu, S.; Ametkhan, A.; Ouyang, Y.; Ye, Z. Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa). Ann. Bot. 2014, 114, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, Q.; Wang, S.; Nan, Z.; Long, S.; Wu, Y.; Dong, S. Bioavailability, transfer, toxicological effects, and contamination assessment of arsenic and mercury in soil-corn systems. Environ. Sci. Pollut. Res. 2022, 6, 1–6. [Google Scholar] [CrossRef]
- Bache, C.A.; Gutenmann, W.H.; St John, L.E.; Sweet, R.D.; Hatfield, H.H.; Lisk, D.J. Mercury and Methylmercury Content of Agricultural Crops Grown on Soils Treated with Various Mercury Compounds. J. Agric. Food Chem. 1973, 21, 607–613. [Google Scholar] [CrossRef]
- Mountain, W. Distribution of Mercury in Saskatchewan Soils and Crops. Can. J. Soil Sci. 1974, 54, 105–108. [Google Scholar]
- Zhang, K. The rhizospheric transformation and bioavailability of mercury in pepper plants are influenced by selected Chinese soil types. Env. Geochem. Health 2022, 6, 1–2. [Google Scholar] [CrossRef]
- Barnett, M.O.; Turner, R.R. Bioaccessibility of Mercury in Soils. Soil and Sediment Contamination 2001, 10, 301–316. [Google Scholar] [CrossRef]
- Golow, A.A.; Adzei, E.A. Mercury in Surface Soil and Cassava Crop near an Alluvial Goldmine at Dunkwa-on-Offin, Ghana. Bull. Environ. Contam. Toxicol. 2002, 69, 228–235. [Google Scholar] [CrossRef]
- Feng, X.B.; Li, G.H.; Qiu, G.L. A Preliminary Study on Mercury Contamination to the Environment from Artisanal Zinc Smelting Using Indigenous Methods in Hezhang County, Guizhou, China: Part 2. Mercury Contaminations to Soil and Crop. Sci. Total Environ. 2006, 368, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.C.; Zhang, X.S.; Wang, Z.W.; Ci, Z.J. Field Controlled Experiments of Mercury Accumulation in Crops from Air and Soil. Environ. Pollut. 2011, 159, 2684–2689. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.C.; Lo, C.T.; Kuo, Y.C.; Zhuang, Y.J.; Cho, M.H. Particulate-Bound Mercury (PBM) in Stems and Leaves of Several Crops (White Cabbage, Peking Cabbage, and Chili) at a Farmland Site in Taiwan. Environ. Forensics 2016, 17, 1–6. [Google Scholar] [CrossRef]
- Ericksen, J.A.; Gustin, M.S.; Schorran, D.E.; Johnson, D.W.; Lindberg, S.E.; Coleman, J.S. Accumulation of Atmospheric Mercury in Forest Foliage. Atmos. Environ. 2003, 37, 1613–1622. [Google Scholar] [CrossRef]
- Frescholtz, T.F.; Gustin, M.S.; Schorran, D.E.; Fernandez, G.C.J. Assessing the Source of Mercury in Foliar Tissue of Quaking Aspen. Environ. Toxicol. Chem. 2003, 22, 2114–2119. [Google Scholar] [CrossRef]
- Rodriguez, L.; Rincon, J.; Asencio, I.; Rodriguez-Castellanos, L. Capability of Selected Crop Plants for Shoot Mercury Accumulation from Polluted Soils: Phytoremediation Perspectives. Int. J. Phytoremediation 2007, 9, 1–13. [Google Scholar] [CrossRef]
- Jing, Y.D.; He, Z.L.; Yang, X.E.; Sun, C.Y. Evaluation of Soil Tests for Plant-Available Mercury in a Soil-Crop Rotation System. Commun. Soil Sci. Plant Anal. 2008, 39, 3032–3046. [Google Scholar] [CrossRef]
- Pilgrim, T.S.; Watling, R.J.; Grice, K. Application of Trace Element and Stable Isotope Signatures to Determine the Provenance of Tea (Camellia Sinensis) Samples. Food Chem. 2010, 118, 921–926. [Google Scholar] [CrossRef]
- Paige Wright, L.; Zhang, L.; Marsik, F.J. Overview of Mercury Dry Deposition, Litterfall, and Throughfall Studies. Atmos. Chem. Phys. 2016, 16, 13399–13416. [Google Scholar] [CrossRef]
- Xu, Y.M.; Lu, W.J.; Lv, W.X. An Empirical Analysis of the Impact of China ’s Tea Export Trade on the Development of China ’s Tea Industry. J. Tea 2019, 45, 185–192. [Google Scholar]
- Kowalski, R.; Kowalska, G.; Baj, T. The Risk Assessment of Mercury Poisoning after Consuming Teas and Cereal Products. Curr. Issues Pharm. Med. Sci. 2012, 25, 176–178. [Google Scholar] [CrossRef]
- Melucci, D.; Locatelli, M.; Locatelli, C. Trace Level Voltammetric Determination of Heavy Metals and Total Mercury in Tea Matrices (Camellia Sinensis). Food Chem. Toxicol. 2013, 62, 901–907. [Google Scholar] [CrossRef]
- Arvay, J.; Hauptvogl, M.; Tomas, J.; Harangozo, L. Determination of Mercury, Cadmium and Lead Contents in Different Tea and Teas Infusions (Camellia Sinensis, L.). Potravinarstvo 2015, 9, 398–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, G.H.; Sun, B.B.; He, L.; Bai, J.F.; Zeng, D.M.; Hou, S.J.; Liu, Z.Y. The Relationship of Lead Concentration between Soils and Tea Leaves and the Critical Value of Lead for Soil in Anxi, Fujian Province. Geophys. Geochem. Explor. 2016, 40, 148–153. [Google Scholar]
- Shi, Y.Z.; Han, W.Y.; Ma, L.F.; Ruan, J.Y.; Li, F. Influence of Exogenous Lead on Change of Lead Forms and Bioavailability in Different Tea Garden Soils. J. Agro-Environ. Sci. 2010, 29, 1117–1124. [Google Scholar]
- Li, Z.W. Distribution on Characteristics and Tea Leaf Bioavailability of Cd in Tea Garden Soil from FengHuangMountain of East Guangdong Province. Bull. Soil Water Conseration 2013, 33, 237–241. [Google Scholar]
- Chen, P.Z.; Liu, Y.; Ye, H.M. Fraction Distribution and Tea Bioavailability of Hg, Cd, Se in Soil from Wuyishan Tea Garden YE. Chin. J. Trop. Crops 2016, 37, 2094–2099. [Google Scholar]
- Wei, F. Background Values of Soil Elements in China; China Environmental Science Press: Beijing, China, 1990; pp. 354–357. [Google Scholar]
- Chen, Z.J.; Chen, C.X.; Liu, Y.Q. Study on Soil Environmental Background Values in Fujian Province. Environ. Sci. 1992, 13, 70–75. [Google Scholar]
- Liu, Y.Q. Study and Application of the Soil Environmental Background Values in Fujian Coastal Zone. Mar. Environ. Sci. 1995, 14, 68–73. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. GB15618-2018 Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land; Ministry of Ecology and Environment: Beijing, China, 2018.
- Baptista-Salazar, C.; Richard, J.H.; Horf, M.; Rejc, M.; Gosar, M.; Biester, H. Grain-size dependence of mercury speciation in river suspended matter, sediments and soils in a mercury mining area at varying hydrological conditions. Appl. Geochem. 2017, 81, 132–142. [Google Scholar] [CrossRef]
- Bobkova, A.; Fikselova, M.; Bobko, M.; Lopasovsky, Ľ.; Toth, T.; Zelenakova, L. Selected Parameters of Quality and Safety of Herbal Tea. Potravinarstvo 2015, 9, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Chen, Q.Q.; Deng, M.H.; Japenga, J.P.; Li, T.Q.; Yang, X.; He, Z.L. Heavy Metal Pollution and Health Risk Assessment of Agricultural Soils in a Typical Peri-Urban Area in Southeast China. J. Environ. Manag. 2018, 207, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Prkic, A.; Politeo, N.; Giljanovic, J.; Sokol, V.; Boskovic, P.; Brkljaca, M.; Stipisic, A. Survey of Content of Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Sodium and Zinc in Chamomile and Green Tea Leaves by Electrothermal or Flame Atomizer Atomic Absorption Spectrometry. Open Chem. 2018, 16, 228–237. [Google Scholar] [CrossRef]
- Ministry of Agriculture of the People’s Republic of China. NY659-2003 Residue Limits for Chromium, Cadmium, Mercury, Arsenic and Fluoride in Tea; Ministry of Agriculture: Beijing, China, 2003.
- Restrepo-Sanchez, N.E.; Acevedo-Betancourth, L.; Henao-Murillo, B.; Pelaez-Jaramillo, C. Remediation Effect of Compost on Soluble Mercury Transfer in a Crop of Phaseolus Vulgaris. J. Environ. Sci. 2015, 31, 61–67. [Google Scholar] [CrossRef]
- Ninkov, J.; Markovic, S.; Banjac, D.; Vasin, J.; Milic, S.; Banjac, B.; Mihailovic, A. Mercury Content in Agricultural Soils (Vojvodina Province, Serbia). Environ. Sci. Pollut. Res. 2017, 24, 10966–10975. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar] [CrossRef]
- Cappon, C.J. Uptake and Speciation of Mercury and Selenium in Vegetable Crops Grown on Compost-Treated Soil. Water Air Soil Pollut. 1987, 34, 353–361. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, Y.L.; Li, J.; Cai, C.; Huang, Z.Y. Spatial Distribution and Bioavailability of Hg in Vegetable-Growing Soils Collected from the Estuary Areas of Jiulong River, China. Environ. Earth Sci. 2014, 72, 1749–1758. [Google Scholar] [CrossRef]
- Sun, J.W.; Yu, R.L.; Hu, G.R.; Jiang, S.H.; Zhang, Y.F.; Wang, X.M. Bioavailability of Heavy Metals in Soil of the Tieguanyin Tea Garden, Southeastern China. Acta Geochim. 2017, 36, 519–524. [Google Scholar] [CrossRef]
- Fritioff, A.; Greger, M. Aquatic and Terrestrial Plant Species with Potential to Remove Heavy Metals from Stormwater. Int. J. Phytoremediation 2003, 5, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Lodenius, M.; Tulisalo, E.; Soltanpour-Gargari, A. Exchange of Mercury between Atmosphere and Vegetation under Contaminated Conditions. Sci. Total Environ. 2003, 304, 169–174. [Google Scholar] [CrossRef] [PubMed]
Methods | Extractant | Reference |
---|---|---|
AE | deionized water | [20] |
DAE | diluted hydrochloric acid (0.1 mol/L) | |
SSE | CaCl2 (0.1 mol/L) | |
CAE | DTPA (0.005 mol/L) + CaCl2 (0.01 mol/L)+ TEA (0.1 mol/L), pH = 7.3 |
Indicator | Method | DL | Unit | Indicator | Method | DL | Unit |
---|---|---|---|---|---|---|---|
SiO2 | XRF | 0.1 | % | CEC | 0.25 | cmol(+)/kg | |
Al2O3 | XRF | 0.1 | % | pH | Potentiometry | 0.1 | / |
TFe2O3 | XRF | 0.1 | % | SOC | POT | 0.1 | % |
MgO | XRF | 0.05 | % | TC | POT | 0.1 | % |
CaO | XRF | 0.05 | % | Hg | CV-AFS | 2 | μg/kg |
Sample | Soil Size | AE | DAE | SSE | CAE |
---|---|---|---|---|---|
Surface soil | F1 (N = 30) | 0.11 | 0.35 | 0.65 | 0.72 |
F2 (N = 30) | 0.10 | 0.34 | 1.00 | 0.80 | |
F3 (N = 30) | 0.12 | 0.43 | 1.10 | 0.93 | |
F4 (N = 30) | 0.11 | 0.42 | 1.31 | 1.26 | |
F5 (N = 30) | 0.11 | 0.37 | 0.81 | 1.12 | |
Subsurface soil | F1 (N = 30) | 0.10 | 0.67 | 0.64 | 0.60 |
F2 (N = 30) | 0.10 | 0.67 | 0.69 | 0.66 | |
F3 (N = 30) | 0.12 | 0.73 | 0.89 | 0.76 | |
F4 (N = 30) | 0.14 | 0.59 | 1.08 | 0.90 | |
F5 (N = 30) | 0.11 | 0.72 | 0.62 | 0.84 |
Sample | Hg Content (μg/kg) | Ref | |||
---|---|---|---|---|---|
Min | Max | Ave | Med | ||
All samples (N = 79) | 1.50 | 8.25 | 3.70 | 3.41 | This study |
Old leaf (N = 23) | 4.16 | 8.25 | 5.59 | 5.44 | |
Young leaf (N = 56) | 1.50 | 4.62 | 2.93 | 2.94 | |
Herbal tea (N = 100) | 0.60–8.50 | 18.1–49.0 | 12.0–21.0 | [36] | |
Black teas (N = 10) | 0.82 | 5.11 | 2.20 | [26] | |
Green teas (N = 14) | 1.19 | 4.45 | 2.73 | ||
Teas (N = 8) | 80 | [37] | |||
Green teas (N = 8) | 1.05 | 2.8 | 1.77 | 1.60 | [38] |
Green teas (N = 7) | 2.20 | 7.0 | [24] | ||
Black teas (N = 15) | 0.94 | 9.35 | |||
Green teas (N = 6) | 230 | 690 | [25] |
Tea and Surface Soil | Tea and Subsurface Soil | Old Leaf and Surface Soil | Old Leaf and Subsurface Soil | Young Leaf and Surface Soil | Young Leaf and Subsurface Soil | |
---|---|---|---|---|---|---|
correlation coefficient | −0.097 | −0.125 | −0.033 | −0.093 | −0.047 | −0.122 |
Soil Size | AE | DAE | SSE | CAE |
---|---|---|---|---|
F1 | 0.166 | 0.229 | 0.160 | 0.002 |
F2 | −0.288 | 0.256 | 0.077 | 0.020 |
F3 | 0.064 | 0.160 | 0.111 | −0.040 |
F4 | 0.001 | 0.300 | 0.110 | 0.064 |
F5 | −0.147 | −0.181 | 0.183 | −0.013 |
HgS | HgL | TF | SOC | TC | pH | CEC | HgAE | HgDAE | HgSSE | HgCAE | |
---|---|---|---|---|---|---|---|---|---|---|---|
HgS | −0.080 | −0.454 * | 0.127 | 0.050 | −0.203 | −0.032 | −0.144 | −0.173 | −0.125 | −0.161 | |
HgL | 0.273 | 0.561 ** | 0.414 * | 0.451 * | 0.529 ** | −0.017 | 0.101 | 0.289 | 0.472 ** | 0.413 * | |
TF | −0.681 ** | 0.412 * | −0.028 | 0.015 | 0.485 ** | −0.034 | 0.005 | −0.142 | −0.063 | −0.009 | |
SOC | 0.459 * | 0.450 * | −0.219 | 0.955 ** | 0.202 | 0.276 | 0.031 | −0.012 | 0.394 * | 0.688 ** | |
TC | 0.440 * | 0.462 * | −0.206 | 0.992 ** | 0.214 | 0.445 * | −0.001 | 0.079 | 0.454 * | 0.708 ** | |
pH | 0.053 | 0.544 ** | 0.287 | 0.327 | 0.326 | −0.169 | −0.062 | −0.026 | 0.108 | 0.157 | |
CEC | −0.150 | 0.004 | −0.006 | 0.225 | 0.263 | −0.265 | −0.042 | 0.117 | 0.213 | 0.188 | |
HgAE | 0.320 | −0.163 | −0.284 | 0.090 | 0.104 | −0.158 | 0.286 | 0.127 | 0.225 | −0.015 | |
HgDAE | 0.072 | 0.382 * | 0.136 | 0.024 | 0.023 | 0.223 | 0.211 | −0.077 | 0.413 * | 0.175 | |
HgSSE | 0.627 ** | 0.391 * | −0.322 | 0.415 * | 0.371 * | 0.268 | −0.074 | 0.090 | 0.301 | 0.613 ** | |
HgCAE | 0.586 ** | 0.429 * | −0.269 | 0.549 ** | 0.518 ** | 0.162 | 0.147 | 0.142 | 0.416 * | 0.796 ** |
Geological Backgrounds | J3v | ξγJ3 | ηγK1 | kργK1 | γδK | γK | K1 | K2 | all | Max/Min | |
---|---|---|---|---|---|---|---|---|---|---|---|
Sample number | 54 | 14 | 2 | 2 | 1 | 1 | 1 | 4 | 79 | ||
Surface soil | Hg | 88.5 | 63.3 | 34.7 | 47.9 | 63.9 | 36.4 | 52.9 | 51.0 | 78.3 | 2.6 |
SiO2 | 63.9 | 64.9 | 54.9 | 54.1 | 51.2 | 61.4 | 72.0 | 57.4 | 63.2 | 1.4 | |
Al2O3 | 17.7 | 17.9 | 22.2 | 21.6 | 25.5 | 18.7 | 13.6 | 19.7 | 18.0 | 1.9 | |
TFe2O3 | 4.28 | 2.65 | 5.20 | 5.77 | 3.55 | 4.49 | 3.46 | 5.32 | 4.09 | 2.2 | |
MgO | 0.26 | 0.16 | 0.33 | 0.34 | 0.18 | 0.43 | 0.18 | 0.34 | 0.25 | 2.8 | |
CaO | 0.09 | 0.11 | 0.05 | 0.14 | 0.04 | 0.30 | 0.10 | 0.09 | 0.09 | 7.0 | |
Na2O | 0.07 | 0.19 | 0.07 | 0.07 | 0.02 | 0.23 | 0.05 | 0.10 | 0.09 | 10.0 | |
K2O | 1.56 | 2.42 | 1.32 | 1.34 | 0.48 | 2.41 | 1.45 | 1.33 | 1.69 | 5.1 | |
SOC | 1.34 | 0.87 | 0.73 | 1.20 | 0.77 | 1.40 | 1.75 | 1.26 | 1.23 | 2.4 | |
TC | 1.50 | 1.01 | 0.79 | 1.28 | 1.05 | 1.41 | 1.84 | 1.42 | 1.38 | 2.3 | |
pH | 4.6 | 4.9 | 5.0 | 4.8 | 4.5 | 4.9 | 4.9 | 4.8 | 4.7 | 1.1 | |
CEC | 8.27 | 5.94 | 6.96 | 6.00 | 11.2 | 7.97 | 8.46 | 9.95 | 7.89 | 1.9 | |
Subsurface soil | Hg | 74.9 | 87.1 | 37.4 | 64.2 | 106 | 40.4 | 57.9 | 67.9 | 75.2 | 2.9 |
SiO2 | 63.9 | 65.4 | 55.5 | 51.6 | 49.9 | 62.0 | 72.2 | 57.9 | 63.3 | 1.4 | |
Al2O3 | 17.7 | 17.9 | 21.8 | 22.3 | 25.9 | 18.3 | 13.9 | 20.4 | 18.2 | 1.9 | |
TFe2O3 | 4.27 | 2.79 | 5.20 | 6.07 | 3.41 | 4.43 | 3.70 | 5.37 | 4.12 | 2.2 | |
MgO | 0.28 | 0.15 | 0.32 | 0.33 | 0.19 | 0.45 | 0.18 | 0.35 | 0.26 | 2.9 | |
CaO | 0.09 | 0.11 | 0.05 | 0.13 | 0.04 | 0.30 | 0.07 | 0.09 | 0.09 | 7.0 | |
Na2O | 0.07 | 0.18 | 0.06 | 0.07 | 0.02 | 0.23 | 0.05 | 0.10 | 0.09 | 10.0 | |
K2O | 1.61 | 2.44 | 1.14 | 1.20 | 0.54 | 2.44 | 1.46 | 1.40 | 1.72 | 4.5 | |
SOC | 1.10 | 0.82 | 0.52 | 0.96 | 0.82 | 1.13 | 1.18 | 1.17 | 1.03 | 2.2 | |
TC | 1.18 | 0.88 | 0.57 | 1.06 | 0.91 | 1.17 | 1.35 | 1.20 | 1.11 | 2.4 | |
pH | 4.6 | 4.9 | 4.9 | 4.7 | 4.4 | 4.9 | 4.7 | 4.7 | 4.7 | 1.1 | |
CEC | 8.39 | 5.69 | 6.44 | 7.88 | 8.22 | 7.73 | 5.86 | 11.4 | 7.96 | 2.0 |
SiO2 | Al2O3 | TFe2O3 | MgO | CaO | SOC | pH | CEC | |
---|---|---|---|---|---|---|---|---|
Hg | 0.039 | −0.057 | 0.008 | −0.059 | −0.012 | 0.116 | −0.196 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Peng, X. Content and Bioavailability of Hg in a Soil–Tea Plant System in Anxi Area, Southeast China. Water 2023, 15, 179. https://doi.org/10.3390/w15010179
He L, Peng X. Content and Bioavailability of Hg in a Soil–Tea Plant System in Anxi Area, Southeast China. Water. 2023; 15(1):179. https://doi.org/10.3390/w15010179
Chicago/Turabian StyleHe, Ling, and Xiuhong Peng. 2023. "Content and Bioavailability of Hg in a Soil–Tea Plant System in Anxi Area, Southeast China" Water 15, no. 1: 179. https://doi.org/10.3390/w15010179