Research on the Acoustic Conditioning Taming on Fish and Application in Marine Ranching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment
2.2.1. Test Equipment in the Laboratory
2.2.2. Test Equipment in the Open-Sea Area
2.3. Methods
2.3.1. Laboratory Test Method
2.3.2. Method for Eliminating Sound Conditioning
2.3.3. Open-Sea Area Test Method
2.4. Data Analysis
3. Results
3.1. Results in the Tank
3.1.1. Aggregation Area
3.1.2. Behavior of Fish in the Test Tank
3.1.3. Response Time, Aggregation Time, Residence Time, and Aggregation Rate
3.1.4. Efficiency Index
3.2. Elimination of Conditioned Reflex to Sound
3.3. Results in the Open-Sea Area
3.3.1. Behavior of Fish
3.3.2. Response Time, Aggregation Time, Residence Time, and Aggregation Rate
3.3.3. Applications in Marine Ranching
4. Discussion
4.1. Acoustic Conditioning Taming Effect on Fish in Laboratory
4.2. Acoustic Conditioning Taming Effect on Fish in the Open-Sea Area
4.3. Elimination of Conditioned Reflexes to Sound
4.4. Application Prospects of Acoustic Conditioning Taming Technology
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, C.Q. The decline reasons and the measures for sustainable development of fisheries resources. Hebei Fish. 2007, 2, 4–5. [Google Scholar] [CrossRef]
- Zhao, Y.L. Study on the Regulation of Fishery Subsidies Under the Background of Increasingly Scarce Fishery Resources. Issues Agric. Econ. 2020, 8, 91–102. [Google Scholar] [CrossRef]
- Jiang, Y.E.; Lin, Z.J.; Huang, Z.R. Biodiversity of fishery resources in the continental shelf of northern South China Sea. S. China Fish. Sci. 2009, 5, 32–37. [Google Scholar] [CrossRef]
- Mai, G.M.; Chen, Z.J.; Wang, X.F.; Xiao, Y.Y.; Li, C.H. Spatial pattern of fish taxonomic diversity along coastal waters in northern South China Sea. S. China Fish. Sci. 2022, 3, 38–47. [Google Scholar] [CrossRef]
- Wang, D.L.; Yu, J.; Chen, P.M. Progress of Technologies in Marine Ranching Construction. J. Anhui Agric. Sci. 2020, 6, 7–11. [Google Scholar] [CrossRef]
- Yang, H.S. Construction of marine ranching in China: Reviews and prospects. J. Fish. China 2016, 7, 1133–1140. [Google Scholar] [CrossRef]
- Chen, Y. Research and construction of modern marine ranching in China: A review. J. Dalian Ocean. Univ. 2020, 2, 147–154. [Google Scholar] [CrossRef]
- Chen, P.M.; Shu, L.M.; Yuan, H.R.; Feng, X.; Tong, F.; Chen, Q.; Chen, Y.X.; Yu, J.; Chen, G.B.; Yu, J.; et al. Review on development, definition and classification of marine ranching in domestic and overseas. J. Fish. China 2019, 9, 1851–1869. [Google Scholar] [CrossRef]
- Chen, P.M.; Shu, L.M.; Li, C.H.; Jia, X.P.; Xiao, Y.Y.; Yuan, H.R.; Fang, J.C.; Guan, C.T.; Li, S.F.; Yang, W.B.; et al. Classification of Marine Ranching (SC/T 9111-2017); China Standards Press: Beijing, China, 2017; Volume 1. [Google Scholar]
- Yuan, H.R.; Chen, P.M. Current Situation, Problems and Countermeasures of Marine Ranching Development in Guangdong Province, China. Asian Agric. Res. 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Yuan, H.R.; Chen, P.M.; Yu, J.; Li, X.G. Assessment of Quality of Fishery Resources in the Northeastern South China Sea. J. Mar. Sci. Eng. 2022, 10, 930. [Google Scholar] [CrossRef]
- Sun, S.X. Construct ‘marine pasture’ and develop new type of ecological fishery. Ocean. Dev. Manag. 2005, 6, 81–83. [Google Scholar] [CrossRef]
- Yang, J.L.; Wu, X.Y.; Shi, G.F.; Chen, Y. Overview of Marine Ranching Technology. Chin. Fish. Econ. 2004, 5, 48–50. [Google Scholar] [CrossRef]
- Yang, H.S.; Xu, S.; Lin, C.G.; Sun, J.C.; Zhang, L.B. Research Progress and Prospects of Restoration and Resource Conservation in Typical Sea Areas. Oceanol. Limnol. Sin. 2020, 4, 809–820. [Google Scholar] [CrossRef]
- Zion, B.; Barki, A.; Grinshpon, J.; Rosenfdle, L.; Karplus, I. Retention of acoustic conditioning in St. Peter’s fish Sarotherodon galilaeus. Fish Biol. 2011, 78, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.B. 21-Century Korea Ocean Development Strategy. Pac. J. 2007, 3, 80–86. [Google Scholar] [CrossRef]
- She, Y.A. Analysis on the development of marine ranches in South Korea and Japan and the necessity of carrying out this work in China. China Fish. 2008, 3, 22–24. [Google Scholar] [CrossRef]
- Tomohiro, S. Basic Study for Fish Auditory Brainstem Response; Fisheries Research Agency: Yokohama, Japan, 2009.
- Kamijo, Y. Control for fish shoal by acoustic sound. Fish. Eng. 1991, 1, 65–70. [Google Scholar]
- Akira, O.; Yoshihiro, I. Recovery of Released Black Sea Bream Acanthopagrus Schlegeli Stocked after Acoustic Conditioning in Katagami Bay, Nagasaki Prefecture; Nagasaki Prefecture Fisheries Experiment Station: Nagasaki, Japan, 1994; pp. 31–34.
- Yasushi, S.; Shoichi, W. Black Rockfish Acoustic Conditioning Taming Type Mariculture Business Promotion Project; Miyagi Prefectural Kesennuma Fisheries Experiment Station: Kesennuma, Japan, 1994; pp. 31–35. [Google Scholar]
- Wataru, Y.; Yasuo, S.; Toru, I. Research and Development of the Marifarm Construction Technology for Demersal Fishes; Niigata Prefecture Aquatic Center: Niigata, Japan, 1995; pp. 39–41. [Google Scholar]
- Tlusty, M.F.; Andrew, J.; Baldwin, K.; Bradley, T.M. Acoustic conditioning for recall/recapture of escaped Atlantic salmon and rainbow trouts. Aquaclture 2008, 1, 57–64. [Google Scholar] [CrossRef]
- Abbott, R.R. Induced aggregation of pond-reared rainbow trout (Salmo gairdneri) through acoustic conditioning. Trans. Am. Fish. Soc. 1972, 1, 35–43. [Google Scholar] [CrossRef]
- Wright, D.D.; Eastcott, A. Association of an acoustic signal with operant conditioned feeding responses in thickkipped mullet, Crenimugil labrosus (Risso) and common carp, Cyprinus carpio (L.). J. Fish Biol. 1982, 21, 693–698. [Google Scholar] [CrossRef]
- Tian, T.; Zhang, G.S.; Zhang, X.G.; Zhang, X.M. Priliminary Application of Acoustic Behavior Control in the Culture of Common Carp. Period. Ocean. Univ. China 2007, 1, 83–88. [Google Scholar] [CrossRef]
- Popper, A.N.; Hawkins, A.D. The importance of particle motion to fishes and invertebrates. J. Acoust. Soc. Am. 2018, 143, 470–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.N.; Yu, J.N.; Zhuang, X.; Li, H.Q.; Liu, H.C.; Yu, X.M.; Li, J.Y.; Zhang, G.S. Auditory sensitivity in crucian carp Carassius auratus Linnaeus. J. Dalian Ocean Univ. 2018, 6, 775–781. [Google Scholar] [CrossRef]
- Popper, A.N.; Saidel, W.M. Variations in receptor cell innervation in the saccule of a teleost fish ear. Hear. Res. 1990, 46, 211–227. [Google Scholar] [CrossRef]
- Walton, P.L.; Christensen, D.J.; Carr, C.E. Evolution of sound source localization circuits in the no mammalian vertebrate brainstem. Brain Behav. Evol. 2017, 90, 131–153. [Google Scholar] [CrossRef]
- Wysocki, L.E.; Ladich, F. Can fishes resolve temporal characteristics of sound? New insights using auditory brainstem responses. Hear. Res. 2002, 169, 36–46. [Google Scholar] [CrossRef]
- Xing, B.B.; Yin, L.M.; Zhang, G.S.; Zhuang, X.; Wang, Y.N.; Wang, Z.Y.; Li, H.Q.; Liu, J.; Liu, H.C.; Xu, L.X. Progress on the auditory characteristics of fish and their application. Mar. Fish. 2018, 4, 495–503. [Google Scholar] [CrossRef]
- Mann, D.A.; Lu, Z.M.; Hastings, M.C.; Popper, A.N. Detection of ultrasonic tones and simulated dolphin echolocation clicks by a teleost fish, the American shad (Alosa sapidissima). J. Acoust. Soc. Am. 1998, 1, 562–568. [Google Scholar] [CrossRef]
- He, D.R.; Cai, H.C. Fish Behavior; Press of Xiamen University: Xiamen, China, 1998; pp. 55–72, 105–141, 241–244. [Google Scholar]
- Arthur, N.P.; Richard, R.F.; Christopher, P.; Olav, S. Sound Detection Mechanisms and Capabilities of Teleost Fishes; Springer: New York, NY, USA, 2003; p. 3. [Google Scholar]
- Cheng, M.H.; Xu, R.Y. Preliminary experiment on acoustic domestication of Sparus macrocephalus. Mar. Sci. 1989, 3, 65–67. [Google Scholar]
- Zhang, G.S.; Zhang, Y.; Wang, L.M.; Xin, B.B.; Xu, P.X. Acoustic training of rockfish Sebastes schlegeli by 300 Hz impulse wave interval sound. J. Dalian Fish. Univ. 2010, 5, 413–416. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Zhang, G.S.; Liang, Z.L. Acoustic conditioning taming on Pagrus major by rectangular continuant of 300 Hz. J. Fish. China 2008, 1, 86–91. [Google Scholar] [CrossRef]
- Yuan, H.R.; Chen, P.M. Development Status, Problems and Countermeasures of Marine Ranching in Guangdong Province. Guangdong Agric. Sci. 2022, 7, 141–154. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.L.; Yang, W.B.; Wang, X.M.; Huang, Y.; Sheng, G.M. Assessments for impacts of red sea bream artificial releasing and enhancement. Chin. Fish. Econ. 2010, 3, 94–110. [Google Scholar] [CrossRef]
- Cao, G.Y.; Zhang, Z.Y.; Zhang, Z.W.; Chen, S.Y.; Zhu, F.; Jia, C.F.; Chen, Z.Q.; Zeng, H.F.; Tang, X.J. Analysis of the microsatellite sequences and codon bias of the codding sequence in Acanthopagrus Schlegelii, Pagrus Major and their hybrid progenies. Oceanol. Limnol. Sin. 2019, 5, 1108–1115. [Google Scholar] [CrossRef]
- Zhang, G.S.; Chen, Y.; Zhang, P.D.; Tian, T.; Liu, H.Y.; Xu, C.C. Significance and feasibility of establishing marine ranching in Chinese sea area. J. Dalian Fish. Univ. 2003, 2, 141–144. [Google Scholar] [CrossRef]
- Mokhtar, M.B.; Awaluddin, A. Framework for sea ranching. Fish Biol. Fish. 2003, 13, 213–217. [Google Scholar] [CrossRef]
- Li, G.; Wu, G.G. Analysis on the Effect of Reproduction and Release of Pagrus Major for Ecological Restoration of Offshore Oiland Gas Field Development Project in Beibu Gulf of South China Sea. Guangdong Chem. Ind. 2021, 9, 107–108. [Google Scholar] [CrossRef]
- Huang, M.; Wu, M.J. Special effect of potassium permanganate in aquaculture application. Hebei Fish. 2015, 1, 62–63. [Google Scholar] [CrossRef]
- Yuan, H.R.; Chen, P.M.; Jia, X.P.; Zhou, Y.B.; Feng, X.; Qin, C.X.; Tang, Z.Z.; Yu, J.; Shu, L.M. Attractive effect of acoustic conditioning taming through rectangular continuant at 600 Hz on juvenile red seabream Pagrus major. Guangdong Agric. Sci. 2011, 24, 109–111. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Zhang, G.S.; Liang, Z.L. Study on acoustic conditioning taming on Cyprinus Carpio and Ctenopharyngodon Idellus by Rectangulat continunt of 400 Hz. Trans. Oceanol. Limnol. 2007, z1, 137–141. [Google Scholar] [CrossRef]
- Yuan, H.R.; Chen, P.M.; Jia, X.P.; Zhou, Y.B.; Qin, C.X.; Feng, X.; Tang, Z.Z.; Yu, J.; Shu, L.M. Attractive effect of acoustic conditioning taming through rectangular continuant at 500 Hz on juvenile Pagrus major in South China Sea. S. China Fish. Sci. 2012, 1, 36–42. [Google Scholar] [CrossRef]
- Liang, J.; Chen, D.H.; Wang, W.D.; Zhang, S.Y.; Hu, Q.S. Acoustic conditioning taming on Sparus macrocephalus by sine wave alternate sounds. J. Mar. Sci. 2014, 2, 59–66. [Google Scholar] [CrossRef]
- Tian, F.; Huang, L.Y.; Liu, Q.; Wang, Z.W.; Deng, Z.C.; Shi, J.G.; Tang, Y.L. Preliminary Determination of Acoustic Reflection Time of Juvenile Rockfish (sea bastes schlegeli) Foraging. Period. Ocean. Univ. China 2012, 10, 47–50. [Google Scholar] [CrossRef]
- Zhou, Y.B.; Cai, W.G.; Chen, H.G.; Chen, P.M.; Lu, G.M.; Jia, X.P. Attraction effect of various artificial reef models on Sparus macrocephalus. J. Fish. China 2011, 5, 711–718. [Google Scholar] [CrossRef]
- Kundsen, F.R.; Enger, P.S.; Sand, O. Awareness reactions and avoidance responses to sound in juvenile Atlantic salmon, Salmo salar L. Fish Biol. 1992, 40, 523–534. [Google Scholar]
- Fay, R.R.; Popper, A.N. Evolution of hearing in vertebrates: The inner ears and processing. Hear. Res. 2000, 149, 1–10. [Google Scholar] [CrossRef]
- Fay, R.R.; Popper, A.N. Issues associated with sound exposure experiments in tanks. Proc. Meet. Acoust. 2016, 27, 070008. [Google Scholar]
- Fay, R.R. Perception of spectrally and temporally complex sounds by the goldfish (Carassius auratus). Hear. Res. 1995, 89, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.T.; Yu, H.Z. Experiment analysis on the role of cerebral cortex in defensive conditioned reflex. Acta Physiol. Sin. 1962, 3, 198–208. [Google Scholar]
- Mei, Z.T. Reconsideration of Pavlov’s Theory of Conditioned Reflex. Science 2022, 4, 30–32. [Google Scholar]
- Su, X.; Chen, X.J. Comparative Study for Input Control and Output Control in Fishery Management. Trans. Oceanol. Limnol. 2021, 3, 136–144. [Google Scholar] [CrossRef]
- Lu, B.; Zhang, X.M.; Gao, Y. Analysis on the stock enhancement of marine fishery resources and their fishery benefits. Mod. Agric. 2022, 6, 66–67. [Google Scholar]
- Feng, F.; Zhou, W.L.; Chen, S.; Zhou, Y.B.; Xie, E.G.; Wu, Q.E. Research progress on the bearing capacity of offshore fishery resources. J. Tianjin Agric. Univ. 2021, 1, 59–66. [Google Scholar] [CrossRef]
- Suo, A.N.; Ding, D.W.; Yang, J.L.; Tian, T. Application analysis of “three fields and one channel” theory in marine ranching habitat construction. Mar. Fish. 2022, 44, 1–8. [Google Scholar] [CrossRef]
- Le, Z.Y. Exploration and suggestions on effective protection of offshore fishery resources based on acoustic technology. China Fish. 2022, 5, 58–60. [Google Scholar]
- Hu, Q.S.; Rahman, H.A.; Jiang, Y.Z.; Zhang, S.Y.; Shengtu, J.K. Acoustic Conditioning System Development and Conditioning Experiments on Black Seabreams in the Xiangshan Bay Sea Ranch. Ocean. Univ. China 2018, 3, 667–674. [Google Scholar] [CrossRef]
- Hu, Y.L.; Wang, L.M. Research on acoustic signal detection algorithms in seawater. J. Northeast. Norm. Univ. 2021, 2, 81–85. [Google Scholar] [CrossRef]
Number | Parameter | Description | Related Reference |
---|---|---|---|
1 | Aggregation area | The concentration areas of the distributions of the fish when sound was played. This parameter was calculated using the Gaussian distribution model. | LIANG, J. 2014. [49] |
2 | Response time | The time from when the sound was played to the time when the fish entered the aggregation area. | ZHANG, G.S. 2010. [37] |
3 | Aggregation time | The time from when the sound was played to the time when there were no fish entering the aggregation area. | JIANG, Z.Y. 2008. [38] |
4 | Residence time | The time from when no fish were in the aggregation area to when 70% of fish had drifted away from the aggregation area. | YUAN, H.R. 2011. [46] |
5 | Aggregation rate | The proportion of fish gathered in the aggregation area compared with the total number during the aggregation time. | TIAN, F. 2012. [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Zhou, Y.; Chen, P. Research on the Acoustic Conditioning Taming on Fish and Application in Marine Ranching. Water 2023, 15, 71. https://doi.org/10.3390/w15010071
Yuan H, Zhou Y, Chen P. Research on the Acoustic Conditioning Taming on Fish and Application in Marine Ranching. Water. 2023; 15(1):71. https://doi.org/10.3390/w15010071
Chicago/Turabian StyleYuan, Huarong, Yanbo Zhou, and Pimao Chen. 2023. "Research on the Acoustic Conditioning Taming on Fish and Application in Marine Ranching" Water 15, no. 1: 71. https://doi.org/10.3390/w15010071