Temperature and Secchi Disk Depth Increase More Rapidly in the Subpolar Bering/Okhotsk Seas Than in the Subtropical South China Sea
Abstract
:1. Introduction
2. Sea Surface Temperature
3. Chlorophyll Concentration
4. Secchi Disk Depth
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bindoff, N.L.; Cheung, W.W.; Kairo, J.G.; Arístegui, J.; Guinder, V.A.; Hallberg, R.; Hilmi, N.J.M.; Jiao, N.; Karim, M.S.; Levin, L. Changing ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC: Geneva, Switzerland, 2019; pp. 477–587. [Google Scholar]
- Lotze, H.K.; Tittensor, D.P.; Bryndum-Buchholz, A.; Eddy, T.D.; Cheung, W.W.L.; Galbraith, E.D.; Barange, M.; Barrier, N.; Bianchi, D.; Blanchard, J.L.; et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl. Acad. Sci. USA 2019, 116, 12907–12912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. AR6 Synthesis Report: Climate Change 2022; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Chen, C.-T.A.; Huang, T.-H.; Lui, H.-K.; Zhang, J. Unheralded submarine groundwater discharge. Oceanogr. Fish. Open Access J. 2019, 10, 126–128. [Google Scholar]
- Wang, S.L.; Chen, C.T.A.; Huang, T.H.; Tseng, H.C.; Lui, H.K.; Peng, T.R.; Kandasamy, S.; Zhang, J.; Yang, L.Y.; Gao, X.L.; et al. Submarine groundwater discharge helps making nearshore waters heterotrophic. Sci. Rep. 2018, 8, 11650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lui, H.K.; Chen, C.T.A.; Hou, W.P.; Yu, S.J.; Chan, J.W.; Bai, Y.; He, X.Q. Transient carbonate chemistry in the expanded Kuroshio region. In Changing Asia-Pacific Marginal Seas; Chen, C.T.A., Guo, X.Y., Eds.; Springer: Singapore, 2020; pp. 307–320. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Andreev, A.; Kim, K.R.; Yamamoto, M. Roles of continental shelves and marginal seas in the biogeochemical cycles of the North Pacific Ocean. J. Oceanogr. 2004, 60, 17–44. [Google Scholar] [CrossRef]
- Wiese, F.K.; Van Pelt, T.I.; Wiseman, W.J. Bering Sea linkages. Deep-Sea Res. Part II 2012, 65-70, 2–5. [Google Scholar] [CrossRef]
- Xie, L.L.; Guan, Y.; Hu, J.Y.; Zheng, Q.A. Advances in interscale and interdisciplinary approaches to the South China Sea. Acta Oceanol. Sin. 2021, 40, 196–199. [Google Scholar] [CrossRef]
- Hallett, C.S.; Hobday, A.J.; Tweedley, J.R.; Thompson, P.A.; McMahon, K.; Valesini, F.J. Observed and predicted impacts of climate change on the estuaries of south-western Australia, a Mediterranean climate region. Reg. Environ. Chang. 2018, 18, 1357–1373. [Google Scholar] [CrossRef]
- Bai, Y.; He, X.Q.; Yu, S.J.; Chen, C.T.A. Changes in the Ecological Environment of the Marginal Seas along the Eurasian Continent from 2003 to 2014. Sustainability 2018, 10, 635. [Google Scholar] [CrossRef] [Green Version]
- Stabeno, P.J.; Kachel, N.B.; Moore, S.E.; Napp, J.M.; Sigler, M.; Yamaguchi, A.; Zerbini, A.N. Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep-Sea Res. Part II 2012, 65-70, 31–45. [Google Scholar] [CrossRef]
- Wang, M.Y.; Overland, J.E.; Stabeno, P. Future climate of the Bering and Chukchi Seas projected by global climate models. Deep-Sea Res. Part II 2012, 65–70, 46–57. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Yu, S.J.; Huang, T.H.; Bai, Y.; He, X.Q. Changes in temperature, chlorophyll concentration, and Secchi Disk Depth in the Bering Sea from 1998 to 2016. In Changing Asia-Pacific Marginal Seas; Chen, C.T.A., Guo, X.Y., Eds.; Springer: Singapore, 2020; pp. 5–18. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Yu, S.J.; Huang, T.H.; Bai, Y.; He, X.Q. Changes in temperature, chlorophyll concentration, and Secchi Disk Depth in the Okhotsk Sea from 1998 to 2016. In Changing Asia-Pacific Marginal Seas; Chen, C.T.A., Guo, X.Y., Eds.; Springer: Singapore, 2020; pp. 57–68. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Yu, S.J.; Huang, T.H.; Lui, H.K.; Bai, Y.; He, X.Q. Changing biogeochemistry in the South China Sea. In Changing Asia-Pacific Marginal Seas; Chen, C.T.A., Guo, X.Y., Eds.; Springer: Singapore, 2020; pp. 203–216. [Google Scholar] [CrossRef]
- Nakanowatari, T.; Mitsudera, H. Long-term trend and interannual to decadal variability in the Sea of Okhotsk. In Changing Asia-Pacific Marginal Seas; Chen, C.T.A., Guo, X.Y., Eds.; Springer: Singapore, 2020; pp. 19–56. [Google Scholar] [CrossRef]
- Schmidtko, S.; Stramma, L.; Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 2017, 542, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Breitburg, D.; Levin, L.A.; Oschlies, A.; Grégoire, M.; Chavez, F.P.; Conley, D.J.; Garçon, V.; Gilbert, D.; Gutiérrez, D.; Isensee, K.; et al. Declining oxygen in the global ocean and coastal waters. Science 2018, 359, eaam7240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oschlies, A. A committed fourfold increase in ocean oxygen loss. Nat. Commun. 2021, 12, 2037. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Ouyang, Z.; Chen, L.; Wu, Y.; Lei, R.; Chen, B.; Feely, R.A.; Anderson, L.G.; Zhong, W.; Lin, H.; et al. Climate change drives rapid decadal acidification in the Arctic Ocean from 1994 to 2020. Science 2022, 377, 1544–1550. [Google Scholar] [CrossRef]
- Nan, F.; Yu, F.; Xue, H.J.; Zeng, L.L.; Wang, D.X.; Yang, S.L.; Nguyen, K.C. Freshening of the upper ocean in the South China Sea since the early 1990s. Deep-Sea Res. Part I 2016, 118, 20–29. [Google Scholar] [CrossRef]
- Durack, P.J.; Wijffels, S.E. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 2010, 23, 4342–4362. [Google Scholar] [CrossRef]
- Nan, F.; Xue, H.J.; Chai, F.; Wang, D.X.; Yu, F.; Shi, M.C.; Guo, P.F.; Xiu, P. Weakening of the Kuroshio intrusion into the South China Sea over the past two decades. J. Clim. 2013, 26, 8097–8110. [Google Scholar] [CrossRef] [Green Version]
- Nan, F.; Xue, H.J.; Yu, F. Kuroshio intrusion into the South China Sea: A review. Prog. Oceanogr. 2015, 137, 314–333. [Google Scholar] [CrossRef] [Green Version]
- Lui, H.K.; Chen, K.Y.; Chen, C.T.A.; Wang, B.S.; Lin, H.L.; Ho, S.H.; Tseng, C.J.; Yang, Y.; Chan, J.W. Physical forcing-driven productivity and sediment flux to the deep basin of Northern South China Sea: A decadal time series study. Sustainability 2018, 10, 971. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.H.; Chen, C.T.A.; Lee, J.; Wu, C.R.; Wang, Y.L.; Bai, Y.; He, X.Q.; Wang, S.L.; Kandasamy, S.; Lou, J.Y.; et al. East China Sea increasingly gains limiting nutrient P from South China Sea. Sci. Rep. 2019, 9, 5648. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Peng, Z.C.; Zhou, R.J.; Song, S.H.; Liu, W.G.; You, C.F.; Lin, Y.P.; Yu, K.F.; Wu, C.C.; Wei, G.J.; et al. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2. Sci. Rep. 2014, 4, 5148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lui, H.K.; Chen, C.T.A. Deducing acidification rates based on short-term time series. Sci. Rep. 2015, 5, 11517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.Q.; Pan, D.L.; Bai, Y.; Wang, T.Y.; Chen, C.T.A.; Zhu, Q.K.; Hao, Z.Z.; Gong, F. Recent changes of global ocean transparency observed by SeaWiFS. Cont. Shelf Res. 2017, 143, 159–166. [Google Scholar] [CrossRef]
- Belkin, I.M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 2009, 81, 207–213. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Wang, M.Y.; Overland, J.E. A sea ice free summer Arctic within 30 years? Geophys. Res. Lett. 2009, 36, L07502. [Google Scholar] [CrossRef]
- Chen, C.T.A. Rare northward flow in the Taiwan Strait in winter: A note. Cont. Shelf Res. 2003, 23, 387–391. [Google Scholar] [CrossRef]
- Naik, H.; Chen, C.T.A. Biogeochemical cycling in the Taiwan Strait. Estuar. Coast. Shelf Sci. 2008, 78, 603–612. [Google Scholar] [CrossRef]
- Han, A.Q.; Dai, M.H.; Gan, J.P.; Kao, S.J.; Zhao, X.Z.; Jan, S.; Li, Q.; Lin, H.; Chen, C.T.A.; Wang, L.; et al. Inter-shelf nutrient transport from the East China Sea as a major nutrient source supporting winter primary production on the northeast South China Sea shelf. Biogeosciences 2013, 10, 8159–8170. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.T.A.; Bai, Y.; Huang, T.H.; He, X.Q.; Chen, H.W.; Yu, S.J. Southward spreading of the Changjiang Diluted Water in the La Nina spring of 2008. Sci. Rep. 2021, 11, ARTN 307. [Google Scholar] [CrossRef] [PubMed]
- Jan, S.; Chen, C.T.A. Potential biogeochemical effects from vigorous internal tides generated in Luzon Strait: A case study at the southernmost coast of Taiwan. J. Geophys. Res.-Oceans 2009, 114, C04021. [Google Scholar] [CrossRef]
- Hsu, P.C.; Lee, H.J.; Zheng, Q.A.; Lai, J.W.; Su, F.C.; Ho, C.R. Tide-induced periodic sea surface temperature drops in the coral reef area of Nanwan Bay, Southern Taiwan. J. Geophys. Res.-Oceans 2020, 125, ARTN e2019JC015226. [Google Scholar] [CrossRef]
- Wu, C.R.; Chang, C.W.J. Interannual variability of the South China Sea in a data assimilation model. Geophys. Res. Lett. 2005, 32, L17611. [Google Scholar] [CrossRef]
- Li, H.L.; Wiesner, M.G.; Chen, J.F.; Ling, Z.; Zhang, J.J.; Ran, L.H. Long-term variation of mesopelagic biogenic flux in the central South China Sea: Impact of monsoonal seasonality and mesoscale eddy. Deep-Sea Res. Part I 2017, 126, 62–72. [Google Scholar] [CrossRef]
- Xu, Z.H.; Ji, F.; Liu, B.; Feng, T.C.; Gao, Y.; He, Y.L.; Chang, F. Long-term evolution of global sea surface temperature trend. Int. J. Climatol. 2021, 41, 4494–4508. [Google Scholar] [CrossRef]
- Giuliani, S.; Bellucci, L.G.; Nhon, D.H. The coast of Vietnam: Present status and future challenges for sustainable development. In World Seas: An Environmental Evaluation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 415–435. [Google Scholar]
- Chen, C.T.A. Buoyancy leads to high productivity of the Changjiang diluted water: A note. Acta Oceanol. Sin. 2008, 27, 133–140. [Google Scholar]
- Chen, C.T.A.; Wang, S.L.; Lu, X.X.; Zhang, S.R.; Lui, H.K.; Tseng, H.C.; Wang, B.J.; Huang, H.I. Hydrogeochemistry and greenhouse gases of the Pearl River, its estuary and beyond. Quat. Int. 2008, 186, 79–90. [Google Scholar] [CrossRef]
- Dai, M.H.; Lu, Z.M.; Zhai, W.D.; Chen, B.S.; Cao, Z.M.; Zhou, K.B.; Cai, W.J.; Chen, C.T.A. Diurnal variations of surface seawater pCO2 in contrasting coastal environments. Limnol. Oceanogr. 2009, 54, 735–745. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Striegl, R.G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 2007, 34, L12402. [Google Scholar] [CrossRef] [Green Version]
- Siegel, D.A.; Behrenfeld, M.; Maritorena, S.; McClain, C.R.; Antoine, D.; Bailey, S.W.; Bontempi, P.S.; Boss, E.S.; Dierssen, H.M.; Doney, S.C.; et al. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 2013, 135, 77–91. [Google Scholar] [CrossRef] [Green Version]
- Giesbrecht, K.; Varela, D.; Wiktor, J.; Grebmeier, J.; Kelly, B.; Long, J. A decade of summertime measurements of phytoplankton biomass, productivity and assemblage composition in the Pacific Arctic Region from 2006 to 2016. Deep-Sea Res. Part II 2019, 162, 93–113. [Google Scholar] [CrossRef]
- Thomas, M.K.; Kremer, C.T.; Klausmeier, C.A.; Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 2012, 338, 1085–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wohlers, J.; Engel, A.; Llner, E.; Breithaupt, P.; Rgens, K.; Hoppe, H.-G.; Sommer, U.; Riebesell, U. Changes in biogenic carbon flow in response to sea surface warming. Proc. Natl. Acad. Sci. USA 2009, 106, 7067–7072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Xing, X.G.; Liu, H.L.; Yuan, Y.P.; Wang, Y.T.; Chai, F. The variability of chlorophyll-a and its relationship with dynamic factors in the basin of the South China Sea. J. Marine Syst. 2019, 200, ARTN 103230. [Google Scholar] [CrossRef]
- Lui, H.-K.; Chen, C.-T.A.; Hou, W.-P.; Liau, J.-M.; Chou, W.-C.; Wang, Y.-L.; Wu, C.-R.; Lee, J.; Hsin, Y.-C.; Choi, Y.-Y. Intrusion of Kuroshio helps to diminish coastal hypoxia in the coast of northern South China Sea. Front. Mar. Sci. 2020, 7, 565952. [Google Scholar] [CrossRef]
- Palacz, A.P.; Xue, H.J.; Armbrecht, C.; Zhang, C.Y.; Chai, F. Seasonal and inter-annual changes in the surface chlorophyll of the South China Sea. J. Geophys. Res.-Oceans 2011, 116, C09015. [Google Scholar] [CrossRef]
- Li, Q.P.; Wang, Y.J.; Dong, Y.; Gan, J.P. Modeling long-term change of planktonic ecosystems in the northern South China Sea and the upstream Kuroshio Current. J. Geophys. Res.-Oceans 2015, 120, 3913–3936. [Google Scholar] [CrossRef]
- Gregg, W.W.; Rousseaux, C.S. Global ocean primary production trends in the modern ocean color satellite record (1998–2015). Environ. Res. Lett. 2019, 14, ARTN 124011. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Bai, Y.; He, X.Q.; Tao, B.Y.; Chen, X.Y.; Gong, F.; Wang, T.Y. Phytoplankton size classes changed oppositely over shelf and basin areas of the South China Sea during 2003–2018. Prog. Oceanogr. 2021, 191, ARTN 102496. [Google Scholar] [CrossRef]
- Li, T.; Bai, Y.; He, X.Q.; Chen, X.Y.; Chen, C.T.A.; Tao, B.Y.; Pan, D.L.; Zhang, X. The relationship between POC export efficiency and primary production: Opposite on the shelf and basin of the northern South China Sea. Sustainability 2018, 10, 3634. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L.L. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea. Deep-Sea Res. Part I 2005, 52, 319–340. [Google Scholar] [CrossRef]
- Shih, Y.Y.; Shiah, F.K.; Lai, C.C.; Chou, W.C.; Tai, J.H.; Wu, Y.S.; Lai, C.Y.; Ko, C.Y.; Hung, C.C. Comparison of primary production using in situ and satellite-derived values at the SEATS Station in the South China Sea. Front. Mar. Sci. 2021, 8, ARTN 747763. [Google Scholar] [CrossRef]
- He, X.Q.; Bai, Y.; Pan, D.L.; Huang, N.L.; Dong, X.; Chen, J.S.; Chen, C.T.A.; Cui, Q.F. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters. Remote Sens. Environ. 2013, 133, 225–239. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Pan, D.; Chen, C.T.A.; Cheng, Q.; Wang, D.; Gong, F. Satellite views of the seasonal and interannual variability of phytoplankton blooms in the eastern China seas over the past 14 yr (1998–2011). Biogeosciences 2013, 10, 4721–4739. [Google Scholar] [CrossRef] [Green Version]
- He, X.Q.; Bai, Y.; Chen, C.T.A.; Hsin, Y.C.; Wu, C.R.; Zhai, W.D.; Liu, Z.L.; Gong, F. Satellite views of the episodic terrestrial material transport to the southern Okinawa Trough driven by typhoon. J. Geophys. Res.-Oceans 2014, 119, 4490–4504. [Google Scholar] [CrossRef]
- Rohan, S.K.; Kotwicki, S.; Kearney, K.A.; Schulien, J.A.; Laman, E.A.; Cokelet, E.D.; Beauchamp, D.A.; Britt, L.L.; Aydin, K.Y.; Zador, S.G. Using bottom trawls to monitor subsurface water clarity in marine ecosystems. Prog. Oceanogr. 2021, 194, ARTN 102554. [Google Scholar] [CrossRef]
- Wang, J.; Tong, Y.; Feng, L.; Zhao, D.; Zheng, C.M.; Tang, J. Satellite-observed decreases in water turbidity in the Pearl River Estuary: Potential linkage with sea-level rise. J. Geophys. Res.-Oceans 2021, 126, ARTN e2020JC016842. [Google Scholar] [CrossRef]
Mean | Changing Rate (%/yr) | Changing Rate (/Decade) | p Value | ||
---|---|---|---|---|---|
Bering Sea | SST | 4.34 °C | - | 0.62 °C | 0.06 |
Chl | 1.43 μg/L | −0.05 | −0.007 μg/L | 0.92 | |
SDD | 13.41 m | 0.32 | 0.432 m | 0.37 | |
Okhotsk Sea | SST | 4.35 °C | - | 0.408 °C | 0.38 |
Chl | 1.57 μg/L | 0.30 | 0.047 μg/L | 0.56 | |
SDD | 12.67 m | 0.36 | 0.457 m | 0.30 | |
South China Sea | SST | 27.97 °C | - | 0.089 °C | 0.52 |
Chl | 0.44 μg/L | −0.02 | −0.001 μg/L | 0.91 | |
SDD | 30.03 m | 0.10 | 0.289 m | 0.36 |
Time Scale | Mean Chl (μg/L) | Changing Rate (%/yr) | Changing Rate (μg/L/Decade) | p Value | ||
---|---|---|---|---|---|---|
Bering Sea | Phase 1 | 1998–2008 | 1.44 | 2.41 | 0.347 | 0.04 |
Phase 2 | 2009–2018 | 1.41 | −2.22 | −0.313 | 0.11 | |
1998–2018 | 1.43 | −0.05 | −0.007 | 0.92 | ||
Okhotsk Sea | Phase 1 | 1998–2008 | 1.55 | 2.46 | 0.383 | 0.06 |
Phase 2 | 2009–2018 | 1.59 | −1.93 | −0.307 | 0.21 | |
1998–2018 | 1.57 | 0.30 | 0.047 | 0.56 | ||
South China Sea | Phase 1 | 1998–2006 | 0.43 | 3.49 | 0.151 | <0.005 |
Phase 2 | 2007–2018 | 0.44 | −2.52 | −0.112 | <0.005 | |
1998–2018 | 0.44 | −0.02 | −0.001 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-T.; Yu, S.; Huang, T.-H.; Bai, Y.; He, X.; Lui, H.-K. Temperature and Secchi Disk Depth Increase More Rapidly in the Subpolar Bering/Okhotsk Seas Than in the Subtropical South China Sea. Water 2023, 15, 98. https://doi.org/10.3390/w15010098
Chen C-T, Yu S, Huang T-H, Bai Y, He X, Lui H-K. Temperature and Secchi Disk Depth Increase More Rapidly in the Subpolar Bering/Okhotsk Seas Than in the Subtropical South China Sea. Water. 2023; 15(1):98. https://doi.org/10.3390/w15010098
Chicago/Turabian StyleChen, Chen-Tung (Arthur), Shujie Yu, Ting-Hsuan Huang, Yan Bai, Xianqiang He, and Hon-Kit Lui. 2023. "Temperature and Secchi Disk Depth Increase More Rapidly in the Subpolar Bering/Okhotsk Seas Than in the Subtropical South China Sea" Water 15, no. 1: 98. https://doi.org/10.3390/w15010098
APA StyleChen, C.-T., Yu, S., Huang, T.-H., Bai, Y., He, X., & Lui, H.-K. (2023). Temperature and Secchi Disk Depth Increase More Rapidly in the Subpolar Bering/Okhotsk Seas Than in the Subtropical South China Sea. Water, 15(1), 98. https://doi.org/10.3390/w15010098