Degradation of Polystyrene Nanoplastics in UV/NaClO and UV/PMS Systems: Insights into Degradation Efficiency, Mechanism, and Toxicity Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Procedure
2.3. Analytical Methods
2.4. Theoretical Computation Methods
3. Results and Discussion
3.1. Turbidity Removal of PS-NP
3.2. Mineralization of PS-NP in Different Oxidation Systems
3.3. Degradation Mechanisms and Pathway of PS-NP by UV/PMS and UV/NaClO
3.4. Toxicity Assessment of Degradation Intermediates
4. Conclusions
- (1)
- The UV/NaClO and UV/PMS systems achieved 78.20% and 94.30% turbidity removal in 360 min of reaction time. However, the corresponding mineralization rates were 7.00% and 63.90%, indicating that UV/NaClO could not completely mineralize nanoplastics into inorganic substances, but only decompose it into smaller organic molecules.
- (2)
- DFT calculation coupled with HPLC analysis proposed the degradation pathways of PS-NP in two oxidative systems. The different reaction sites and energy barriers of SO4•− and •Cl on PS-NP resulted in the differences between the mineralization rate and degradation intermediates.
- (3)
- Toxicity assessment of degradation intermediates showed that the inhibition rate of luminescent bacteria originated by the UV/NaClO and UV/PMS systems were 2.97% and 98.19%. This suggested that the acute toxicity of PS-NP degradation intermediates using UV/PMS should be given attention.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ter Halle, A.; Jeanneau, L.; Martignac, M.; Jardé, E.; Pedrono, B.; Brach, L.; Gigault, J. Nanoplastic in the North Atlantic Subtropical Gyre. Environ. Sci. Technol. 2017, 51, 13689–13697. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L. Persistence of Plastic Litter in the Oceans. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 57–72. [Google Scholar]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, W.-M.; Bolan, N.S.; Tsang, D.C.W.; Li, Y.; Qin, M.; Hou, D. Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. J. Hazard. Mater. 2021, 401, 123415. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, N.P.; Fennell, T.R.; Johnson, L.M. Unintended human ingestion of nanoplastics and small microplastics through drinking water, beverages, and food sources. NanoImpact 2021, 21, 100302. [Google Scholar] [CrossRef] [PubMed]
- Talvitie, J.; Mikola, A.; Koistinen, A.; Setälä, O. Solutions to microplastic pollution—Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res. 2017, 123, 401–407. [Google Scholar] [CrossRef]
- Remucal, C.K.; Manley, D. Emerging investigators series: The efficacy of chlorine photolysis as an advanced oxidation process for drinking water treatment. Environ. Sci. Water Res. Technol. 2016, 2, 565–579. [Google Scholar] [CrossRef]
- Zhou, P.; Di Giovanni, G.D.; Meschke, J.S.; Dodd, M.C. Enhanced Inactivation of Cryptosporidium parvum Oocysts during Solar Photolysis of Free Available Chlorine. Environ. Sci. Technol. Lett. 2014, 1, 453–458. [Google Scholar] [CrossRef]
- Oliver, B.G.; Carey, J.H. Photochemical production of chlorinated organics in aqueous solutions containing chlorine. Environ. Sci. Technol. 1977, 11, 893–895. [Google Scholar] [CrossRef]
- Tian, F.-X.; Ye, W.-K.; Xu, B.; Hu, X.-J.; Ma, S.-X.; Lai, F.; Gao, Y.-Q.; Xing, H.-B.; Xia, W.-H.; Wang, B. Comparison of UV-induced AOPs (UV/Cl2, UV/NH2Cl, UV/ClO2 and UV/H2O2) in the degradation of iopamidol: Kinetics, energy requirements and DBPs-related toxicity in sequential disinfection processes. Chem. Eng. J. 2020, 398, 125570. [Google Scholar] [CrossRef]
- Guan, Y.-H.; Ma, J.; Li, X.-C.; Fang, J.-Y.; Chen, L.-W. Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System. Environ. Sci. Technol. 2011, 45, 9308–9314. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical Generation by the Interaction of Transition Metals with Common Oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Wu, W.; Liu, C.; Dionysiou, D.D.; Deng, Y.; Zhou, D. Activation of persulfate with vanadium species for PCBs degradation: A mechanistic study. Appl. Catal. B Environ. 2017, 202, 1–11. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Zhang, T.; Xu, Z.; Li, Y.; Li, B.; Tian, S. UV facilitated synergistic effects of polymetals in ore catalyst on peroxymonosulfate activation: Implication for the degradation of bisphenol S. Chem. Eng. J. 2022, 431, 133989. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, Y.; Li, T.; Chen, Z.; Jiang, Q.; Zhao, Z.; Liang, X.; Hu, C. Unraveling the High-Activity Origin of Single-Atom Iron Catalysts for Organic Pollutant Oxidation via Peroxymonosulfate Activation. Environ. Sci. Technol. 2021, 55, 8318–8328. [Google Scholar] [CrossRef]
- Keerthana Devi, M.; Karmegam, N.; Manikandan, S.; Subbaiya, R.; Song, H.; Kwon, E.E.; Sarkar, B.; Bolan, N.; Kim, W.; Rinklebe, J.; et al. Removal of nanoplastics in water treatment processes: A review. Sci. Total Environ. 2022, 845, 157168. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, K.; Jocic, S.; Doverbratt, I.; Hansson, L.-A. Chapter 13—Nanoplastics in the Aquatic Environment. In Microplastic Contamination in Aquatic Environments; Zeng, E.Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 379–399. [Google Scholar]
- Geetha, N.; Bhavya, G.; Abhijith, P.; Shekhar, R.; Dayananda, K.; Jogaiah, S. Insights into nanomycoremediation: Secretomics and mycogenic biopolymer nanocomposites for heavy metal detoxification. J. Hazard. Mater. 2021, 409, 124541. [Google Scholar] [CrossRef]
- Bhavya, G.; Belorkar, S.A.; Mythili, R.; Geetha, N.; Shetty, H.S.; Udikeri, S.S.; Jogaiah, S. Remediation of emerging environmental pollutants: A review based on advances in the uses of eco-friendly biofabricated nanomaterials. Chemosphere 2021, 275, 129975. [Google Scholar] [CrossRef]
- Murray, A.; Örmeci, B. Removal Effectiveness of Nanoplastics (<400 nm) with Separation Processes Used for Water and Wastewater Treatment. Water 2020, 12, 635. [Google Scholar]
- Schwaferts, C.; Sogne, V.; Welz, R.; Meier, F.; Klein, T.; Niessner, R.; Elsner, M.; Ivleva, N.P. Nanoplastic Analysis by Online Coupling of Raman Microscopy and Field-Flow Fractionation Enabled by Optical Tweezers. Anal. Chem. 2020, 92, 5813–5820. [Google Scholar] [CrossRef]
- Uheida, A.; Mejía, H.G.; Abdel-Rehim, M.; Hamd, W.; Dutta, J. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. J. Hazard. Mater. 2021, 406, 124299. [Google Scholar] [CrossRef]
- Sun, X.-D.; Yuan, X.-Z.; Jia, Y.; Feng, L.-J.; Zhu, F.-P.; Dong, S.-S.; Liu, J.; Kong, X.; Tian, H.; Duan, J.-L.; et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 2020, 15, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xu, H.; Chen, B.; Pan, H.; Qiu, Z. Insights into chloroacetaldehydes degradation by 254 nm ultraviolet: Kinetics, products, and influencing factors. J. Environ. Chem. Eng. 2021, 9, 104571. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001. [Google Scholar] [CrossRef]
- Saha, A.; Si, M.K.; Ganguly, B. A new strategy to generate super and hyper acids with simple organic molecules exploiting σ-hole interaction. Phys. Chem. Chem. Phys. 2019, 21, 17772–17778. [Google Scholar] [CrossRef]
- Eyring, H. The Activated Complex in Chemical Reactions. J. Chem. Phys. 1935, 3, 107–115. [Google Scholar] [CrossRef]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Fang, J.; Fu, Y.; Shang, C. The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System. Environ. Sci. Technol. 2014, 48, 1859–1868. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
- Qi, C.; Liu, X.; Ma, J.; Lin, C.; Li, X.; Zhang, H. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants. Chemosphere 2016, 151, 280–288. [Google Scholar] [CrossRef]
- Wang, W.-L.; Zhang, X.; Wu, Q.-Y.; Du, Y.; Hu, H.-Y. Degradation of natural organic matter by UV/chlorine oxidation: Molecular decomposition, formation of oxidation byproducts and cytotoxicity. Water Res. 2017, 124, 251–258. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Ding, J.; Song, Z.; Yang, B.; Zhang, C.; Guan, B. Degradation of nano-sized polystyrene plastics by ozonation or chlorination in drinking water disinfection processes. Chem. Eng. J. 2022, 427, 131690. [Google Scholar] [CrossRef]
- Xie, R.; Ji, J.; Guo, K.; Lei, D.; Fan, Q.; Leung, D.Y.C.; Huang, H. Wet scrubber coupled with UV/PMS process for efficient removal of gaseous VOCs: Roles of sulfate and hydroxyl radicals. Chem. Eng. J. 2019, 356, 632–640. [Google Scholar] [CrossRef]
- Zrinyi, N.; Pham, A.L.-T. Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution. Water Res. 2017, 120, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Wenk, J.; Aeschbacher, M.; Salhi, E.; Canonica, S.; von Gunten, U.; Sander, M. Chemical Oxidation of Dissolved Organic Matter by Chlorine Dioxide, Chlorine, And Ozone: Effects on Its Optical and Antioxidant Properties. Environ. Sci. Technol. 2013, 47, 11147–11156. [Google Scholar] [CrossRef]
Removal Strategies | Type of Material | Time | Removal Efficiency (%) | Limitations | Reference |
---|---|---|---|---|---|
Filtration | 0.22 μm syringe filter 3 μm Whatman filter | 10 min | 32 ± 12 92 ± 3 | Larger nanoplastics can retain in the fractions and are not suitable for larger particles. | [17] |
Ultrafiltration | 0.45 μm Express PLUS PES filters | 27 min | 74.0 | The particle may escape from the treatment and the time duration is also poor. | [18] |
Flocculation | 150 rpm impeller rotational speed | 50 min | 77 ± 15 | Design parameters have to improve with studies and the order of reaction should be high. | [19] |
Centrifugation | 10,000 rpm speed with various steps | 15 min | 98.41 | This process takes a longer duration to remove the plastics. | [20] |
Photocatalytic reaction | UV rays | 27 min | 17.1 ± 0.55 | Phototransformation of nanoplastics could be different and photoreactive activity can be high in the water. | [21] |
Compound List | Molecular Formula | Chemical Structure | ESI(+)MS m/z |
---|---|---|---|
P1 | C16OH16 | 224 | |
P2 | C15O2H12 | 224 | |
P3 | C7OH6 | 106 | |
P4 | C10OH12 | 148 | |
P5 | C6OH6 | 94 | |
P6 | C6ClH5 | 112 | |
P7 | C6H6 | 78 | |
P8 | C8OH8 | 120 | |
P9 | C8H10 | 106 | |
P10 | C7H8 | 92 | |
P11 | C7O2H6 | 122 | |
P12 | C2O2H | CH3COOH | 57 |
P13 | C3OH6 | CH3COCH3 | 58 |
P14 | CO2H2 | HCOOH | 46 |
Common Product | Fish (LC50, 96 h) | Daphnia (LC50, 48 h) | Green Algae (EC50, 96 h) |
---|---|---|---|
Butyrophenone | 31.37 | 18.92 | 18.11 |
Benzene | 5.3 | 10.3 | 29 |
Toluene | 31.7 | 3.8 | 9.4 |
Phenol | 8.9 | 3.1 | 150 |
Benzoic acid | 1300.78 | 730.08 | 518.37 |
Acetophenone | 162 | 106.80 | 70.24 |
Toxicity Range (mg/L) | Class |
---|---|
LC50/EC50 ≤ 1 | Very toxic |
1 < LC50/EC50 ≤ 10 | Toxic |
10 < LC50/EC50 ≤ 100 | Harmful |
LC50/EC50 > 100 | Not harmful |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Chen, F.; Yang, L.; Deng, L.; Shi, Z. Degradation of Polystyrene Nanoplastics in UV/NaClO and UV/PMS Systems: Insights into Degradation Efficiency, Mechanism, and Toxicity Evaluation. Water 2023, 15, 1920. https://doi.org/10.3390/w15101920
Cai Y, Chen F, Yang L, Deng L, Shi Z. Degradation of Polystyrene Nanoplastics in UV/NaClO and UV/PMS Systems: Insights into Degradation Efficiency, Mechanism, and Toxicity Evaluation. Water. 2023; 15(10):1920. https://doi.org/10.3390/w15101920
Chicago/Turabian StyleCai, Yishu, Fan Chen, Lingfang Yang, Lin Deng, and Zhou Shi. 2023. "Degradation of Polystyrene Nanoplastics in UV/NaClO and UV/PMS Systems: Insights into Degradation Efficiency, Mechanism, and Toxicity Evaluation" Water 15, no. 10: 1920. https://doi.org/10.3390/w15101920
APA StyleCai, Y., Chen, F., Yang, L., Deng, L., & Shi, Z. (2023). Degradation of Polystyrene Nanoplastics in UV/NaClO and UV/PMS Systems: Insights into Degradation Efficiency, Mechanism, and Toxicity Evaluation. Water, 15(10), 1920. https://doi.org/10.3390/w15101920