Application of Software and Hardware-Based Technologies in Leaks and Burst Detection in Water Pipe Networks: A Literature Review
Abstract
:1. Introduction
- Water leaks and bursts.
- Water theft.
- Low pressure/high flow.
- Potential overflow/blockage.
- Water quality contamination.
- Reduction in non-revenue water, and reduction in the operational cost, ultimately leads to an increase in water revenue.
- Minimising price impacts on customers arising from rapid growth in the region.
- Operations to make decisions based on real-time data.
2. An Overview of Software- and Hardware-Based Leakage Detection Techniques
2.1. Leakage Detection: Hardware-Based Tools and Methods
2.2. Leakage Detection: Software-Based Methods
2.2.1. Volume Balancing
2.2.2. Real-Time Transient Model
2.2.3. Statistical Analysis—Approaches to Efficiency
2.2.4. Negative Pressure Waves (NPW)
2.2.5. Artificial Intelligence and Machine Learning Techniques
2.2.6. Fuzzy Methods
2.2.7. Kalman Filtering
2.2.8. K-Nearest Neighbours (KNN)
2.2.9. Convolutional Neural Networks (CNN)
2.2.10. Artificial Neural Network (ANN)
2.2.11. Support Vector Machine (SVM)
3. Discussion on the Application of Various Hardware- and Software-Based Leak Detection Technologies in Pipe Networks
4. Proposed Methodology for Software- and Hardware-Based Leak and Burst Detection System
- In a long-distance water transport system, the distance between pressure sensors used for burst detection should be evenly distributed and not exceed 5000 m. It is not required to increase the sensor density because the results would not improve but the management costs would increase.
- The sampling return period should not last more than five minutes. The backflow of water in the pipe after the point of burst will alter the sensor readings if the sample period is too long, which will result in significant errors in the calculations. More power will be needed to process the findings of more frequent sampling, but precision will not improve significantly. For the monitoring system to be feasible and successful, a reasonable sampling frequency is required.
- The long-distance water pipeline data fluctuations are compatible with the behaviour of a water distribution system. By considering the statistical properties of the monitored data during the normal operation of the system, the accuracy of instrumental monitoring can be increased in practice.
- The economic level of leakage estimation can guide the level and extent of leak detection methods application in a water distribution network. Leak detection methods and water pipe asset management/operation should be combined for the overall water network management strategy.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ullah, R.; Faheem, Y.; Kim, B.-S. Energy and congestion-aware routing metric for smart grid AMI networks in smart city. J. IEEE Access 2017, 5, 13799–13810. [Google Scholar] [CrossRef]
- Chen, L.J.; Ho, Y.H.; Lee, H.C.; Wu, H.C.; Liu, H.M.; Hsieh, H.H.; Huang, Y.T.; Lung, S.C.C. An open framework for participatory PM2. 5 monitoring in smart cities. J. IEEE Access 2017, 5, 14441–14454. [Google Scholar] [CrossRef]
- Bacco, M.; Delmastro, F.; Ferro, E.; Gotta, A. Environmental monitoring for smart cities. IEEE Sens. J. 2017, 17, 7767–7774. [Google Scholar] [CrossRef]
- Hunaidi, O.; Chu, W.; Wang, A.; Guan, W. Detecting leaks in plastic pipes. J. Am. Water Work. Assoc. 2000, 92, 82–94. [Google Scholar] [CrossRef]
- Liu, H. Pipeline. Pipeline Technology 11 August 2021. Available online: https://www.britannica.com/technology/pipeline-technology (accessed on 10 February 2023).
- Wang, H.; Xu, Y.; Shi, B.; Zhu, C.; Wang, Z. Optimization and intelligent control for operation parameters of multiphase mixture transportation pipeline in oilfield: A case study. J. Pipeline Sci. Eng. 2021, 1, 367–378. [Google Scholar] [CrossRef]
- Kraidi, L.; Shah, R.; Matipa, W.; Borthwick, F. An investigation of mitigating the safety and security risks allied with oil and gas pipeline projects. J. Pipeline Sci. Eng. 2021, 1, 349–359. [Google Scholar] [CrossRef]
- Shaw, D.; Phillips, M.; Baker, R.; Munoz, E.; Rehman, H.; Gibson, C.; Mayernik, C. Leak Detection Study–DTPH56-11-D-000001; U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration: Washington, DC, USA, 2012.
- Zhang, J.; Hoffman, A.; Murphy, K.; Lewis, J.; Twomey, M. Review of Pipeline Leak Detection Technologies. In Proceedings of the PSIG Annual Meeting, Prague, Czech Republic, 16–19 April 2013; OnePetro: Richardson, TX, USA. Available online: https://onepetro.org/PSIGAM/proceedings-abstract/PSIG13/All-PSIG13/2399 (accessed on 12 October 2022).
- Zhang, J. Designing a cost-effective and reliable pipeline leak-detection system. J. Pipes Pipelines Int. 1997, 42, 20–26. [Google Scholar]
- Joseph, K.; Sharma, A.; van Staden, R. Development of an Intelligent Urban Water Network System. Water 2022, 14, 1320. [Google Scholar] [CrossRef]
- Ismail, M.I.M.; Dziyauddin, R.A.; Salleh, N.A.A.; Muhammad-Sukki, F.; Bani, N.A.; Izhar, M.A.M.; Latiff, L.A. A review of vibration detection methods using accelerometer sensors for water pipeline leakage. J. IEEE Access 2019, 7, 51965–51981. [Google Scholar] [CrossRef]
- Parida, R.K.; Thyagarajan, V.; Menon, S. A thermal imaging based wireless sensor network for automatic water leakage detection in distribution pipes. In Proceedings of the 2013 IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, 17–19 January 2013. [Google Scholar]
- Penteado, C.; Olivatti, Y.; Lopes, G.; Rodrigues, P.; Filev, R.; Aquino, P.T. Water leaks detection based on thermal images. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MI, USA, 16–19 September 2018. [Google Scholar]
- Moubayed, A.; Sharif, M.; Luccini, M.; Primak, S.; Shami, A. Water leak detection survey: Challenges & research opportunities using data fusion & federated learning. J. IEEE Access 2021, 9, 40595–40611. [Google Scholar]
- Tian, C.H.; Yan, J.C.; Huang, J.; Wang, Y.; Kim, D.-S.; Yi, T. Negative pressure wave based pipeline leak detection: Challenges and algorithms. In Proceedings of the 2012 IEEE International Conference on Service Operations and Logistics, and Informatics, Suzhou, China, 8–10 July 2012. [Google Scholar]
- Kulkarni, P.; Farnham, T. Smart city wireless connectivity considerations and cost analysis: Lessons learnt from smart water case studies. J. IEEE Access 2016, 4, 660–672. [Google Scholar] [CrossRef]
- Rostirolla, G.; Rosa Righi, R.; Barbosa, J.L.V.; da Costa, C.A. ElCity: An elastic multilevel energy saving model for smart cities. J. IEEE Trans. Sustain. Comput. 2017, 3, 30–43. [Google Scholar] [CrossRef]
- Zaman, D.; Tiwari, M.K.; Gupta, A.K.; Sen, D. A review of leakage detection strategies for pressurised pipeline in steady-state. J. Eng. Fail. Anal. 2020, 109, 104264. [Google Scholar] [CrossRef]
- Mohd Yussof, N.A.; Ho, H.W. Review of Water Leak Detection Methods in Smart Building Applications. Buildings 2022, 12, 1535. [Google Scholar] [CrossRef]
- El-Zahab, S.; Zayed, T. Leak detection in water distribution networks: An introductory overview. Smart Water 2019, 4, 5. [Google Scholar] [CrossRef]
- Tariq, S.; Bakhtawar, B.; Zayed, T. Data-driven application of MEMS-based accelerometers for leak detection in water distribution networks. J. Sci. Total Environ. 2022, 809, 151110. [Google Scholar] [CrossRef]
- Fereidooni, Z.; Tahayori, H.; Bahadori-Jahromi, A. A hybrid model-based method for leak detection in large scale water distribution networks. J. Ambient Intell. Humaniz. Comput. 2021, 12, 1613–1629. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, B.; Chen, W.; Tan, D.; Shen, D. Review of model-based and data-driven approaches for leak detection and location in water distribution systems. J. Water Supply 2021, 21, 3282–3306. [Google Scholar] [CrossRef]
- Zhou, X.; Tang, Z.; Xu, W.; Meng, F.; Chu, X.; Xin, K.; Fu, G. Deep learning identifies accurate burst locations in water distribution networks. Water Res. 2019, 166, 115058. [Google Scholar] [CrossRef]
- Lei, J.; Sun, M.; Liu, H. Burst Detection for District Metering Areas Based on Soft-Voting Ensemble Model in Water Distribution System. In Proceedings of the 2020 IEEE International Conference on Progress in Informatics and Computing (PIC), Shanghai, China, 18–20 December 2020. [Google Scholar]
- Wang, X.; Guo, G.; Liu, S.; Wu, Y.; Xu, X.; Smith, K. Burst detection in district metering areas using deep learning method. J. Water Resour. Plan. Manag. 2020, 146, 04020031. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, X.; Xin, K.; Boxall, J.; Yan, H.; Tao, T. Disturbance extraction for burst detection in water distribution networks using pressure measurements. Water Resour. Res. 2020, 56, e2019WR025526. [Google Scholar] [CrossRef]
- de Joode, A.S.; Hoffman, A. Pipeline leak detection and theft detection using rarefaction waves. In Proceedings of the 6th Pipeline Technology Conference, Hannover, Germany, 4–5 April 2011. [Google Scholar]
- Ren, L.; Jiang, T.; Li, D.-S.; Zhang, P.; Li, H.-N.; Song, G.-B. A method of pipeline corrosion detection based on hoop-strain monitoring technology. Struct. Control Health Monit. 2017, 24, e1931. [Google Scholar] [CrossRef]
- Mohd Yussof, N.A.; Ho, H.W. Economic Comparison of a Simulator-Based GLR Method for Pipeline Leak Detection with Other Methods; University of Oklahoma: Norman, OK, USA, 2009. [Google Scholar]
- Bremer, K.; Meinhardt-Wollweber, M.; Thiel, T.; Werner, G.; Sun, T.; Grattan, K.T.V.; Roth, B. Sewerage tunnel leakage detection using a fibre optic moisture-detecting sensor system. Sens. Actuators A Phys. 2014, 220, 62–68. [Google Scholar] [CrossRef]
- Zaman, D.; Tiwari, M.K.; Gupta, A.K.; Sen, D. Artificial intelligence for the modeling of water pipes deterioration mechanisms. Autom. Constr. 2020, 120, 103398. [Google Scholar]
- Li, S.; Song, Y.; Zhou, G. Leak detection of water distribution pipeline subject to failure of socket joint based on acoustic emission and pattern recognition. Measurement 2018, 115, 39–44. [Google Scholar] [CrossRef]
- Mashford, J.; De Silva, D.; Marney, D.; Burn, S. An approach to leak detection in pipe networks using analysis of monitored pressure values by support vector machine. In Proceedings of the 2009 Third International Conference on Network and System Security, Gold Coast, QLD, Australia, 19–21 October 2009. [Google Scholar]
- Mashford, J.; De Silva, D.; Burn, S.; Marney, D. Leak detection in simulated water pipe networks using SVM. Appl. Artif. Intell. 2012, 26, 429–444. [Google Scholar] [CrossRef]
- Mounce, S.R.; Mounce, R.; Boxall, J. Novelty detection for time series data analysis in water distribution systems using support vector machines. J. Hydroinformatics 2011, 13, 672–686. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.Y.; Zhao, M.; Qi, J.; Huang, Y.; Zhao, H. Leakage zone identification in large-scale water distribution systems using multiclass support vector machines. J. Water Resour. Plan. Manag. 2016, 142, 04016042. [Google Scholar] [CrossRef]
- Kayaalp, F.; Zengin, A.; Kara, R.; Zavrak, S. Leakage detection and localization on water transportation pipelines: A multi-label classification approach. Neural Comput. Appl. 2017, 28, 2905–2914. [Google Scholar] [CrossRef]
- Ozevin, D.; Yalcinkaya, H. Reliable monitoring of leak in gas pipelines using acoustic emission method. In Proceedings of the Civil Structural Health Monitoring Workshop (CSHM), Berlin, Germany, 6–8 November 2012. [Google Scholar]
- Kammoun, M.; Kammoun, A.; Abid, M. Leak Detection Methods in Water Distribution Networks: A Comparative Survey on Artificial Intelligence Applications. J. Pipeline Syst. Eng. Pract. 2022, 13, 04022024. [Google Scholar] [CrossRef]
- Park, S.; Lim, H.; Tamang, B.; Jin, J.; Lee, S.; Park, S.; Kim, Y. Preliminary Study on Leakage Detection of Deteriorated Underground Sewer Pipes Using Aerial Thermal Imaging. Int. J. Civ. Eng. 2020, 18, 1167–1178. [Google Scholar] [CrossRef]
- Lai, W.W.L.; Chang, R.K.W.; Sham, J.F.C.; Pang, K. Perturbation mapping of water leak in buried water pipes via laboratory validation experiments with high-frequency ground penetrating radar (GPR). Tunn. Undergr. Space Technol. 2016, 52, 157–167. [Google Scholar] [CrossRef]
- Grasmueck, M.; Weger, R.; Horstmeyer, H. Full-resolution 3D GPR imaging. Geophysics 2005, 70, K12–K19. [Google Scholar] [CrossRef]
- Chen, D.H.; Wimsatt, A. Inspection and condition assessment using ground penetrating radar. J. Geotech. Geoenvironmental Eng. 2010, 136, 207–214. [Google Scholar] [CrossRef]
- Evans, R.D.; Frost, M.; Stonecliffe-Jones, M.; Dixon, N. A review of pavement assessment using ground penetrating radar (GPR). In Proceedings of the 12th International Conference on Ground Penetrating Radar, Birmingham, UK, 16–19 June 2008. [Google Scholar]
- Daniels, D.J. Ground Penetrating Radar; IET: London, UK, 2004; Volume 1. [Google Scholar]
- Jol, H.M. Ground Penetrating Radar Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Oh, S. Laboratory Model Test for Identification of a Rear Cavity Occurrence Mechanism at Sewage Pipe in Sandy Ground. Master’s Thesis, Chonnam National University, Gwangju, Republic of Korea, 2016; pp. 16–22. [Google Scholar]
- Kim, J.; Park, S.; Kim, J.; Ahn, S.; Park, S.; Kim, Y. Accuracy evaluation and terrain model automation of reservoir using unmanned aerial vehicle system. J. Korean Soc. Agric. Eng. 2017, 59, 57–67. [Google Scholar]
- Jönsson, L. Interaction of a hydraulic transient with a leak in a pipe flow. In Proceedings of the 14th Australasian Fluid Mechanics Conference, Adelaide, Australia, 10–14 December 2001. [Google Scholar]
- Hao, T.; Rogers, C.D.F.; Metje, N.; Chapman, D.N.; Muggleton, J.M.; Foo, K.Y.; Wang, P.; Pennock, S.R.; Atkins, P.R.; Swingler, S.G.; et al. Condition assessment of the buried utility service infrastructure. Tunn. Undergr. Space Technol. 2012, 28, 331–344. [Google Scholar] [CrossRef]
- Adedeji, K.B.; Hamam, Y.; Abe, B.T.; Abu-Mahfouz, A.M. Towards achieving a reliable leakage detection and localization algorithm for application in water piping networks: An overview. J. IEEE Access 2017, 5, 20272–20285. [Google Scholar] [CrossRef]
- Nasir, A.; Hussain, S.I.; Soong, B.-H.; Qaraqe, K. Energy Efficient Cooperation in Underlay RFID Cognitive Networks for a Water Smart Home. Sensors 2014, 14, 18353–18369. [Google Scholar] [CrossRef]
- Martinsanz, G.P. Sensors for Fluid Leak Detection. Sensors 2015, 15, 3830–3833. [Google Scholar] [CrossRef]
- Geiger, I.G. Principles of leak detection. Fundamentals of leak detection. KROHNE Oil Gas 2005, 399. [Google Scholar]
- Li, X.; Jiang, H. Artificial intelligence technology and engineering applications. J. Appl. Comput. Electromagn. Soc. J. 2017, 32, 381–388. [Google Scholar]
- Sorbello, J.; Marck, R. Applications for intelligent water network systems. J. Water J. Aust. Water Assoc. 2014, 41, 75–80. [Google Scholar]
- Thompson, K.; Sorbello, J.; Dang, H.; Snadden, D. Approaches to Efficiency and Intelligent Water Networks at Yarra Valley Water; Yarra Valley Water: Mitcham, Australia, 2012. [Google Scholar]
- Fan, X.; Yu, X. An innovative machine learning based framework for water distribution network leakage detection and localization. J. Struct. Health Monit. 2022, 21, 1626–1644. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Li, Y.; Tie, Y.; Zhang, Y.; Gao, J. Water pipeline leakage detection based on machine learning and wireless sensor networks. J. Sens. 2019, 19, 5086. [Google Scholar] [CrossRef]
- Moubayed, A.; Injadat, M.; Nassif, A.B.; Lutfiyya, H.; Shami, A. E-learning: Challenges and research opportunities using machine learning & data analytics. IEEE Access 2018, 6, 39117–39138. [Google Scholar]
- Kruse, R.; Gebhardt, J.; Klowon, F. Foundations of Fuzzy Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994. [Google Scholar]
- Islam, M.S.; Sadiq, R.; Rodriguez, M.J.; Francisque, A.; Najjaran, H.; Hoorfar, M. Leakage detection and location in water distribution systems using a fuzzy-based methodology. Urban Water J. 2011, 8, 351–365. [Google Scholar] [CrossRef]
- Ye, G.; Fenner, R.A. Kalman filtering of hydraulic measurements for burst detection in water distribution systems. J. Pipeline Syst. Eng. Pract. 2011, 2, 14–22. [Google Scholar] [CrossRef]
- Kang, D.; Lansey, K. Real-time demand estimation and confidence limit analysis for water distribution systems. J. Hydraul. Eng. 2009, 135, 825–837. [Google Scholar] [CrossRef]
- Okeya, I.; Kapelan, Z.; Hutton, C.; Naga, D. Online burst detection in a water distribution system using the Kalman filter and hydraulic modelling. Procedia Eng. 2014, 89, 418–427. [Google Scholar] [CrossRef]
- Rashid, S.; Akram, U.; Khan, S. WML: Wireless sensor network based machine learning for leakage detection and size estimation. Procedia Comput. Sci. 2015, 63, 171–176. [Google Scholar] [CrossRef]
- Shukla, H.; Piratla, K. Leakage detection in water pipelines using supervised classification of acceleration signals. Autom. Constr. 2020, 117, 103256. [Google Scholar] [CrossRef]
- Cody, R.; Narasimhan, S.; Tolson, B. One-class SVM–Leak detection in water distribution systems. In Proceedings of the Computing and Control for the Water Industry, CCWI, Sheffield, UK, 5–7 September 2017. [Google Scholar]
- Chang, S.; Yang, P.P.J.; Yamagata, Y.; Tobey, M.B. Modeling and Design of Smart Buildings, in Urban Systems Design; Elsevier: Amsterdam, The Netherlands, 2020; pp. 59–86. [Google Scholar]
- Shravani, D.; Prajwal, Y.R.; Prapulla, S.B.; Salanke, N.S.; Girish, R.; Shobha, G.; Ahmad, S.F. A machine learning approach to water leak localization. In Proceedings of the 2019 4th International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), Bengaluru, India, 20–21 December 2019. [Google Scholar]
- Lučin, I.; Čarija, Z.; Družeta, S.; Lučin, B. Data-driven leak localization in urban water distribution networks using big data for random forest classifier and Pipe Segmentation. J. Math. 2021, 9, 672. [Google Scholar] [CrossRef]
- Kang, J.; Park, Y.-J.; Lee, J.; Wang, S.-H.; Eom, D.-S. Novel leakage detection by ensemble CNN-SVM and graph-based localization in water distribution systems. IEEE Trans. Ind. Electron. 2017, 65, 4279–4289. [Google Scholar] [CrossRef]
- Mounce, S.; Boxall, J.; Machell, J. Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows. J. Water Resour. Plan. Manag. 2010, 136, 309–318. [Google Scholar] [CrossRef]
- Shah, K.; Sabu, S.; Chaphekar, V. Water leakage detection using neural networks. In Proceedings of the Future Technologies Conference, Vancouver, BC, Canada, 5–6 November 2020; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Mounce, S.R.; Khan, A.; Wood, A.S.; Day, A.J.; Widdop, P.D.; Machell, J. Sensor-fusion of hydraulic data for burst detection and location in a treated water distribution system. Inf. Fusion 2003, 4, 217–229. [Google Scholar] [CrossRef]
- El-Zahab, S.; Abdelkader, E.; Zayed, T. An accelerometer-based leak detection system. Mech. Syst. Signal Process. 2018, 108, 276–291. [Google Scholar] [CrossRef]
- Nasir, M.T.; Mysorewala, M.; Cheded, L.; Siddiqui, B.; Sabih, M. Measurement error sensitivity analysis for detecting and locating leak in pipeline using ANN and SVM. In Proceedings of the 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), Barcelona, Spain, 11–14 February 2014. [Google Scholar]
- Candelieri, A.; Soldi, D.; Conti, D.; Archetti, F. Analytical leakages localization in water distribution networks through spectral clustering and support vector machines. The ice water approach. Procedia Eng. 2014, 89, 1080–1088. [Google Scholar] [CrossRef]
- Valizadeh, S.; Moshiri, B.; Salahshoor, K. Multiphase pipeline leak detection based on fuzzy classification. AIP Conf. Proc. 2009, 1159, 72–80. [Google Scholar]
- Jang, D.; Park, H.; Choi, G. Estimation of leakage ratio using principal component analysis and artificial neural network in water distribution systems. Sustainability 2018, 10, 750. [Google Scholar] [CrossRef]
- Nazif, S.; Karamouz, M.; Tabesh, M.; Moridi, A. Pressure management model for urban water distribution networks. Water Resour. Manag. 2010, 24, 437–458. [Google Scholar] [CrossRef]
- Mamo, T.G. Virtual District Metered Area Municipal Water Supply Pipeline Leak Detection and Classification Using Advance Pattern Recognizer Multi-Class Support Vector Machine for Risk-Based Asset Management; Polytechnic Institute of New York University ProQuest Dissertations Publishing: New York, NY, USA, 2014. [Google Scholar]
- Alves Coelho, J.; Glória, A.; Sebastião, P. Precise water leak detection using machine learning and real-time sensor data. J. IoT 2020, 1, 474–493. [Google Scholar] [CrossRef]
- Lin, H.; Lin, H.; Fang, X.; Wang, M.; Huang, L. Intelligent pipeline leak detection and analysis system. In Proceedings of the 2020 15th International Conference on Computer Science & Education (ICCSE), Delft, The Netherlands, 18–22 August 2020. [Google Scholar]
- Banjara, N.K.; Sasmal, S.; Voggu, S. Machine learning supported acoustic emission technique for leakage detection in pipelines. Int. J. Press. Vessel. Pip. 2020, 188, 104243. [Google Scholar] [CrossRef]
- Turkowski, M.; Bratek, A.; Słowikowski, M. Methods and systems of leak detection in long range pipelines. J. Autom. Mob. Robot. Intell. Syst. 2007, 1, 39–46. [Google Scholar]
- Lords, H.O. Water Management; House of Lords Science and Technology Committee: London, UK, 2006; Volume 1.
- Whittle, A.J.; Allen, M.; Preis, A.; Iqbal, M. Sensor Networks for Monitoring and Control of Water Distribution Systems. In Proceedings of the 6th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2013), Hongkong, 9–11 December 2013. [Google Scholar]
- Campos, J.A.; Jiménez-Bello, M.; Alzamora, F. Real-time energy optimization of irrigation scheduling by parallel multi-objective genetic algorithms. Agric. Water Manag. 2020, 227, 105857. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, K.; Sharma, A.K.; van Staden, R.; Wasantha, P.L.P.; Cotton, J.; Small, S. Application of Software and Hardware-Based Technologies in Leaks and Burst Detection in Water Pipe Networks: A Literature Review. Water 2023, 15, 2046. https://doi.org/10.3390/w15112046
Joseph K, Sharma AK, van Staden R, Wasantha PLP, Cotton J, Small S. Application of Software and Hardware-Based Technologies in Leaks and Burst Detection in Water Pipe Networks: A Literature Review. Water. 2023; 15(11):2046. https://doi.org/10.3390/w15112046
Chicago/Turabian StyleJoseph, Kiran, Ashok K. Sharma, Rudi van Staden, P.L.P. Wasantha, Jason Cotton, and Sharna Small. 2023. "Application of Software and Hardware-Based Technologies in Leaks and Burst Detection in Water Pipe Networks: A Literature Review" Water 15, no. 11: 2046. https://doi.org/10.3390/w15112046
APA StyleJoseph, K., Sharma, A. K., van Staden, R., Wasantha, P. L. P., Cotton, J., & Small, S. (2023). Application of Software and Hardware-Based Technologies in Leaks and Burst Detection in Water Pipe Networks: A Literature Review. Water, 15(11), 2046. https://doi.org/10.3390/w15112046