Integrated Soundness Assessment of Agricultural Reservoirs Based on Water Quantity and Quality
Abstract
:1. Introduction
2. Literature Review
2.1. Water Quantity and Quality Diagnosis
2.2. Indicator and Index
2.3. Index Selection Standards and Detailed Indicators
2.4. Normalization and Standardization
2.5. Factor Analysis
2.6. Reliability Analysis
3. Materials and Methods
3.1. Study Area
3.2. Research Methods
4. Results
4.1. Data Building for Assessment Indicator Selection
4.2. Indicator Normalization and Standardization
4.3. Indicator Selection
4.4. Calculations with Weights Applied
4.5. Index Calculation and Rating
5. Conclusions
- As for the water quantity data, based on the natural flows obtained from the flow data of the RIMS system and the Tank model, the formula of each indicator was applied to obtain five indicators—high flow, low flow, zero flow, variability, and seasonality. For the water quality data, the averages of quarterly water quality data were taken to use six indicators—DO, COD, SS, TN, TP, and TOC.
- The indicators were selected as final indicators by reviewing their suitability using the SPSS statistics analysis program. According to the suitability review of the standardized data, the KMO values for water quantity and water quality were 0.575 and 0.653, respectively. Bartlett’s unit matrix test results showed p < 0.05 for water quantity and quality, which were considered suitable for factor analysis. Communality also showed 0.5 or higher for both, which represents the variables well.
- The weights were calculated using both entropy and PCA. Based on the average with all weights equal, weights with less deviation from the average were selected for the application. Thus, entropy weights were applied.
- Indexes for water quantity and quality were calculated by multiplying the standardized values by the entropy weights. Comprehensive soundness indexes were calculated by adding water quantity and quality indexes. Therefore, the Jukryang reservoir showed the highest comprehensive soundness indexes, and the Songgo reservoir showed generally low indexes. Ratings based on the yearly indexes resulted in the Jukryang reservoir having the best grade and the Songgo reservoir having the poorest grade. The Jukryang and Nohong reservoirs were classified as good based on the average grade, while the Songgo and Idam reservoirs were considered poor in the average grade.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, Y. A Study on the Law of the Framework Act on Water Management. Water Future 2019, 3, 48–52. [Google Scholar]
- Deng, X.; Xu, Y.; Zhai, L.; Liu, Y.; Li, Y. Establishment and Application of the Index System for Urban River Health Assessment. Shengtai Xuebao/Acta Ecol. Sin. 2014, 34, 993–1001. [Google Scholar] [CrossRef]
- Pont, D.; Hugueny, B.; Rogers, C. Development of a Fish-Based Index for the Assessment of River Health in Europe: The European Fish Index. Fish. Manag. Ecol. 2007, 14, 427–439. [Google Scholar] [CrossRef]
- Lencha, S.M.; Tränckner, J.; Dananto, M. Assessing the Water Quality of Lake Hawassa Ethiopia—Trophic State and Suitability for Anthropogenic Uses—Applying Common Water Quality Indices. Int. J. Environ. Res. Public Health 2021, 18, 8904. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Zhao, J.; Shi, W.; Song, S.; Wang, C. Comprehensive Assessment of Water Quality and Pollution Source Apportionment in Wuliangsuhai Lake, Inner Mongolia, China. Int. J. Environ. Res. Public Health 2020, 17, 5054. [Google Scholar] [CrossRef] [PubMed]
- Joseph, N.; Preetha, P.P.; Narasimhan, B. Assessment of Environmental Flow Requirements Using a Coupled Surface Water-Groundwater Model and a Flow Health Tool: A Case Study of Son River in the Ganga Basin. Ecol. Indic. 2021, 121, 107110. [Google Scholar] [CrossRef]
- Karr, J.R.; Rossano, E.M. Applying Public Health Lessons to Protect River Health. Ecol. Civ. Eng. 2001, 4, 3–18. [Google Scholar] [CrossRef]
- K-Water. Study on the Development a System for Evaluating the Health of the Rivers Comprehensively; Korea Water Resources Association: Deajeon, Republic of Korea, 2017. [Google Scholar]
- Sugawara, M. On the Analysis of Runoff Structure about Several Japanese Rivers. Jpn. J. Geophys. 1961, 2, 4. [Google Scholar]
- Korea Rural Community Corporation. Establishment of Water Environment Assessment System Considering Water Quantity and Quality of Agricultural Reservoirs; Korea Rural Community Corporation: Naju-si, Republic of Korea, 2020. [Google Scholar]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S.; Hoffman, A.; Giovannini, E. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Statistics Working Papers; OECD: Paris, France, 2005. [Google Scholar]
- Yalcin, I.; Amemiya, Y. Nonlinear Factor Analysis as a Statistical Method. Stat. Sci. 2001, 16, 275–294. [Google Scholar] [CrossRef]
- Yilmaz, V.; Buyukyildiz, M. Factor Analysis of Surface Water Quality Parameters for the Rivers of Turkey. Fresenius Environ. Bull. 2015, 24, 113–123. [Google Scholar]
- Wagner, W.E. Using IBM SPSS Statistics for Research Methods and Social Science Statistics; SAGE Publishing: New York, NY, USA, 2015. [Google Scholar]
- Falkenmark, M. Global Water Issues Confronting Humanity. J. Peace Res. 1990, 27, 177–190. [Google Scholar] [CrossRef]
- Kim, D.Y.; Park, S.H.; Song, C.M. Evaluation of Water Social Service and Comprehensive Water Management Linked with Integrated River Evaluation. Water 2021, 13, 706. [Google Scholar] [CrossRef]
- Richman, M.B. Rotation of Principal Components. J. Climatol. 1986, 6, 293–335. [Google Scholar] [CrossRef]
- Choi, S.J.; Lee, D.R.; Baeck, S.H.; Hong, S.J.; Kang, S.K. Study on Development of River Synthesis Management Index; Korea Water Resources Association: Deajeon, Republic of Korea, 2012. [Google Scholar]
Properties | Criteria for Indicator Selection |
---|---|
Relevancy and Representativeness | Indicators that are highly relevant and can represent the subject matter to review or evaluate |
Quantification | Indicators that can be quantified by quantitative measurement |
Periodicity and Simplicity | Indicators that constantly provide data through periodic measurements and of which the data can be collected easily |
Objectivity and Reliability | Indicators that can gain reliability through objective data production and processing |
Policy Associations and Applicability | Indicators that are associated with existing policies and applicable to policies |
Others | Prediction of changes, comprehensive information provision, representativeness of the class, etc. |
Indicators | Descriptions |
---|---|
High Flow |
|
Low Flow |
|
Zero Flow |
|
Variability |
|
Seasonality |
|
Indicators | Descriptions |
---|---|
COD | Physicochemical indicator for water pollution, influencing factor of organic pollution |
TN | Factor of nutrient substance pollution and eutrophication |
TP | Factor of nutrient substance pollution and eutrophication |
DO | Dissolved oxygen in the water, indicator for pollution level |
SS | Particulate solids in the water, indicator for pollution level |
TOC | Total dissolved organic carbon in the water, indicator to verify uncertain factors underlying COD and BOD tests |
Reservoirs | Waterfront Area (ha) | Benefited Area (ha) | Total Impoundment (1000 m3) | Effective Storage (1000 m3) |
---|---|---|---|---|
Songgo | 500.0 | 62.5 | 144.6 | 143.6 |
Idam | 535.0 | 118.0 | 649.0 | 644.0 |
Nohong | 502.0 | 73.0 | 1153.3 | 1153.3 |
Jukryang | 450.0 | 133.1 | 1264.7 | 1237.0 |
Year | Reservoir | High Flow | Low Flow | Zero Flow | Variability | Seasonality |
---|---|---|---|---|---|---|
2014 | Songgo | 0.9727 | 0.3415 | 0.7541 | 0.6815 | 0.5850 |
Idam | 0.9617 | 0.9044 | 0.9617 | 0.8513 | 0.6650 | |
Nohong | 0.7322 | 0.4153 | 0.4044 | 0.0422 | 0.3750 | |
Jukryang | 0.9481 | 0.4426 | 1.0000 | 0.3409 | 0.3750 | |
2015 | Songgo | 0.9481 | 0.7760 | 1.0000 | 0.6464 | 0.3750 |
Idam | 0.9563 | 0.9727 | 1.0000 | 0.7049 | 0.5400 | |
Nohong | 0.9836 | 0.4536 | 0.4536 | 0.0199 | 0.3750 | |
Jukryang | 0.7787 | 0.8634 | 1.0000 | 0.2991 | 0.3750 | |
2016 | Songgo | 0.8415 | 0.8716 | 1.0000 | 0.7091 | 0.4150 |
Idam | 0.9727 | 0.8880 | 1.0000 | 0.5342 | 0.5400 | |
Nohong | 0.7896 | 0.7541 | 0.7541 | 0.0660 | 0.3300 | |
Jukryang | 0.7432 | 0.9973 | 0.9945 | 0.7998 | 0.2500 | |
2017 | Songgo | 0.8934 | 0.8115 | 0.9891 | 0.6707 | 0.6650 |
Idam | 0.9098 | 0.7978 | 0.8634 | 0.4527 | 0.5400 | |
Nohong | 0.9699 | 0.5710 | 0.1038 | 0.1869 | 0.2900 | |
Jukryang | 0.8634 | 0.8743 | 0.9781 | 0.6910 | 0.6250 | |
2018 | Songgo | 0.8880 | 0.8388 | 1.0000 | 0.6600 | 0.4200 |
Idam | 0.9290 | 0.8825 | 1.0000 | 0.7662 | 0.4200 | |
Nohong | 0.7486 | 0.8743 | 0.5410 | 0.1117 | 0.4200 | |
Jukryang | 0.9727 | 0.6585 | 0.9836 | 0.6507 | 0.4550 | |
2019 | Songgo | 0.8661 | 0.6475 | 0.9727 | 0.9399 | 0.4150 |
Idam | 0.9590 | 0.8470 | 1.0000 | 0.4953 | 0.5850 | |
Nohong | 0.7923 | 0.5929 | 0.1366 | 0.1762 | 0.4550 | |
Jukryang | 0.9071 | 0.6749 | 0.9945 | 0.4092 | 0.4550 |
Year | Reservoir | DO | COD | SS | TN | TP | TOC |
---|---|---|---|---|---|---|---|
2014 | Songgo | 11.6750 | 8.4500 | 6.4250 | 3.7880 | 0.3740 | 4.7750 |
Idam | 6.3000 | 13.0750 | 22.4750 | 1.8620 | 0.1610 | 7.4000 | |
Nohong | 10.0250 | 6.2000 | 4.8250 | 1.2810 | 0.0240 | 3.8250 | |
Jukryang | 10.1500 | 3.1500 | 2.9250 | 1.1770 | 0.0150 | 1.8250 | |
2015 | Songgo | 11.4000 | 11.1500 | 9.4250 | 3.7580 | 0.4050 | 6.0500 |
Idam | 9.1250 | 12.7250 | 14.2000 | 2.0010 | 0.1020 | 6.6250 | |
Nohong | 5.5000 | 6.9500 | 3.9500 | 0.6430 | 0.0200 | 3.9500 | |
Jukryang | 10.9750 | 3.0500 | 2.4000 | 1.1390 | 0.0140 | 1.5000 | |
2016 | Songgo | 6.3750 | 10.5000 | 8.9250 | 3.3040 | 0.3250 | 5.7000 |
Idam | 8.2250 | 12.5000 | 27.7750 | 1.8690 | 0.0920 | 5.9250 | |
Nohong | 6.4000 | 6.6000 | 3.8250 | 1.1300 | 0.0210 | 4.1500 | |
Jukryang | 11.4250 | 2.9000 | 2.2750 | 1.1880 | 0.0120 | 1.3000 | |
2017 | Songgo | 10.5750 | 14.2500 | 18.3250 | 4.0260 | 0.2900 | 7.5750 |
Idam | 12.0000 | 12.3000 | 17.8500 | 2.1460 | 0.0870 | 5.6000 | |
Nohong | 8.2250 | 6.7500 | 5.4750 | 0.7960 | 0.0310 | 3.9500 | |
Jukryang | 6.2000 | 3.4000 | 6.2250 | 1.1370 | 0.0210 | 1.5500 | |
2018 | Songgo | 12.2250 | 10.9000 | 9.4750 | 3.7280 | 0.2080 | 5.7000 |
Idam | 9.0250 | 10.2000 | 10.7250 | 2.8740 | 0.0910 | 5.0500 | |
Nohong | 6.8000 | 6.6000 | 3.8500 | 1.4560 | 0.0250 | 4.5250 | |
Jukryang | 6.9250 | 3.2500 | 1.9250 | 1.3490 | 0.0100 | 1.7250 | |
2019 | Songgo | 9.7750 | 8.6000 | 9.5750 | 4.0370 | 0.2860 | 4.9500 |
Idam | 9.8310 | 12.9000 | 13.1310 | 2.4760 | 0.0890 | 5.8880 | |
Nohong | 6.2000 | 7.3330 | 3.6330 | 1.6210 | 0.0210 | 4.6330 | |
Jukryang | 7.1330 | 2.7330 | 1.9330 | 1.1560 | 0.0100 | 1.5330 |
Indicators | High Flow | Low Flow | Zero Flow | Variability | Seasonality |
---|---|---|---|---|---|
Before Conversion | −0.667 | −0.769 | −1.651 | −0.399 | 0.353 |
After Conversion | −0.667 | −0.769 | 0.686 | −0.399 | 0.353 |
Indicators | DO | COD | SS | TN | TP | TOC |
---|---|---|---|---|---|---|
Before Conversion | 0.011 | −0.059 | 1.274 | 0.676 | 1.173 | −0.332 |
After Conversion | 0.011 | −0.059 | 0.087 | 0.676 | 0.214 | −0.332 |
Year | Reservoir | High Flow | Low Flow | Zero Flow | Variability | Seasonality |
---|---|---|---|---|---|---|
2014 | Songgo | 0.9563 | 0.0001 | 0.2805 | 0.2815 | 0.1928 |
Idam | 0.9127 | 0.8580 | 0.6519 | 0.0967 | 0.0001 | |
Nohong | 0.0001 | 0.1115 | 0.0892 | 0.9761 | 0.6988 | |
Jukryang | 0.8571 | 0.1542 | 1.0000 | 0.6511 | 0.6988 | |
2015 | Songgo | 0.8571 | 0.6626 | 1.0000 | 0.3196 | 0.6988 |
Idam | 0.8889 | 0.9634 | 1.0000 | 0.2554 | 0.3012 | |
Nohong | 1.0000 | 0.1710 | 0.1083 | 1.0000 | 0.6988 | |
Jukryang | 0.1865 | 0.7954 | 1.0000 | 0.6967 | 0.6988 | |
2016 | Songgo | 0.4365 | 0.8092 | 1.0000 | 0.2511 | 0.6024 |
Idam | 0.9563 | 0.8336 | 1.0000 | 0.4413 | 0.3012 | |
Nohong | 0.2302 | 0.6290 | 0.2805 | 0.9500 | 0.8072 | |
Jukryang | 0.0437 | 1.0000 | 0.9100 | 0.1522 | 1.0000 | |
2017 | Songgo | 0.6389 | 0.7160 | 0.8354 | 0.2924 | 0.0001 |
Idam | 0.7063 | 0.6962 | 0.4036 | 0.5293 | 0.3012 | |
Nohong | 0.9444 | 0.3496 | 0.0001 | 0.8185 | 0.9036 | |
Jukryang | 0.5198 | 0.8122 | 0.7419 | 0.2707 | 0.0964 | |
2018 | Songgo | 0.6190 | 0.7588 | 1.0000 | 0.3043 | 0.5904 |
Idam | 0.7817 | 0.8260 | 1.0000 | 0.1891 | 0.5904 | |
Nohong | 0.0675 | 0.8122 | 0.1461 | 0.9000 | 0.5904 | |
Jukryang | 0.9563 | 0.4824 | 0.7880 | 0.3141 | 0.5060 | |
2019 | Songgo | 0.5317 | 0.4672 | 0.7097 | 0.0001 | 0.6024 |
Idam | 0.9008 | 0.7710 | 1.0000 | 0.4837 | 0.1928 | |
Nohong | 0.2381 | 0.3832 | 0.0082 | 0.8304 | 0.5060 | |
Jukryang | 0.6944 | 0.5084 | 0.9100 | 0.5772 | 0.5060 |
Year | Reservoir | DO | COD | SS | TN | TP | TOC |
---|---|---|---|---|---|---|---|
2014 | Songgo | 0.9182 | 0.5036 | 0.5485 | 0.0734 | 0.0215 | 0.4462 |
Idam | 0.1190 | 0.1020 | 0.0793 | 0.6408 | 0.2492 | 0.0279 | |
Nohong | 0.6729 | 0.6990 | 0.6557 | 0.8120 | 0.7635 | 0.5976 | |
Jukryang | 0.6914 | 0.9638 | 0.8433 | 0.8427 | 0.8905 | 0.9163 | |
2015 | Songgo | 0.8773 | 0.2692 | 0.4049 | 0.0822 | 0.0001 | 0.2430 |
Idam | 0.5390 | 0.1324 | 0.2513 | 0.5999 | 0.3725 | 0.1514 | |
Nohong | 0.0001 | 0.6338 | 0.7307 | 1.0000 | 0.8127 | 0.5777 | |
Jukryang | 0.8141 | 0.9725 | 0.9174 | 0.8539 | 0.9091 | 0.9681 | |
2016 | Songgo | 0.1301 | 0.3256 | 0.4253 | 0.2160 | 0.0595 | 0.2988 |
Idam | 0.4052 | 0.1519 | 0.0001 | 0.6388 | 0.4004 | 0.2629 | |
Nohong | 0.1338 | 0.6642 | 0.7428 | 0.8565 | 0.7995 | 0.5458 | |
Jukryang | 0.8810 | 0.9855 | 0.9374 | 0.8394 | 0.9507 | 1.0000 | |
2017 | Songgo | 0.7546 | 0.0001 | 0.1558 | 0.0032 | 0.0902 | 0.0001 |
Idam | 0.9665 | 0.1693 | 0.1656 | 0.5572 | 0.4155 | 0.3147 | |
Nohong | 0.4052 | 0.6512 | 0.6084 | 0.9549 | 0.6943 | 0.5777 | |
Jukryang | 0.1041 | 0.9421 | 0.5603 | 0.8544 | 0.7995 | 0.9602 | |
2018 | Songgo | 1.0000 | 0.2909 | 0.4029 | 0.0910 | 0.1800 | 0.2988 |
Idam | 0.5242 | 0.3517 | 0.3565 | 0.3427 | 0.4034 | 0.4024 | |
Nohong | 0.1933 | 0.6642 | 0.7403 | 0.7605 | 0.7524 | 0.4861 | |
Jukryang | 0.2119 | 0.9551 | 1.0000 | 0.7920 | 1.0000 | 0.9323 | |
2019 | Songgo | 0.6357 | 0.4906 | 0.3990 | 0.0001 | 0.0940 | 0.4183 |
Idam | 0.6440 | 0.1172 | 0.2807 | 0.4599 | 0.4094 | 0.2688 | |
Nohong | 0.1041 | 0.6006 | 0.7621 | 0.7118 | 0.7995 | 0.4688 | |
Jukryang | 0.2428 | 1.0000 | 0.9984 | 0.8489 | 1.0000 | 0.9629 |
Water Quantity | KMO Measurement | 0.575 | |
Bartlett’s Unit Matrix Test | Approximate Chi-Square | 32.549 | |
p (Significance Probability) | 0.000 | ||
Water Quality | KMO Measurement | 0.653 | |
Bartlett’s Unit Matrix Test | Approximate Chi-Square | 179.787 | |
p (Significance Probability) | 0.000 |
Indicator | High Flow | Low Flow | Zero Flow | Variability | Seasonality |
---|---|---|---|---|---|
Extracted Value | 0.790 | 0.791 | 0.752 | 0.759 | 0.576 |
Indicator | DO | COD | SS | TN | TP | TOC |
---|---|---|---|---|---|---|
Extracted Value | 0.879 | 0.953 | 0.873 | 0.824 | 0.913 | 0.947 |
Component | Initial Eigenvalue | Sum of Squares for Extraction | Sum of Squares for Rotation | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | Variance (%) | Accumulate Sum (%) | Total | Variance (%) | Accumulate Sum (%) | Total | Variance (%) | Accumulate Sum (%) | |
1 | 2.37 | 47.45 | 47.45 | 2.37 | 47.45 | 47.45 | 2.09 | 41.69 | 41.69 |
2 | 1.30 | 25.91 | 73.36 | 1.30 | 25.91 | 73.36 | 1.58 | 31.67 | 73.36 |
3 | 0.71 | 14.09 | 87.46 | ||||||
4 | 0.38 | 7.54 | 94.99 | ||||||
5 | 0.25 | 5.01 | 100.00 |
Component | Initial Eigenvalue | Sum of Squares for Extraction | Sum of Squares for Rotation | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | Variance (%) | Accumulate Sum (%) | Total | Variance (%) | Accumulate Sum (%) | Total | Variance (%) | Accumulate Sum (%) | |
1 | 4.28 | 71.33 | 71.33 | 4.28 | 71.33 | 71.33 | 3.81 | 63.49 | 63.49 |
2 | 1.11 | 18.48 | 89.80 | 1.11 | 18.48 | 89.80 | 1.58 | 26.31 | 89.80 |
3 | 0.43 | 7.16 | 96.96 | ||||||
4 | 0.13 | 2.12 | 99.08 | ||||||
5 | 0.04 | 0.73 | 99.80 | ||||||
6 | 0.01 | 0.20 | 100.00 |
Indicator | High Flow | Low Flow | Zero Flow | Variability | Seasonality |
---|---|---|---|---|---|
Component 1 | −0.049 | 0.872 | 0.841 | 0.751 | 0.224 |
Component 2 | −0.887 | 0.174 | −0.212 | 0.442 | 0.752 |
Indicator | DO | COD | SS | TN | TP | TOC |
---|---|---|---|---|---|---|
Component 1 | −0.012 | 0.966 | 0.927 | 0.619 | 0.833 | 0.970 |
Component 2 | −0.938 | 0.141 | 0.113 | 0.664 | 0.469 | 0.076 |
Characteristics | Weight | Indicator | Entropy Weight | Indicator Ratings |
---|---|---|---|---|
Water Quantity | 0.5 | High Flow | 0.0985 | 4 |
Low Flow | 0.0744 | 10 | ||
Zero Flow | 0.1171 | 1 | ||
Variability | 0.1101 | 2 | ||
Seasonality | 0.1000 | 3 | ||
Water Quality | 0.5 | DO | 0.0916 | 6 |
COD | 0.0843 | 8 | ||
SS | 0.0668 | 11 | ||
TN | 0.0844 | 7 | ||
TP | 0.0961 | 5 | ||
TOC | 0.0770 | 9 |
Year | Reservoir | Water Quantity | Water Quality | Total |
---|---|---|---|---|
2014 | Songgo | 0.17727 | 0.23337 | 0.41064 |
Idam | 0.24067 | 0.07897 | 0.31965 | |
Nohong | 0.19607 | 0.34307 | 0.53914 | |
Jukryang | 0.35448 | 0.43007 | 0.78455 | |
2015 | Songgo | 0.35582 | 0.17227 | 0.52808 |
Idam | 0.33450 | 0.15577 | 0.49027 | |
Nohong | 0.30381 | 0.29153 | 0.59534 | |
Jukryang | 0.34117 | 0.45601 | 0.79718 | |
2016 | Songgo | 0.30813 | 0.12655 | 0.43468 |
Idam | 0.35194 | 0.13743 | 0.48938 | |
Nohong | 0.28759 | 0.29719 | 0.58478 | |
Jukryang | 0.30199 | 0.47082 | 0.77281 | |
2017 | Songgo | 0.24617 | 0.09074 | 0.33692 |
Idam | 0.25697 | 0.20855 | 0.46553 | |
Nohong | 0.29946 | 0.30893 | 0.60839 | |
Jukryang | 0.23790 | 0.34617 | 0.58406 | |
2018 | Songgo | 0.32700 | 0.20465 | 0.53166 |
Idam | 0.33535 | 0.20064 | 0.53598 | |
Nohong | 0.24228 | 0.28866 | 0.53094 | |
Jukryang | 0.30747 | 0.40623 | 0.71370 | |
2019 | Songgo | 0.23045 | 0.19151 | 0.42196 |
Idam | 0.33565 | 0.17448 | 0.51013 | |
Nohong | 0.19492 | 0.27559 | 0.47050 | |
Jukryang | 0.32686 | 0.41904 | 0.74590 |
Rating Section (%) | Grade |
---|---|
84.0–100.0 | 1 |
67.5–84.0 | 2 |
32.5–67.5 | 3 |
16.0–32.5 | 4 |
0.0–16.0 | 5 |
Year | Reservoir | Water Quantity | Water Quality | Comprehensive Ratings |
---|---|---|---|---|
2014 | Songgo | 5 | 3 | 5 |
Idam | 4 | 5 | 5 | |
Nohong | 5 | 2 | 3 | |
Jukryang | 1 | 1 | 1 | |
2015 | Songgo | 1 | 4 | 3 |
Idam | 2 | 4 | 3 | |
Nohong | 3 | 3 | 2 | |
Jukryang | 2 | 1 | 1 | |
2016 | Songgo | 3 | 5 | 4 |
Idam | 1 | 5 | 4 | |
Nohong | 3 | 3 | 3 | |
Jukryang | 3 | 1 | 1 | |
2017 | Songgo | 4 | 5 | 5 |
Idam | 3 | 3 | 4 | |
Nohong | 3 | 3 | 2 | |
Jukryang | 4 | 2 | 3 | |
2018 | Songgo | 3 | 3 | 3 |
Idam | 2 | 3 | 3 | |
Nohong | 4 | 3 | 3 | |
Jukryang | 3 | 2 | 2 | |
2019 | Songgo | 5 | 4 | 5 |
Idam | 2 | 4 | 3 | |
Nohong | 5 | 3 | 4 | |
Jukryang | 3 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kim, D.; Maeng, S.; Hong, E.; Park, H. Integrated Soundness Assessment of Agricultural Reservoirs Based on Water Quantity and Quality. Water 2023, 15, 2131. https://doi.org/10.3390/w15112131
Lee S, Kim D, Maeng S, Hong E, Park H. Integrated Soundness Assessment of Agricultural Reservoirs Based on Water Quantity and Quality. Water. 2023; 15(11):2131. https://doi.org/10.3390/w15112131
Chicago/Turabian StyleLee, Seungwook, Daye Kim, Seungjin Maeng, Eunbi Hong, and Hyungkeun Park. 2023. "Integrated Soundness Assessment of Agricultural Reservoirs Based on Water Quantity and Quality" Water 15, no. 11: 2131. https://doi.org/10.3390/w15112131
APA StyleLee, S., Kim, D., Maeng, S., Hong, E., & Park, H. (2023). Integrated Soundness Assessment of Agricultural Reservoirs Based on Water Quantity and Quality. Water, 15(11), 2131. https://doi.org/10.3390/w15112131