Biomanipulation of Periphytic Algae in the Middle Route of South–North Water Diversion Project Canal: An In Situ Study in the Lushan Section
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Materials
2.3. Experimental Design
2.4. Sample Collection and Analysis
2.5. Data Analysis
3. Results
3.1. Density Changes of Periphytic Algae
3.2. Analysis of Fish Feeding Habits
3.3. Changes in Body Weight of Experimental Fishes
4. Discussion
4.1. Prevention and Control of Periphytic Algae
4.2. Trophic Plasticity of Fish
5. Conclusions
- (1)
- The results of the in situ experiment showed that fish feeding significantly reduced the density of periphytic algae at the bottom of the cage compared to before the experiment. Groups 2 and 4 had the best control effects in terms of periphytic algae.
- (2)
- The feeding effect of M. amblycephala was the strongest, and the food-filling degree was between 4 and 5 levels. The intestinal content was mainly composed of periphytic algae, while the food-filling degree of X. davidi was 0. At the end of the experiment, the weight of each M. amblycephala increased significantly, while the weight of X. davidi showed a downward trend.
- (3)
- M. amblycephala can best adapt to the water environment of the Middle Route canal, and its feeding habits are highly adaptable. In a restrictive environment, it can also make good use of algae for food and has a good regulatory effect on periphytic algae. In the subsequent practice of biomanipulation of the Middle Route canal, M. amblycephala should be considered the preferred fish.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, L.C.; Zhang, L.P.; Xia, J.; Gippel, C.J.; Wang, R.C.; Zeng, S.D. Implications of modelled climate and land cover changes on runoff in the Middle Route of the South to North Water Transfer Project in China. Water Resour. Manag. 2015, 29, 2563–2579. [Google Scholar] [CrossRef]
- Nong, X.Z.; Shao, D.G.; Shang, Y.M.; Liang, J.K. Analysis of spatio-temporal variation in phytoplankton and its relationship with water quality parameters in the South-to-North Water Diversion Project of China. Environ. Monit. Assess. 2021, 193, 593. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.F.; Xiao, X.Z.; Wang, Y.C.; Hu, S.; Wang, Y. Ecosystem structure and function of the main channel of the middle route of south-north water diversion project. China Environ. Sci. 2020, 40, 5391–5401. [Google Scholar]
- Wang, Q.X.; Chen, Z.H.; Wang, L.L.; Kong, J.; Han, Z.G. Research on channel sewage characteristic and quantity of Middle Route of South-North Water Diversion Project. Yangtze River 2020, 51, 18–22+57. [Google Scholar]
- You, W.H. The species composition and quantitative features of the periphytic algae communities in Dianshan Lake. Environ. Sci. 1999, 5, 59–62. [Google Scholar]
- Huang, S.; Nong, X.Z.; Liang, J.K.; Shao, D.G.; Zhong, H. Environmental problems and risk analysis for operation of Middle Route Project of South to North Water Diversion. Yangtze River 2019, 50, 50–55. [Google Scholar]
- Guo, Y.M.; Gao, Y.X.; Zhang, Y.M.; Sun, L.W.; He, D.; Wu, D. Effect of Xenocypris microlepis on feces and microcystis activity from microcystis-dietary silver carp and bighead carp. China Environ. Sci. 2016, 36, 3784–3792. [Google Scholar]
- Cao, W.X. A biological study of Megalobrama amblycephala and M. terminalis of Liangtse Lake. Acta Hydrobiol. Sin. 1960, 1, 57–82. [Google Scholar]
- Jeppesen, E.; Søndergaard, M.; Mortensen, E.; Kristensen, P.; Riemann, B.; Jensen, H.J.; Müller, J.P.; Sortkjaer, O.; Jensen, J.P.; Christoffersen, K.; et al. Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes 1, cross-analysis of three Danish case-studies. Hydrobiologia 1990, 200, 205–218. [Google Scholar] [CrossRef]
- Søndergaard, M.; Liboriussen, L.; Pedersen, A.R. Lake restoration and lake productivity fish predation and herbivory can regulate lake ecosystems. BioScience 2008, 35, 634–639. [Google Scholar]
- Xie, P. Experimental studies on the role of planktivorous fishes in the elimination of Microcystis bloom from Donghu Lake using enclosure method. Chin. J. Oceanol. Limnol. 1996, 14, 193–204. [Google Scholar]
- Liu, J.K.; Xie, P. Direct control of microcystis bloom through the use of planktivorous carp-closure experiments and lake fishery practice. Ecol. Sci. 2003, 22, 193–198. [Google Scholar]
- Liu, Z.W.; Hu, J.R.; Zhong, P.; Zhang, X.F.; Ning, J.J.; Larsen, S.E.; Chen, D.Y.; Gao, Y.M.; He, H.; Jeppesen, E. Successful restoration of a tropical shallow eutrophic lake, Strong bottom-up but weak top-down effects recorded. Water Res. 2018, 146, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.J.; Zhang, J.W.; Zhang, Z.; Han, S.P.; Liu, Q.G. Effect of silver carp (Hypophthalmichthys molitrix) stocking density on phytoplankton community structure in ponds along Qiandao Lake. J. Hydroecol. 2021, 42, 57–63. [Google Scholar]
- Yang, J.J.; Guo, L.G.; Yin, C.J.; Chen, X.X.; Ni, L.Y. Preliminary evaluation of ecological effects of silver and bighead carps to control cyanobacterial blooms in the early eutrophication lakes. J. Lake Sci. 2019, 31, 386–396. [Google Scholar]
- Cai, X.W.; Li, W.; Fan, H.R.; Fang, T.; Li, W.; Chang, F.Y.; Liu, J.S.; Liao, C.S. Roles of fish assemblage regulation on ecological restoration in a shallow lake: A case study from the Kuilei Lake, China. J. Fish. Sci. China 2021, 28, 737–742. [Google Scholar]
- GU, J.; HAN, Y.Q.; HE, H.; DAI Yan-yan, Z.P.F.; LI, K.Y. Effects of freshwater bivalve Corbicula fluminea on the growth of submerged macrophytes Vallisneria natans. Chin. J. Ecol. 2021, 40, 1512–1520. [Google Scholar]
- Silva, C.; Yáñez, E.; Martin-Dĭaz, M.L.; Delvalls, T.A. Assessing a bioremediation strategy in a shallow coastal system affected by a fish farm culture-application of GIS and shellfish dynamic models in the Rion San Pedro, SW Spain. Mar. Pollut. Bull. 2012, 64, 751–765. [Google Scholar] [CrossRef]
- Wu, Y.H. Periphyton: Functions and Application in Environmental Remediation; Elsevier: Amsterdam, The Netherlands, 2017; p. 434. [Google Scholar]
- Qian, K.M.; Liu, X.; Chen, Y.W. Spatial distribution characteristics of periphytic algae community of Lake Poyang in the high water level phase. J. Lake Sci. 2021, 33, 102–110. [Google Scholar]
- Zhu, Y.X.; Mi, W.J.; Li, B.; Liang, J.K.; Song, G.F.; Bi, Y.H. The Influences of two hydraulic structures on periphytic algal communities in the middle channel of the South-to-North Water Diversion Project. Acta Hydrobiol. Sin. 2021, 45, 817–825. [Google Scholar]
- Hu, H.J.; Wei, Y.X. The Freshwater Algae of China-Systematics, Taxonomy and Ecology; Science Press: Beijing, China, 1999. [Google Scholar]
- Yin, M.C. Fish Ecology; China Agriculture Press: Beijing, China, 1993. [Google Scholar]
- Shi, X.L.; Yang, J.S.; Chen, K.N.; Zhang, M.; Yang, Z.; Yu, Y. Review on the control and mitigation strategies of lake cyanobacterial blooms. J. Lake Sci. 2022, 34, 349–375. [Google Scholar]
- Liu, E.S. Analysis on biomanipulation, non-traditional biomanipulation and discussion of the countermeasures of biomanipulation application in waters. J. Lake Sci. 2010, 22, 307–314. [Google Scholar]
- Ma, M.Y.; Cui, L.J.; Zhang, M.Y.; Wang, X.M.; Yu, Y.L. Primary production of periphyton and their relationship to water quality in Baiyangdian Lake, China. Acta Ecol. Sin. 2018, 38, 443–456. [Google Scholar]
- Feng, T.Y.; Song, C.; Chen, J.Z. Environmental indication function of aquatic algae. Chin. Agric. Sci. Bull. 2011, 27, 257–265. [Google Scholar]
- Liu, S.S.; Yan, T. Present situation and development prospects of prevention of marine biofouling. J. Mar. Sci. 2006, 24, 53–60. [Google Scholar]
- Liu, X.; Chen, Y.W. A review on the ecology of Cladophora. J. Lake Sci. 2018, 30, 881–896. [Google Scholar]
- Zhao, Z.Y. On Algae Elimination in Chinese wat er Areas. Environ. Prot. 2000, 28, 29–30. [Google Scholar]
- Evans, S.M. TBT or not TBT: That is the question. Biofouling 1999, 14, 17–129. [Google Scholar] [CrossRef]
- Chen, J.G. Construction proposal of anti-fouling coatings in nuclear power plants. Overall Corros. Control 2016, 30, 83–86. [Google Scholar]
- Jia, Y.M. The Application Study of Fish Biomanipulation in Improving Aquatic Environment of Suzhou. Master’s Dissertation, Hohai University, Nanjing, China, 2006. [Google Scholar]
- Ma, Y.M. Study on the Effect of Plant-Benthic Fauna-Fish Functional Group on Self-Purification in Micropolluted Water. Master’s Dissertation, Zhengzhou University, Zhengzhou, China, 2021. [Google Scholar]
- Lv, X.N.; Jiang, Z.J.; Fang, J.G.; Zou, J.; Fang, J.H.; Gao, Z.K.; Jiang, W.W.; Guo, X.L. Biological Control of Macroalgae Fouled on the Net of Marine Cage Using Siganus oramin in Northern China. Prog. Fish. Sci. 2017, 38, 50–56. [Google Scholar]
- Mei, X.Y.; Vladimir, R.; Lars, G.R.; Erik, J.; Tang, Y.L.; Zhang, X.F.; Liu, Z.W. Effects of omnivorous fish on benthic-pelagic habitats coupling in shallow aquatic ecosystems: A minireview. J. Lake Sci. 2021, 33, 667–674. [Google Scholar]
- Zhang, X.F.; Mei, X.Y.; Gulati, R.D. Effects of omnivorous tilapia on water turbidity and primary production dynamics in shallow lakes: Implications for ecosystem management. Rev. Fish Biol. Fish. 2017, 27, 245–254. [Google Scholar] [CrossRef]
- Garcia-Berthou, E. Size- and depth-dependent variation in habitat and diet of the common carp (Cyprinus carpio). Aquat. Sci. 2001, 63, 466–476. [Google Scholar] [CrossRef]
- Panek, F.M. Biology and ecology of carp. In Carp in North America; Cooper, E.L., Ed.; American Fisheries Society: Bethesda, MD, USA, 1987; pp. 1–15. [Google Scholar]
- Caffrey, J.M.; Monahan, C. Filamentous algal control using barley straw. Hydrobiologia 1999, 415, 315–318. [Google Scholar] [CrossRef]
- Martins, I.; Oliveira, J.M.; Flindt, M.R.; Marques, J.C. The effect of salinity on the growth rate of the macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego estuary (west Portugal). Acta Oecologica 1999, 20, 259–265. [Google Scholar] [CrossRef]
- Patrick, R.; Rhyne, C.F.; Richardson, R.W. The Potential for Biological Controls of Cladophora glomerata; United States Environmental Protection Agency: Washington, DC, USA, 1983; p. 153.
- Bott, T.L.; Rogenmuser, K. Fungal pathogen of Cladophora glomerata (Chlorophyta). Appl. Environ. Microbiol. 1980, 40, 977–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, C.X. Ichthyology; China Agriculture Press: Beijing, China, 2010. [Google Scholar]
- Liu, J.K. Advanced Aquatic Biology; Science Press: Beijing, China, 1999. [Google Scholar]
- Timmerman, C.A.; Giraldo, C.; Cresson, P.; Ernande, B.; Travers-Trolet, M.; Rouquette, M.; Denamiel, M.; Lefebvre, S. Plasticity of trophic interactions in fish assemblages results in temporal stability of benthic-pelagic couplings. Mar. Environ. Res. 2021, 170, 1–13. [Google Scholar] [CrossRef]
- Kopp, D.; Lefebvre, S.; Cachera, M.; Villanueva, M.C.; Ernande, B. Reorganization of a marine trophic network along an inshore–offshore gradient due to stronger pelagic–benthic coupling in coastal areas. Prog. Oceanogr. 2015, 130, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.W.; Wu, Z.X.; Luo, X.C. Studies on biological characteristics of Xenocypris davidi Bleeker in Xin’anjiang Reservoir. J. Zhejiang Coll. Fish. 1996, 15, 184–196. [Google Scholar]
- Ye, F.L. Biology and fishery utilization of Xenocypris davidi in Dongjiang river. Freshw. Fish. 1987, 4, 9–11. [Google Scholar]
- Frank, F.; Xu, Y.; Xia, W. Protective effects of garlic (Allium sativum) and ginger (Zingiber officinale) on physicochemical and microbial attributes of liquid smoked silver carp (Hypophthalmichthys molitrix) wrapped in aluminium foil during chilled storage. Afr. J. Food Sci. 2014, 8, 1–8. [Google Scholar]
- Zhang, Y.M.; Zhou, C.; Gao, Y.X.; Wang, L.M.; Yang, F.; Liu, H.Q.; Wu, H. Purification effect on eutrophic water body with combination of Xenocyprinae and Hyriopsis cumingii under different hydrodynamic conditions. Chin. J. Environ. Eng. 2015, 9, 1109–1116. [Google Scholar]
Date | Group 1 | Group 2 | Group 3 | Group 4 | Control Group |
---|---|---|---|---|---|
104 cells·cm−2 | |||||
15 December 2019 | 534.24 ± 12.43 | 486.62 ± 31.29 | 677.41 ± 26.70 | 713.08 ± 22.10 | 561.12 ± 30.69 |
27 December 2019 | 231.71 ± 30.75 | 237.17 ± 15.97 | 288.18 ± 43.61 | 255.28 ± 22.62 | 572.41 ± 25.49 |
4 January 2020 | 222.15 ± 11.00 | 224.93 ± 12.84 | 253.29 ± 19.92 | 261.85 ± 27.23 | 543.68 ± 20.57 |
15 January 2020 | 227.03 ± 8.57 | 213.45 ± 30.27 | 262.18 ± 11.27 | 213.86 ± 13.99 | 543.38 ± 28.27 |
21 January 2020 | 237.25 ± 18.46 | 223.59 ± 11.77 | 224.09 ± 35.56 | 186.61 ± 15.77 | 554.18 ± 38.45 |
30 April 2020 | 238.09 ± 10.68 | 137.42 ± 10.96 | 206.86 ± 8.81 | 154.23 ± 6.23 | 624.80 ± 18.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Sun, H.; Ren, H.; Xing, M.; Huang, J.; Wang, Y.; Hu, S.; Zhang, J.; Tang, J. Biomanipulation of Periphytic Algae in the Middle Route of South–North Water Diversion Project Canal: An In Situ Study in the Lushan Section. Water 2023, 15, 2144. https://doi.org/10.3390/w15122144
Xiao X, Sun H, Ren H, Xing M, Huang J, Wang Y, Hu S, Zhang J, Tang J. Biomanipulation of Periphytic Algae in the Middle Route of South–North Water Diversion Project Canal: An In Situ Study in the Lushan Section. Water. 2023; 15(12):2144. https://doi.org/10.3390/w15122144
Chicago/Turabian StyleXiao, Xinzong, Heying Sun, Haiping Ren, Mingxing Xing, Jie Huang, Yingcai Wang, Sheng Hu, Jing Zhang, and Jianfeng Tang. 2023. "Biomanipulation of Periphytic Algae in the Middle Route of South–North Water Diversion Project Canal: An In Situ Study in the Lushan Section" Water 15, no. 12: 2144. https://doi.org/10.3390/w15122144