Impact of Future Climate and Land Use Changes on Runoff in a Typical Karst Basin, Southwest China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methodology
3.1. Mann-Kendall Trend Test
3.2. Downscaling of Global Climate Model
3.3. Land Use Change Prediction Model
3.4. Hydrological Model
4. Results
4.1. Prediction of Climate Factors
4.1.1. Historical Trend Analysis
4.1.2. Projection of Precipitation and Temperature
4.2. Prediction of Land Use Change
4.2.1. Historical Land Use
4.2.2. Future Land Use
4.3. Hydrological Responses
4.3.1. Calibration and Validation of the SWAT Model
4.3.2. Future Runoff Response
5. Discussion
5.1. Impact of Different Discharge Scenarios and LUCC on Runoff
5.2. Discussion on Tmax Decrease and Damped Runoff
- In the three future scenarios, Tmax will show a slight downward trend.
- 2.
- There is a difference in runoff variability between the historical and simulated periods.
- 3.
- Future research
5.3. Uncertainty Analysis and Future Research
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Alifu, H.; Hirabayashi, Y.; Imada, Y.; Shiogama, H. Enhancement of river flooding due to global warming. Sci. Rep. 2022, 12, 20687. [Google Scholar] [CrossRef]
- Li, Z.L.; Li, W.; Li, Z.J.; Lv, X.Y. Responses of Runoff and Its Extremes to Climate Change in the Upper Catchment of the Heihe River Basin, China. Atmosphere 2023, 14, 539. [Google Scholar] [CrossRef]
- Xue, D.X.; Zhou, J.J.; Zhao, X.; Liu, C.F.; Wei, W.; Yang, X.M.; Li, Q.Q.; Zhao, Y.R. Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China. Ecol. Indic. 2021, 121, 107013. [Google Scholar] [CrossRef]
- Luo, Y.Y.; Yang, Y.T.; Yang, D.W.; Zhang, S.L. Quantifying the impact of vegetation changes on global terrestrial runoff using the Budyko framework. J. Hydrol. 2020, 590, 125389. [Google Scholar] [CrossRef]
- Cheng, G.W.; Liu, Y.; Chen, Y.; Gao, W. Spatiotemporal variation and hotspots of climate change in the Yangtze River Watershed during 1958–2017. J. Geogr. Sci. 2022, 32, 141–155. [Google Scholar] [CrossRef]
- Zhou, T.J.; Zou, L.W.; Chen, X.L. Review of the Sixth International Coupling Model Comparison Program (CMIP6). Clim. Chang. Res. 2019, 15, 445–456. (In Chinese) [Google Scholar]
- Song, Y.H.; Chung, E.-S.; Shahid, S. Spatiotemporal differences and uncertainties in projections of precipitation and temperature in South Korea from CMIP6 and CMIP5 general circulation models. Int. J. Climatol. 2021, 41, 5899–5919. [Google Scholar] [CrossRef]
- Song, Y.H.; Chung, E.-S.; Shahid, S. Differences in extremes and uncertainties in future runoff simulations using SWAT and LSTM for SSP scenarios. Sci. Total Environ. 2022, 838, 156162. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Z.; Gan, R.; Feng, D.M.; Yang, F.; Zuo, Q.T. Quantifying the contribution of SWAT modeling and CMIP6 inputting to streamflow prediction uncertainty under climate change. J. Clean. Prod. 2022, 364, 132675. [Google Scholar] [CrossRef]
- Adachi, S.A.; Tomita, H. Methodology of the Constraint Condition in Dynamical Downscaling for Regional Climate Evaluation: A Review. Atmosphere 2020, 125, e2019JD032166. [Google Scholar] [CrossRef]
- Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M. Climate change projections of temperature and precipitation in Chile based on statistical downscaling. Clim. Dyn. 2020, 54, 4309–4330. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, K.; Babovic, V. Projections of Future Climate Change in Singapore Based on a Multi-site Multivariate Downscaling Approach. Water 2019, 11, 2300. [Google Scholar] [CrossRef] [Green Version]
- Hessami, M.; Gachon, P.; Ouarda, T.B.M.J.; St-Hilaire, A. Automated regression-based statistical downscaling tool. Environ. Model. Softw. 2008, 23, 813–834. [Google Scholar] [CrossRef]
- Ahmadi-Sani, N.; Razaghnia, L.; Pukkala, T. Effect of Land-Use Change on Runoff in Hyrcania. Land 2022, 11, 220. [Google Scholar] [CrossRef]
- Wang, Z.P.; Tian, J.C.; Feng, K.P. Response of runoff towards land use changes in the Yellow River Basin in Ningxia, China. PLoS ONE 2022, 17, e0265931. [Google Scholar] [CrossRef]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.C. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Guan, X.X.; Zhang, J.Y.; Bao, Z.X.; Liu, C.S.; Jin, J.L.; Wang, G.Q. Past variations and future projection of runoff in typical basins in 10 water zones, China. Sci. Total Environ. 2021, 798, 149277. [Google Scholar] [CrossRef] [PubMed]
- Perera, T.; McGree, J.M.; Egodawatta, P.; Jinadasa, K.B.S.N.; Goonetilleke, A. A Bayesian approach to model the trends and variability in urban stormwater quality associated with catchment and hydrologic parameters. Water Res. 2021, 197, 117076. [Google Scholar] [CrossRef] [PubMed]
- Tongal, H.; Booij, M.J. Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. J. Hydrol. 2018, 564, 266–282. [Google Scholar] [CrossRef]
- Wagner, P.D.; Bieger, K.; Arnold, J.G.; Fohrer, N. Representation of hydrological processes in a rural lowland catchment in Northern Germany using SWAT and SWAT+. Hydrol. Process. 2022, 36, e14589. [Google Scholar] [CrossRef]
- Shi, L.J.; Feng, P.Y.; Wang, B.; Liu, D.L.; Zhang, H.; Liu, J.D.; Yu, Q. Assessing future runoff changes with different potential evapotranspiration inputs based on multi-model ensemble of CMIP5 projections. J. Hydrol. 2022, 612, 128042. [Google Scholar] [CrossRef]
- Li, Z.L.; Li, Q.J.; Wang, J.; Feng, Y.R.; Shao, Q.X. Impacts of projected climate change on runoff in upper reach of Heihe River basin using climate elasticity method and GCMs. Sci. Total Environ. 2020, 716, 137072. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.Y.; Peng, D.Z.; Gu, Y.; Luo, X.Y.; Pang, B.; Zhu, Z.F. Snowmelt Runoff in the Yarlung Zangbo River Basin and Runoff Change in the Future. Remote Sens. 2022, 15, 55. [Google Scholar] [CrossRef]
- Basu, A.S.; Gill, L.W.; Pilla, F.; Basu, B. Assessment of Variations in Runoff Due to Landcover Changes Using the SWAT Model in an Urban River in Dublin, Ireland. Sustainability 2022, 14, 534. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M. Automated Methods for Estimating Baseflow and Ground Water Recharge from Streamflow Records. J. Am. Water Resour. Assoc. 1999, 35, 411–424. [Google Scholar] [CrossRef]
- Zhu, Q.; Liang, R.; Jin, H.; Wang, X.Z. Runoff simulation in the Arashi River Basin based on SWAT model. Water Resour. Power 2013, 31, 25–27. (In Chinese) [Google Scholar]
- Zhang, S.J.; Cao, C.; Wang, Z.Y.; Lan, J.Z.; Tian, W.; Li, X.D.; Huang, T.S. Response of Runoff Yield to Land Use Changes in the Small Watershed of Core Area for 2022 Winter Olympic Games in Zhangjiakou City Based on SWAT Model. Forests 2022, 13, 853. [Google Scholar] [CrossRef]
- Sîrodoev, I.; Corobov, R.; Sîrodoev, G.; Trombitsky, I. Modelling Runoff within a Small River Basin under the Changing Climate: A Case Study of Using SWAT in the Bălțata River Basin (The Republic of Moldova). Land 2022, 11, 167. [Google Scholar] [CrossRef]
- Yang, C.D.; Xu, M.; Fu, C.S.; Kang, S.C.; Luo, Y. The Coupling of Glacier Melt Module in SWAT+ Model Based on Multi-Source Remote Sensing Data: A Case Study in the Upper Yarkant River Basin. Remote Sens. 2022, 14, 6080. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Arnold, J.G.; Garbrecht, J.D. Hydrologic Simulation on Agricultural Watersheds: Choosing between Two Models. Trans. ASAE 2003, 46, 1539–1551. [Google Scholar] [CrossRef]
- Wu, J.K.; Li, H.Y.; Zhou, J.X.; Tai, S.Y.; Wang, X.L. Variation of Runoff and Runoff Components of the Upper Shule River in the Northeastern Qinghai-Tibet Plateau under Climate Change. Water 2021, 13, 3357. [Google Scholar] [CrossRef]
- Kalugin, A. Future Climate-Driven Runoff Change in the Large River Basins in Eastern Siberia and the Far East Using Process-based Hydrological Models. Water 2022, 14, 609. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Huo, J.J.; Zhu, D.J.; Yuan, Z. Simulation of the Water Storage Capacity of Siling Co Lake on the Tibetan Plateau and Its Hydrological Response to Climate Change. Water 2022, 14, 3175. [Google Scholar] [CrossRef]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- Ye, Q.J.; Li, Z.W.; Duan, L.X.; Xu, X.L. Decoupling the influence of vegetation and climate on intra-annual variability in runoff in karst watersheds. Sci. Total Environ. 2022, 824, 153874. [Google Scholar] [CrossRef]
- Mo, C.X.; Lai, S.F.; Yang, Q.; Huang, K.K.; Lei, X.B.; Yang, L.F.; Yan, Z.W.; Jiang, C.H. A comprehensive assessment of runoff dynamics in response to climate change and human activities in a typical karst watershed, southwest China. J. Environ. Manag. 2023, 332, 117380. [Google Scholar] [CrossRef] [PubMed]
- Mo, C.X.; Ruan, Y.L.; Xiao, X.G.; Lan, H.K.; Jin, J.L. Impact of climate change and human activities on the baseflow in a typical karst basin, Southwest China. Ecol. Indic. 2021, 126, 107628. [Google Scholar] [CrossRef]
- Mo, C.X.; Chen, X.R.; Lei, X.B.; Wang, Y.F.; Ruan, Y.L.; Lai, S.F.; Xing, Z.X. Evaluation of Hydrological Simulation in a Karst Basin with Different Calibration Methods and Rainfall InputS. Atmosphere 2022, 13, 844. [Google Scholar] [CrossRef]
- Mo, C.X.; Ruan, Y.L.; He, J.Q.; Jin, J.L.; Liu, P.; Sun, G.K. Frequency analysis of precipitation extremes under climate change. Int. J. Climatol. 2019, 39, 1373–1387. [Google Scholar] [CrossRef]
- Abebe, S.A.; Qin, T.L.; Zhang, X.; Yan, D.H. Wavelet transform-based trend analysis of streamflow and precipitation in Upper Blue Nile River basin. J. Hydrol. Reg. Stud. 2022, 44, 101251. [Google Scholar] [CrossRef]
- Wu, R.; Lan, H.F.; Cao, Y.X.; Li, P.Y. Optimization of low-carbon land use in Chengdu based on multi-objective linear programming and the future land use simulation model. Front. Environ. Sci. 2022, 10, 989747. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, X.; Pan, G.Y.; Zhao, J.Y.; Zhao, Y. Hydrological responses to co-impacts of climate change and land use/cover change based on CMIP6 in the Ganjiang River, Poyang Lake basin. Anthropocene 2023, 41, 100368. [Google Scholar] [CrossRef]
- Teshager, A.D.; Gassman, P.W.; Secchi, S.; Schoof, J.T.; Misgna, G. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs. Environ. Manag. 2016, 57, 894–911. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.T.; Long, D.; Bai, P. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China. J. Hydrol. 2019, 570, 201–219. [Google Scholar] [CrossRef]
- US Soil Conservation Service. SCS National Engineering Handbook, Section 4-Hydrology; USDA—Soil Conservation Service: Washington, DC, USA, 1971; Volume 39, pp. 1076–1333.
- Alemayehu, T.; Griensven, A.V.; Bauwens, W. Evaluating CFSR and WATCH Data as Input to SWAT for the Estimation of the Potential Evapotranspiration in a Data-Scarce Eastern-African Catchment. J. Hydrol. Eng. 2016, 21, 05015028. [Google Scholar] [CrossRef]
- Pati, A.; Sen, S.; Perumal, M. Modified Channel-Routing Scheme for SWAT Model. J. Hydrol. Eng. 2018, 23, 04018019. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, X.W. Runoff simulation in Jinjiang River Basin based on 3 station calibration and verification. Sci. Soil Water Conserv. China 2007, 6, 21–26. (In Chinese) [Google Scholar] [CrossRef]
- Vigiak, O.; Malagó, A.; Bouraoui, F.; Vanmaercke, M.; Poesen, J. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins. Sci. Total Environ. 2015, 538, 855–875. [Google Scholar] [CrossRef] [PubMed]
- Ghoraba, S.M. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model. Alex. Eng. J. 2015, 54, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE. 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Wang, R.N.; Peng, W.Q.; Liu, X.B.; Jiang, G.L.; Wu, W.Q.; Chen, X.K. Characteristics of Runoff Variations and Attribution Analysis in the Poyang Lake Basin over the Past 55 Years. Sustainability 2020, 12, 944. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.H.; Wang, S.J.; Bai, X.Y.; Chen, F.; Li, C.J.; Ran, C.; Zhang, S.R. Identifying the Multi-Scale Influences of Climate Factors on Runoff Changes in a Typical Karst Watershed Using Wavelet Analysis. Land 2022, 11, 1284. [Google Scholar] [CrossRef]
- Bai, J.W.; Shen, Z.Y.; Yan, T.Z. A comparison of single- and multi-site calibration and validation: A case study of SWAT in the Miyun Reservoir watershed, China. Front. Earth Sci. 2017, 11, 592–600. [Google Scholar] [CrossRef]
- Nkiaka, E.; Nawaz, N.R.; Lovett, J.C. Effect of single and multi-site calibration techniques on hydrological model performance, parameter estimation and predictive uncertainty: A case study in the Logone catchment, Lake Chad basin. Stoch. Environ. Res. Risk Assess. 2018, 32, 1665–1682. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, Z.; Sun, G.; Strauss, P.; Guo, J.; Tang, Y.; Yao, A. Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China. Hydrol. Earth Syst. Sci. 2012, 16, 4621–4632. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.H.; Jiang, Z.H.; Li, L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Sci. Bull. 2021, 66, 2528–2537. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, H.M.; Li, Y.H.; Liu, L.L.; Hu, Z.H.; Xiao, C.; Yang, T.T. Climate Change Impacts on Runoff in the Fujiang River Basin Based on CMIP6 and SWAT Model. Water 2022, 14, 3614. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Lu, H.; Yang, K.; Jiang, R.J.; Yang, Y.; Wang, W.; Zhang, X.J. Projection of China’s future runoff based on the CMIP6 mid-high warming scenarios. Sci. China Earth Sci. 2023, 66, 528–546. [Google Scholar] [CrossRef]
Indicators | Average Value | Z-Value |
---|---|---|
P | 1341.20 | 1.93 * |
Tmax | 27.40 | −0.72 |
Tmin | 18.54 | 4.23 *** |
Taverage | 22.97 | 1.19 |
Seasonal | Historical (mm) | SSPs1-2.6 | SSP2-4.5 | SSP5-8.5 |
---|---|---|---|---|
Spring | 114.94 | 180.55 | 178.26 | 180.29 |
Summer | 678.43 | 724.12 | 732.06 | 743.73 |
Autumn | 449.47 | 503.32 | 493.95 | 529.48 |
Winter | 98.36 | 90.57 | 96.06 | 91.89 |
Annual | 1341.20 | 1498.57 | 1500.33 | 1545.39 |
Temperature (°C) | Average | Change Rate °C/Decade | Z-Value | |
---|---|---|---|---|
SSPs1-2.6 | Tmax | 27.52 | −6.58 × 10−3 (close to 0) | −0.55 |
Tmin | 18.44 | 0.05 | 2.64 *** | |
SSPs2-4.5 | Tmax | 27.53 | −8.35 × 10−3 (close to 0) | −1.10 |
Tmin | 18.45 | 0.09 | 5.34 *** | |
SSPs5-8.5 | Tmax | 27.57 | −0.04 | −4.18 *** |
Tmin | 18.46 | 0.18 | 7.77 *** |
Land Use Type | Average Area (km2) | Proportion (%) | Amplitude of Variation (km2/a) | Change Range (%) | ||
---|---|---|---|---|---|---|
2000–2010 | 2010–2020 | 2000–2010 | 2010–2020 | |||
Cropland | 259.14 | 12.23 | 20.50 | −15.29 | 4.94 | −4.44 |
Forest land | 1591.73 | 75.12 | −17.64 | −0.28 | −31.78 | −0.42 |
Grassland | 232.31 | 10.96 | 791.26 | 12.20 | 27.69 | 3.81 |
Water area | 32.04 | 1.51 | −23.97 | 10.20 | −0.89 | 0.29 |
Artificial surface | 3.76 | 0.18 | 28.00 | 603.13 | 0.03 | 0.77 |
Time | Station | Monthly Scale | Daily Scale | ||
---|---|---|---|---|---|
NSE | R2 | NSE | R2 | ||
Calibration Period | XJS | 0.89 | 0.94 | 0.79 | 0.83 |
PTS | 0.88 | 0.93 | 0.84 | 0.86 | |
BSS | 0.82 | 0.94 | 0.78 | 0.84 | |
Validation Period | XJS | 0.78 | 0.81 | 0.69 | 0.71 |
PTS | 0.85 | 0.93 | 0.81 | 0.84 | |
BSS | 0.77 | 0.94 | 0.70 | 0.81 |
Station | Scenario | Annual Average Runoff (108 m3) | Z-Value (M-K Test) | p-Value (t-Test) |
---|---|---|---|---|
XJS | historical | 633.73 | −0.94 | |
SSPs1-2.6 | 684.62 | 4.62 *** | 0.001 | |
SSPs2-4.5 | 678.86 | 8.06 *** | 0.001 | |
SSPs5-8.5 | 686.78 | 10.46 *** | 0.024 | |
average | 683.42 | 9.92 *** | 0.001 | |
PTS | historical | 860.71 | 1.26 | |
SSPs1-2.6 | 912.85 | 4.45 *** | 0.001 | |
SSPs2-4.5 | 885.30 | 6.79 *** | 0.011 | |
SSPs5-8.5 | 933.59 | 11.00 *** | 0.018 | |
average | 910.58 | 10.47 *** | 0.001 | |
BSS | historical | 794.42 | 1.71 * | |
SSPs1-2.6 | 895.76 | 3.79 *** | 0.001 | |
SSPs2-4.5 | 880.57 | 6.44 *** | 0.001 | |
SSPs5-8.5 | 927.41 | 10.45 *** | 0.001 | |
average | 901.25 | 10.48 *** | 0.001 |
Station | XJS | PTS | BSS | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Month | ||||||||||
SSPs1-2.6 | SSPs2-4.5 | SSPs5-8.5 | SSPs1-2.6 | SSPs2-4.5 | SSPs5-8.5 | SSPs1-2.6 | SSPs2-4.5 | SSPs5-8.5 | ||
Jan. | 31.01 | 22.29 | 31.97 | 67.20 | 86.10 | 70.07 | 24.73 | 36.95 | 27.05 | |
Feb. | −15.94 | −22.14 | −16.35 | 12.57 | 27.66 | 11.12 | −9.23 | 1.57 | −10.83 | |
Mar. | −78.56 | −79.94 | −78.33 | −63.12 | −60.43 | −62.42 | 68.58 | 100.00 | 94.71 | |
Apr. | −89.75 | −89.04 | −90.06 | −80.51 | −80.46 | −80.70 | 140.40 | 104.35 | 116.96 | |
May. | −86.63 | −83.10 | −86.89 | −86.19 | −85.97 | −85.57 | −57.51 | −57.49 | −56.21 | |
Jun. | −56.14 | −50.66 | −52.05 | −65.61 | −67.19 | −62.51 | −59.90 | −60.84 | −54.37 | |
Jul. | 11.53 | 6.13 | 11.17 | −14.80 | −20.42 | −14.80 | −1.60 | −4.60 | −0.27 | |
Aug. | 33.58 | 32.95 | 27.90 | 11.64 | 1.99 | 15.01 | 7.76 | 0.95 | 12.45 | |
Sept. | 92.42 | 90.05 | 95.47 | 78.23 | 70.80 | 83.45 | 61.31 | 57.20 | 68.28 | |
Oct. | 120.80 | 118.57 | 124.47 | 154.17 | 153.27 | 158.96 | 125.85 | 126.69 | 132.89 | |
Nov. | 82.57 | 78.96 | 83.03 | 125.76 | 136.02 | 127.15 | 87.28 | 95.46 | 90.42 | |
Dec. | 98.08 | 89.53 | 97.79 | 145.65 | 162.82 | 146.35 | 93.00 | 106.39 | 98.27 |
Station | Scenario | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|
XJS | SSPs1-2.6 | −70.76 | −32.85 | 67.90 | 75.57 |
SSPs2-4.5 | −72.18 | −32.28 | 66.45 | 69.44 | |
SSPs5-8.5 | −70.90 | −31.36 | 66.61 | 75.93 | |
PTS | SSPs1-2.6 | −52.14 | −46.22 | 52.97 | 119.44 |
SSPs2-4.5 | −47.56 | −49.32 | 45.32 | 133.42 | |
SSPs5-8.5 | −52.36 | −44.81 | 57.08 | 120.94 | |
BSS | SSPs1-2.6 | 79.91 | −33.95 | 42.17 | 75.36 |
SSPs2-4.5 | 77.19 | −35.66 | 37.37 | 85.87 | |
SSPs5-8.5 | 77.81 | −30.87 | 47.91 | 78.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, C.; Bao, M.; Lai, S.; Deng, J.; Tang, P.; Xing, Z.; Tang, G.; Li, L. Impact of Future Climate and Land Use Changes on Runoff in a Typical Karst Basin, Southwest China. Water 2023, 15, 2240. https://doi.org/10.3390/w15122240
Mo C, Bao M, Lai S, Deng J, Tang P, Xing Z, Tang G, Li L. Impact of Future Climate and Land Use Changes on Runoff in a Typical Karst Basin, Southwest China. Water. 2023; 15(12):2240. https://doi.org/10.3390/w15122240
Chicago/Turabian StyleMo, Chongxun, Mengxiang Bao, Shufeng Lai, Juan Deng, Peiyu Tang, Zhenxiang Xing, Gang Tang, and Lingguang Li. 2023. "Impact of Future Climate and Land Use Changes on Runoff in a Typical Karst Basin, Southwest China" Water 15, no. 12: 2240. https://doi.org/10.3390/w15122240
APA StyleMo, C., Bao, M., Lai, S., Deng, J., Tang, P., Xing, Z., Tang, G., & Li, L. (2023). Impact of Future Climate and Land Use Changes on Runoff in a Typical Karst Basin, Southwest China. Water, 15(12), 2240. https://doi.org/10.3390/w15122240