Simultaneous Mixotrophic Nitrate Removal and Phosphorus Removal in a Sponge-Iron Denitrifying Filter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Equipment
2.2. Batch Tests
2.3. Analytical Methods
3. Results and Discussion
3.1. Nitrogen Transformation in the Sponge-Iron-Based DNF
3.2. Autotrophic and Heterotrophic Denitrifying Activity in the DNF
3.3. Chemical Phosphorus Removal in the Sponge-Iron-Based DNF
3.4. Microbial Community Composition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, Z.; He, Y.; Wang, X.; Chen, Z.; Wei, X.; Lin, Y.; Cao, C.; Huang, M.; Zheng, B. A comprehensive assessment of upgrading technologies of wastewater treatment plants in Taihu Lake Basin. Environ. Res. 2022, 212, 113398. [Google Scholar] [CrossRef]
- Cao, Y.; Van Loosdrecht, M.C.M.; Daigger, G.T. The bottlenecks and causes, and potential solutions for municipal sewage treatment in China. Water Pract. Technol. 2020, 15, 160–169. [Google Scholar] [CrossRef]
- Zhong, L.; Yang, S.-S.; Ding, J.; Wang, G.-Y.; Chen, C.-X.; Xie, G.-J.; Xu, W.; Yuan, F.; Ren, N.-Q. Enhanced nitrogen removal in an electrochemically coupled biochar-amended constructed wetland microcosms: The interactive effects of biochar and electrochemistry. Sci. Total Environ. 2021, 789, 147761. [Google Scholar] [CrossRef]
- Li, P.; Zuo, J.; Wang, Y.; Zhao, J.; Tang, L.; Li, Z. Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium. Water Res. 2016, 93, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wei, W.; Xu, J.; Chen, X.; Liu, Y.; Peng, L.; Wang, D.; Ni, B.-J. Denitrifying biofilm processes for wastewater treatment: Developments and perspectives. Environ. Sci. Water Res. Technol. 2021, 7, 40–67. [Google Scholar] [CrossRef]
- Fu, X.; Hou, R.; Yang, P.; Qian, S.; Feng, Z.; Chen, Z.; Wang, F.; Yuan, R.; Chen, H.; Zhou, B. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. Sci. Total Environ. 2022, 817, 153061. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Liu, J.; Lie, Z.; Lai, D.Y.F. Effects of applying different carbon substrates on nutrient removal and greenhouse gas emissions by constructed wetlands treating carbon-depleted hydroponic wastewater. Bioresour. Technol. 2022, 357, 127312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, C.; Zhao, M.; Wang, Z.; Jiang, S.; Jin, Z.; Bei, K.; Zheng, X.; Wu, S.; Lin, P.; et al. A comprehensive review on mixotrophic denitrification processes for biological nitrogen removal. Chemosphere 2023, 313, 137474. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, B.; Chen, H.; Yuan, R. Iron mediated autotrophic denitrification for low C/N ratio wastewater: A review. Environ. Res. 2023, 216, 114687. [Google Scholar] [CrossRef]
- Tian, T.; Zhou, K.; Li, Y.-S.; Liu, D.-F.; Yu, H.-Q. Phosphorus Recovery from Wastewater Prominently through a Fe(II)–P Oxidizing Pathway in the Autotrophic Iron-Dependent Denitrification Process. Environ. Sci. Technol. 2020, 54, 11576–11583. [Google Scholar] [CrossRef] [PubMed]
- Na, C.-K.; Park, G.-Y.; Park, H.J. Applicability of ferric(III) hydroxide as a phosphate-selective adsorbent for sewage treatment. Water Sci. Technol. 2021, 83, 2911–2920. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, S.; Zhussupbekova, A.; Shvets, I.V.; Lee, P.-H.; Zhan, X. High-rate iron sulfide and sulfur-coupled autotrophic denitrification system: Nutrients removal performance and microbial characterization. Water Res. 2023, 231, 119619. [Google Scholar] [CrossRef]
- You, G.; Wang, C.; Hou, J.; Wang, P.; Xu, Y.; Miao, L.; Liu, J. Effects of zero valent iron on nitrate removal in anaerobic bioreactor with various carbon-to-nitrate ratios: Bio-electrochemical properties, energy regulation strategies and biological response mechanisms. Chem. Eng. J. 2021, 419, 129646. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J. Reduction of nitrate by zero valent iron (ZVI)-based materials: A review. Sci. Total Environ. 2019, 671, 388–403. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.-Y.; Li, B.-B.; Yang, Z.-C.; Cheng, Y.-Y.; Liu, D.-F.; Yu, H.-Q. Abundance and diversity of iron reducing bacteria communities in the sediments of a heavily polluted freshwater lake. Appl. Microbiol. Biotechnol. 2018, 102, 10791–10801. [Google Scholar] [CrossRef]
- Starosvetsky, J.; Kamari, R.; Farber, Y.; Bilanović, D.; Armon, R. Rust dissolution and removal by iron-reducing bacteria: A potential rehabilitation of rusted equipment. Corros. Sci. 2016, 102, 446–454. [Google Scholar] [CrossRef]
- Kiskira, K.; Papirio, S.; van Hullebusch, E.D.; Esposito, G. Fe(II)-mediated autotrophic denitrification: A new bioprocess for iron bioprecipitation/biorecovery and simultaneous treatment of nitrate-containing wastewaters. Int. Biodeterior. Biodegrad. 2017, 119, 631–648. [Google Scholar] [CrossRef]
- Dhamole, P.B.; D’Souza, S.F.; Lele, S.S. A Review on Alternative Carbon Sources for Biological Treatment of Nitrate Waste. J. Inst. Eng. (India) Ser. E 2015, 96, 63–73. [Google Scholar] [CrossRef]
- Abu Hasan, H.; Muhammad, M.H.; Ismail, N.I. A review of biological drinking water treatment technologies for contaminants removal from polluted water resources. J. Water Process Eng. 2020, 33, 101035. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Huang, C.-P.; Wang, H.-W.; Chiu, P.-C. Nitrate reduction by metallic iron. Water Res. 1998, 32, 2257–2264. [Google Scholar] [CrossRef]
- Rana, M.S.; Prajapati, S.K. Resolving the dilemma of iron bioavailability to microalgae for commercial sustenance. Algal Res. 2021, 59, 102458. [Google Scholar] [CrossRef]
- Arp, D.J.; Sayavedra-Soto, L.A.; Hommes, N.G. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch. Microbiol. 2002, 178, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, B.; Shi, J.; He, J.; Zhang, W.; Yan, W.; Li, M.; Tang, C.; Li, H. Concurrent vanadate and ammonium abatement in a membrane biofilm reactor. Chem. Eng. J. 2022, 442, 136285. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Ma, L. Iron shavings supported biological denitrification in sequencing batch reactor. Desalination Water Treat. 2012, 49, 95–105. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, X.; Cheng, Y.; Jiang, M.; Li, X.; Xue, G. Iron Robustly Stimulates Simultaneous Nitrification and Denitrification Under Aerobic Conditions. Environ. Sci. Technol. 2018, 52, 1404–1412. [Google Scholar] [CrossRef]
- Peng, L.; Liu, Y.; Gao, S.-H.; Chen, X.; Xin, P.; Dai, X.; Ni, B.-J. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater. Sci. Rep. 2015, 5, 12331. [Google Scholar] [CrossRef] [Green Version]
- Torrentó, C.; Urmeneta, J.; Otero, N.; Soler, A.; Viñas, M.; Cama, J. Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite. Chem. Geol. 2011, 287, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Liu, T.; Yu, H.; Quan, X. Enhancing anoxic denitrification of low C/N ratio wastewater with novel ZVI composite carriers. J. Environ. Sci. 2022, 112, 180–191. [Google Scholar] [CrossRef]
- Lu, J.s.; Lian, T.t.; Su, J.f. Effect of zero-valent iron on biological denitrification in the autotrophic denitrification system. Res. Chem. Intermed. 2018, 44, 6011–6022. [Google Scholar] [CrossRef]
- Suzuki, S.; Kuenen, J.G.; Schipper, K.; van der Velde, S.; Ishii, S.i.; Wu, A.; Sorokin, D.Y.; Tenney, A.; Meng, X.; Morrill, P.L.; et al. Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site. Nat. Commun. 2014, 5, 3900. [Google Scholar] [CrossRef] [Green Version]
- Navada, S.; Knutsen, M.F.; Bakke, I.; Vadstein, O. Nitrifying biofilms deprived of organic carbon show higher functional resilience to increases in carbon supply. Sci. Rep. 2020, 10, 7121. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Wang, C.; Zhang, J.; Chen, Z.; Yu, T.; Xu, G.; Xiao, J. Simultaneous Mixotrophic Nitrate Removal and Phosphorus Removal in a Sponge-Iron Denitrifying Filter. Water 2023, 15, 2248. https://doi.org/10.3390/w15122248
Sun X, Wang C, Zhang J, Chen Z, Yu T, Xu G, Xiao J. Simultaneous Mixotrophic Nitrate Removal and Phosphorus Removal in a Sponge-Iron Denitrifying Filter. Water. 2023; 15(12):2248. https://doi.org/10.3390/w15122248
Chicago/Turabian StyleSun, Xiangyu, Chunyu Wang, Junbo Zhang, Zhongtai Chen, Ting Yu, Guangjing Xu, and Jingni Xiao. 2023. "Simultaneous Mixotrophic Nitrate Removal and Phosphorus Removal in a Sponge-Iron Denitrifying Filter" Water 15, no. 12: 2248. https://doi.org/10.3390/w15122248
APA StyleSun, X., Wang, C., Zhang, J., Chen, Z., Yu, T., Xu, G., & Xiao, J. (2023). Simultaneous Mixotrophic Nitrate Removal and Phosphorus Removal in a Sponge-Iron Denitrifying Filter. Water, 15(12), 2248. https://doi.org/10.3390/w15122248