Geochemical Speciation, Ecological Risk and Assessment of Main Sources of Potentially Toxic Elements (PTEs) in Stream Sediments from Nile River in Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Assessment of Stream Sediment Contamination
2.4. Identification of Main PTE Sources
3. Results and Discussion
3.1. PTE Distribution in Stream Sediments of the Nile River
3.2. Sediment Quality Guidelines
3.3. Identification of Main Sources
4. Conclusions
- The use of different contamination indices such as the enrichment factor (EF), geoaccumulation index (Igeo) and contamination factor (CF) is only indicative if there is no precise knowledge of the natural background contents of the chemical elements. In some areas, the background values can be very high in a natural way, hence the need for environmental geochemical mapping for the entire terrestrial globe;
- Pseudo-total chemical analysis of samples alone can be misleading. It is necessary to know the bioavailability of PTEs through sequential extraction procedures;
- It is important to correctly use multivariate statistical analysis according to the compositional approach (CoDA). Therefore, based on the CoDA framework, this is one of the first works that presents the results of multivariate statistical analysis of PTEs in stream sediments. This work shows that considering the compositional nature of data leads to some useful information about the origin of elements and reveals the capabilities of this approach for investigating the geochemistry of polluted stream sediments. The extent of any mineralization, weathering, diagenesis, contamination and a combination of these factors can be effectively detected following log-ratio transformation of the analytical data obtained from stream sediments.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Cicchella, D.; Hoogewerff, J.; Albanese, S.; Adamo, P.; Lima, A.; Taiani, M.V.E.; De Vivo, B. Distribution of toxic elements and transfer from the environment to humans traced by using lead isotopes. A case of study in the Sarno River basin, south Italy. Environ. Geochem. Health 2015, 38, 619–637. [Google Scholar] [CrossRef] [PubMed]
- Pourret, O.; Hursthouse, A. It’s Time to Replace the Term “Heavy Metals” with “Potentially Toxic Elements” When Reporting Environmental Research. Int. J. Environ. Res. Public Health 2019, 16, 4446. [Google Scholar] [CrossRef] [PubMed]
- Aradpour, S.; Noori, R.; Naseh, M.R.V.; Hosseinzadeh, M.; Safavi, S.; Ghahraman-Rozegar, F.; Maghrebi, M. Alarming carcinogenic and non-carcinogenic risk of heavy metals in Sabalan dam reservoir, Northwest of Iran. Environ. Pollut. Bioavailab. 2021, 33, 278–291. [Google Scholar] [CrossRef]
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Dang, P.; Gu, X.; Lin, C.; Xin, M.; Zhang, H.; Ouyang, W.; Liu, X.; He, M.; Wang, B. Distribution, sources, and ecological risks of potentially toxic elements in the Laizhou Bay, Bohai Sea: Under the long-term impact of the Yellow River input. J. Hazard. Mater. 2021, 413, 125429. [Google Scholar] [CrossRef]
- Wang, J.; Liu, R.; Wang, H.; Yu, W.; Xu, F.; Shen, Z. Identification and apportionment of hazardous elements in the sediments in the Yangtze River estuary. Environ. Sci. Pollut. Res. 2015, 22, 20215–20225. [Google Scholar] [CrossRef]
- Calmano, W.; Ahlf, W.; Förstner, U. Exchange of heavy metals between sediment components and water. In Metal Speciation in the Environment; Broekaert, J.A.C., Güçer, Ş., Adams, F., Eds.; NATO ASI Series; Springe: Berlin/Heidelberg, Germany, 1990; p. 23. [Google Scholar] [CrossRef]
- Gaur, V.K.; Gupta, S.K.; Pandey, S.D.; Gopal, K.; Misra, V. Distribution of heavy metals in sediment and water of river Gomti. Environ. Monit. Assess. 2005, 102, 419–433. [Google Scholar] [CrossRef]
- Aradpour, S.; Noori, R.; Tang, Q.; Bhattarai, R.; Hooshyaripor, F.; Hosseinzadeh, M.; Haghighi, A.T.; Klöve, B. Metal contamination assessment in water column and surface sediments of a warm monomictic man-made lake: Sabalan Dam Reservoir, Iran. Hydrol. Res. 2020, 51, 799–814. [Google Scholar] [CrossRef]
- Kachoosangi, F.T.; Karbassi, A.; Sarang, A.; Noori, R. Sedimentation rate determination and heavy metal pollution assessment in Zariwar Lake, Iran. SN Appl. Sci. 2020, 2, 1483. [Google Scholar] [CrossRef]
- European Commission. Directive 2008/105/EC of the European Parliament and of the Council on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC. Off. J. Eur. Commun. L 2008, 348, 84. [Google Scholar]
- Persaud, D.; Jaaguagi, R.; Hayton, A. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of the Environment. Queen’s Printer of Ontario, 1993. Available online: http://hdl.handle.net/10214/15797 (accessed on 17 June 2023).
- Lima, A.; Plant, J.; De Vivo, B.; Tarvainen, T.; Albanese, S.; Cicchella, D. Interpolation methods for geochemical maps: A comparative study using arsenic data from European stream waters. Geochem. Explor. Environ. Anal. 2008, 8, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Kwok, K.W.H.; Batley, G.E.; Wenning, R.J.; Zhu, L.; Vangheluwe, M.; Lee, S. Sediment quality guidelines: Challenges and opportunities for improving sediment management. Environ. Sci. Pollut. Res. 2013, 21, 17–27. [Google Scholar] [CrossRef]
- Zuzolo, D.; Cicchella, D.; Catani, V.; Giaccio, L.; Guagliardi, I.; Esposito, L.; De Vivo, B. Assessment of potentially harmful elements pollution in the Calore River basin (Southern Italy). Environ. Geochem. Health 2017, 39, 531–548. [Google Scholar] [CrossRef] [PubMed]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.; Muhammad, S.; Ali, W.; Jadoon, I.A.K.; Rasool, A. Occurrence, source identification and potential risk evaluation of heavy metals in sediments of the Hunza River and its tributaries, Gilgit-Baltistan. Environ. Technol. Innov. 2020, 18, 100700. [Google Scholar] [CrossRef]
- Papadopoulou-Vrynioti, K.; Alexakis, D.; Bathrellos, G.D.; Skilodimou, H.D.; Vryniotis, D.; Vassiliades, E.; Gamvroula, D. Distribution of trace elements in stream sediments of Arta plain (western Hellas): The influence of geomorphological parameters. J. Geochem. Explor. 2013, 134, 17–26. [Google Scholar] [CrossRef]
- Gassama, N.; Curie, F.; Vanhooydonck, P.; Bourrain, X.; Widory, D. Determining the Regional Geochemical Background for Dissolved Trace Metals and Metalloids in Stream Waters: Protocol, Results and Limitations—The Upper Loire River Basin (France). Water 2021, 13, 1845. [Google Scholar] [CrossRef]
- Alvarenga, P.; Guerreiro, N.; Simões, I.; Imaginário, M.J.; Palma, P. Assessment of the Environmental Impact of Acid Mine Drainage on Surface Water, Stream Sediments, and Macrophytes Using a Battery of Chemical and Ecotoxicological Indicators. Water 2021, 13, 1436. [Google Scholar] [CrossRef]
- Proshad, R.; Kormoker, T.; Al, M.A.; Islam, S.; Khadka, S.; Idris, A.M. Receptor model-based source apportionment and ecological risk of metals in sediments of an urban river in Bangladesh. J. Hazard. Mater. 2022, 423, 127030. [Google Scholar] [CrossRef] [PubMed]
- Alexakis, D.E. Suburban areas in flames: Dispersion of potentially toxic elements from burned vegetation and buildings. Estimation of the associated ecological and human health risk. Environ. Res. 2020, 183, 109153. [Google Scholar] [CrossRef] [PubMed]
- Sundaray, S.K.; Nayak, B.B.; Lin, S.; Bhatta, D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—A case study: Mahanadi basin, India. J. Hazard. Mater. 2011, 186, 1837–1846. [Google Scholar] [CrossRef] [PubMed]
- Pourret, O.; Bollinger, J.-C.; van Hullebusch, E.D. On the difficulties of being rigorous in environmental geochemistry studies: Some recommendations for designing an impactful paper. Environ. Sci. Pollut. Res. 2019, 27, 1267–1275. [Google Scholar] [CrossRef]
- Soltan, M.E. Remobilization of selected metal ions from Nile sediment (Egypt) according to sequential extraction and metal–EDTA complex. Chem. Ecol. 2006, 22, 359–378. [Google Scholar] [CrossRef]
- El-Anwar, E.A.A. Assessment of heavy metal pollution in soil and bottom sediment of Upper Egypt: Comparison study. Bull. Natl. Res. Cent. 2019, 43, 180. [Google Scholar] [CrossRef]
- Omar, W.A.; Mikhail, W.Z.A.; Abdo, H.M.; El Defan, T.A.A.; Poraas, M.M. Ecological Risk Assessment of Metal Pollution along Greater Cairo Sector of the River Nile, Egypt, Using Nile Tilapia, Oreochromis niloticus, as Bioindicator. J. Toxicol. 2015, 2015, 167319. [Google Scholar] [CrossRef]
- Fielding, L.; Najman, Y.; Millar, I.; Butterworth, P.; Garzanti, E.; Vezzoli, G.; Barfod, D.; Kneller, B. The initiation and evolution of the River Nile. Earth Planet. Sci. Lett. 2018, 489, 166–178. [Google Scholar] [CrossRef]
- Padoan, M.; Garzanti, E.; Harlavan, Y.; Villa, I.M. Tracing Nile sediment sources by Sr and Nd isotope signatures (Uganda, Ethiopia, Sudan). Geochim. Cosmochim. Acta 2011, 75, 3627–3644. [Google Scholar] [CrossRef]
- El-Desoky, H.M.; El-Shafey, R. The Oligo--Miocene Volcanism of the Red Sea Rift Valley: Petrology and geochemistry of the volcanic activity in the Northwestern Sinai, Egypt. Nat. Sci. 2016, 16, 159–185. [Google Scholar] [CrossRef]
- Schneiderman, J.S. Detrital Opaque Oxides as Provenance Indicators in River Nile Sediments. J. Sediment. Res. 1995, 65A, 668–674. [Google Scholar] [CrossRef]
- Stanley, D.J.; Wingerath, J.G. Nile sediment dispersal altered by the Aswan High Dam: The kaolinite trace. Mar. Geol. 1996, 133, 1–9. [Google Scholar] [CrossRef]
- Baioumy, H. Geology of Rare Metals in Egypt- A review. Int. J. Mater. Technol. Innov. 2021, 1, 58–76. [Google Scholar] [CrossRef]
- Abdel Aal, A.Y. Mineral and chemical composition of basalts in the neighbourhood of Giza, Egypt. J. Afr. Earth Sci. 1998, 26, 101–117. [Google Scholar] [CrossRef]
- Abu El-Rus, M.M.; Rooney, T.O. Insights into the lithosphere to asthenosphere melting transition in northeast Africa: Evidence from the Tertiary volcanism in middle Egypt. Chem. Geol. 2017, 455, 282–303. [Google Scholar] [CrossRef]
- Abouzeid, A.-Z.M.; Khalid, A.-A.M. Mineral Industry in Egypt-Part I: Metallic Mineral Commodities. Nat. Resour. 2011, 02, 35–53. [Google Scholar] [CrossRef]
- Abdelsalam, M.G. The Nile’s journey through space and time: A geological perspective. Earth-Science Rev. 2018, 177, 742–773. [Google Scholar] [CrossRef]
- Ali, S.M.; Sabae, S.Z.; Fayez, M.; Monib, M.; Hegazi, N.A. The influence of agro-industrial effluents on River Nile pollution. J. Adv. Res. 2011, 2, 85–95. [Google Scholar] [CrossRef]
- Shalaby, S.E.M.; El-Saadany, S.S.; Abo-Eyta, A.M.; Abdel-Satar, A.M.; Al-Afify, A.D.G.; El-Gleel, W.M.M.A. Levels of pesticide residues in water, sediment, and fish samples collected from Nile River in Cairo, Egypt. Environ. Forensics 2018, 19, 228–238. [Google Scholar] [CrossRef]
- Shamrukh, M.; Corapcioglu, M.Y.; Hassona, F.A.A. Modeling the Effect of Chemical Fertilizers on Ground Water Quality in the Nile Valley Aquifer, Egypt. Groundwater 2001, 39, 59–67. [Google Scholar] [CrossRef]
- Duan, L.; Song, J.; Xu, Y.; Li, X.; Zhang, Y. The distribution, enrichment and source of potential harmful elements in surface sediments of Bohai Bay, North China. J. Hazard. Mater. 2010, 183, 155–164. [Google Scholar] [CrossRef]
- Delgado, J.; Barba-Brioso, C.; Nieto, J.M.; Boski, T. Speciation and ecological risk of toxic elements in estuarine sediments affected by multiple anthropogenic contributions (Guadiana saltmarshes, SW Iberian Peninsula): I. Surficial sediments. Sci. Total. Environ. 2011, 409, 3666–3679. [Google Scholar] [CrossRef] [PubMed]
- García-Ordiales, E.; Covelli, S.; Esbrí, J.M.; Loredo, J.; Higueras, P.L. Sequential extraction procedure as a tool to investigate PTHE geochemistry and potential geoavailability of dam sediments (Almadén mining district, Spain). Catena 2016, 147, 394–403. [Google Scholar] [CrossRef]
- Guarino, A.; Albanese, S.; Cicchella, D.; Ebrahimi, P.; Dominech, S.; Pacifico, L.R.; Rofrano, G.; Nicodemo, F.; Pizzolante, A.; Allocca, C.; et al. Factors influencing the bioavailability of some selected elements in the agricultural soil of a geologically varied territory: The Campania region (Italy) case study. Geoderma 2022, 428, 116207. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.; Muntau, H.; Griepink, B. Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken Under the Auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Quevauviller, P.; Rauret, G.; López-Sánchez, J.-F.; Rubio, R.; Ure, A.; Muntau, H. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Sci. Total. Environ. 1997, 205, 223–234. [Google Scholar] [CrossRef]
- Rauret, G.; López-Sánchez, J.F. New Sediment and Soil CRMs for Extractable Trace Metal Content. Int. J. Environ. Anal. Chem. 2001, 79, 81–95. [Google Scholar] [CrossRef]
- Christophoridis, C.; Dedepsidis, D.; Fytianos, K. Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. J. Hazard. Mater. 2009, 168, 1082–1091. [Google Scholar] [CrossRef]
- Zhu, H.-N.; Yuan, X.-Z.; Zeng, G.-M.; Jiang, M.; Liang, J.; Zhang, C.; Yin, J.; Huang, H.-J.; Liu, Z.-F.; Jiang, H.-W. Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Trans. Nonferrous Met. Soc. China 2012, 22, 1470–1477. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S.; Holland, H.D.; Turekian, K.K. Composition of the Continental Crust. In The Crust, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Smith, S.L.; MacDonald, D.D.; Keenleyside, K.A.; Ingersoll, C.G.; Field, L.J. A Preliminary Evaluation of Sediment Quality Assessment Values for Freshwater Ecosystems. J. Great Lakes Res. 1996, 22, 624–638. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Yang, J.; Zhu, L. Ecological risk assessment and verification of the typical heavy metals for sediment of Haihe River Basin. Asian J. Ecotoxicol. 2020, 15, 149–159. [Google Scholar]
- R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria. 2022. Available online: http://www.R-project.org (accessed on 17 June 2023).
- Aitchison, J. The Statistical Analysis of Compositional Data. J. R. Stat. Soc. Ser. B (Methodol.) 1982, 44, 139–160. [Google Scholar] [CrossRef]
- Pawlowsky-Glahn, V.; Buccianti, A. Compositional data Analysis; Wiley: Chichester, UK, 2011. [Google Scholar] [CrossRef]
- Buccianti, A.; Grunsky, E. Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes? J. Geochem. Explor. 2014, 141, 1–5. [Google Scholar] [CrossRef]
- Butler, B.M.; Palarea-Albaladejo, J.; Shepherd, K.D.; Nyambura, K.M.; Towett, E.K.; Sila, A.M.; Hillier, S. Mineral–nutrient relationships in African soils assessed using cluster analysis of X-ray powder diffraction patterns and compositional methods. Geoderma 2020, 375, 114474. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, M.; Albanese, S.; De Vivo, B.; Guagliardi, I.; Guarino, A.; Lima, A.; Cicchella, D. Identification of Rare Earth Elements (REEs) distribution patterns in the soils of Campania region (Italy) using compositional and multivariate data analysis. J. Geochem. Explor. 2022, 243, 107112. [Google Scholar] [CrossRef]
- Cicchella, D.; Ambrosino, M.; Gramazio, A.; Coraggio, F.; Musto, M.A.; Caputi, A.; Avagliano, D.; Albanese, S. Using multivariate compositional data analysis (CoDA) and clustering to establish geochemical backgrounds in stream sediments of an onshore oil deposits area. The Agri River basin (Italy) case study. J. Geochem. Explor. 2022, 238, 107012. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Martín-Fernández, J.A.; Daunis-I-estadella, J.; Mateu-Figueras, G. On the interpretation of differences between groups for compositional data. SORT-Stat. Oper. Res. Trans. 2015, 39, 231–252. Available online: http://hdl.handle.net/10256/13742 (accessed on 17 June 2023).
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K.; Reimann, C. Principal component analysis for compositional data with outliers. Environmetrics 2009, 20, 621–632. [Google Scholar] [CrossRef]
- Gu, Y.-G.; Gao, Y.-P. An unconstrained ordination- and GIS-based approach for identifying anthropogenic sources of heavy metal pollution in marine sediments. Mar. Pollut. Bull. 2019, 146, 100–105. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Ju, F.; Zhang, T. Co-occurrence correlations of heavy metals in sediments revealed using network analysis. Chemosphere 2015, 119, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Moalla, S.M.N.; Soltan, M.E.; Rashed, M.N.; Fawzy, E.M. Evaluation of dilute hydrochloric acid and acid ammonium oxalate as extractants for some heavy metals from Nile River sediments. Chem. Ecol. 2006, 22, 313–327. [Google Scholar] [CrossRef]
- Khatita, A.M. Assessment of Soil and Sediment Contamination in the Middle Nile Delta area (Egypt) Geo-Environmental Study Using Combined Sedimentological, Geophysical and Geochemical Methods. Dissertation, The Faculty of Science the Friedrich-Alexander-University Erlangen-Nuremberg, 2011. Available online: https://opus4.kobv.de/opus4-fau/files/1884/AtefAbuKhatitaDissertation.pdf (accessed on 17 June 2023).
- Goher, M.E.; Mangood, A.H.; Mousa, I.E.; Salem, S.G.; Hussein, M.M. Ecological risk assessment of heavy metal pollution in sediments of Nile River, Egypt. Environ. Monit. Assess. 2021, 193, 1–16. [Google Scholar] [CrossRef]
- Alexakis, D. Geochemistry of Stream Sediments as a Tool for Assessing Contamination by Arsenic, Chromium and Other Toxic Elements: East Attica Region, Greece. Eur. Water 2008, 21/22, 57–72. Available online: https://www.ewra.net/ew/pdf/EW_2008_21-22_05.pdf (accessed on 17 June 2023).
- Liu, J.; Li, Y.; Zhang, B.; Cao, J.; Cao, Z.; Domagalski, J. Ecological risk of heavy metals in sediments of the Luan River source water. Ecotoxicology 2009, 18, 748–758. [Google Scholar] [CrossRef]
- Salah, E.A.M.; Zaidan, T.A.; Al-Rawi, A.S. Assessment of Heavy Metals Pollution in the Sediments of Euphrates River, Iraq. J. Water Resour. Prot. 2012, 4, 1009–1023. [Google Scholar] [CrossRef]
- Martin, J.-M.; Meybeck, M. Elemental mass-balance of material carried by major world rivers. Mar. Chem. 1979, 7, 173–206. [Google Scholar] [CrossRef]
- Diop, C.; Dewaelé, D.; Cazier, F.; Diouf, A.; Ouddane, B. Assessment of trace metals contamination level, bioavailability and toxicity in sediments from Dakar coast and Saint Louis estuary in Senegal, West Africa. Chemosphere 2015, 138, 980–987. [Google Scholar] [CrossRef]
- Pagnanelli, F.; Moscardini, E.; Giuliano, V.; Toro, L. Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: Pollution detection and affinity series. Environ. Pollut. 2004, 132, 189–201. [Google Scholar] [CrossRef]
- Hissler, C.; Probst, J.-L. Impact of mercury atmospheric deposition on soils and streams in a mountainous catchment (Vosges, France) polluted by chlor-alkali industrial activity: The important trapping role of the organic matter. Sci. Total. Environ. 2006, 361, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Moon, J.-W.; Moon, H.-S. Heavy metals in the bed and suspended sediments of Anyang River, Korea: Implications for water quality. Environ. Geochem. Health 2003, 25, 433–452. [Google Scholar] [CrossRef] [PubMed]
- El-Kammar, A.M.; Ali, B.H.; El-Badry, A.M.M. Environmental geochemistry of River Nile bottom sediments between Aswan and Isna, upper Egypt. J. Appl. Sci. Res. 2009, 5, 585–594. Available online: https://www.researchgate.net/publication/286666209 (accessed on 17 June 2023).
As | Co | Cr | Cu | Fe | Mn | Ni | Pb | V | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
IDL | 0.2 | 0.1 | 1 | 0.2 | 100 | 5 | 0.2 | 0.5 | 1 | 2 |
Min | 6.6 | 32 | 240 | 42 | 53,751 | 940 | 66 | 8 | 280 | 113 |
Q25 | 7.6 | 33 | 323 | 49 | 71,948 | 1191 | 74 | 10 | 324 | 125 |
Mean | 8 | 37 | 425 | 54 | 61,084 | 1366 | 77 | 19 | 367 | 136 |
Median | 8.1 | 37 | 378 | 54 | 74,776 | 1350 | 77 | 12 | 345 | 135 |
Geometric mean | 8 | 37 | 405 | 53 | 77,519 | 1347 | 77 | 15 | 362 | 135 |
Q75 | 8.6 | 38 | 538 | 58 | 85,200 | 1518 | 81 | 20 | 413 | 146 |
Q95 | 9.4 | 41 | 667 | 60 | 96,804 | 1735 | 86 | 52 | 474 | 158 |
Max | 9.8 | 42 | 739 | 69 | 98,519 | 1942 | 88 | 63 | 507 | 161 |
MAD | 0.64 | 2.09 | 115 | 4.45 | 8654 | 187 | 4.2 | 11.2 | 52.8 | 12.3 |
Skewness | 0.3 | 0.11 | 0.64 | 0.29 | 0.12 | 0.11 | 0.04 | 1.65 | 0.56 | 0.12 |
rCV (%) | 7.9 | 5.7 | 30.4 | 8.2 | 11.6 | 13.9 | 5.5 | 93.3 | 15.3 | 9.1 |
As | Co | Cr | Cu | Fe | Mn | Ni | Pb | V | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
Cairo–Aswan (Nile) (This study) | 8 (6.6–9.8) | 37 (32.2–42.4) | 425 (240–739) | 54 (42–69) | 61,084 (53,751–98,519) | 1366 (940–1834) | 77 (66.3–88) | 19 (8.6–63.4) | 367 (280–507) | 136 (113–161) |
Aswan–Giza (Nile) [67] | ND | 29 (25–36) | ND | 36 (30–41) | 20,432 (18,420–23,570) | 2468 (550–5800) | ND | 45 (34–60) | ND | 170 (91–270) |
Middle Delta (Nile) [68] | 5 (1–14) | 31 (10–40) | 183 (84–336) | 61 (24–139) | 62,583 (16,786–76,724) | 1099 (434–1549) | 70 (36–94) | 30 (12–182) | 192 (96–240) | 143 (88–689) |
Nile (Egypt) [69] | ND | 58 (31–79) | 3 (1–8) | 36 (19–53) | 11,347 (8398–14,118) | 257 (106–548) | 22 (5–40) | 33 (13–79) | ND | 51 (14–114) |
East Attica (Greece) [70] | 41 (8–273) | 18 (4–39) | 285 (53–1389) | 31 (8–80) | 27,169 (7600–41,800) | 716 (271–2673) | 172 (53–512) | 217 (17–2611) | 66 (26–121) | 170 (23–1331) |
Tigris (Turkish sector) [17] | 5 (2–18) | 37 (5–389) | 84 (28–163) | 344 (28–5075) | ND | 682 (282–1657) | 132 (74–288) | 264 (62–566) | ND | 202 (60–2396) |
Luan (China) [71] | 5 (2–13) | ND | 71 (29–152) | 45 (6–178) | ND | ND | ND | 21 (8–38) | ND | 75 (21–161) |
Euphrates (Iraq) [72] | ND | 28 (22–39) | 58 (36–120) | 18 (10–30) | 2249 (928–3441) | 228 (136–312) | 67 (40–103) | 22 (8–32) | ND | 48 (15–130) |
World average [73] | ND | 20 | 100 | 100 | 48,000 | 1050 | 90 | 150 | ND | 350 |
Sampling Site | As | Co | Cr | Cu | Mn | Ni | Pb | V | Zn |
---|---|---|---|---|---|---|---|---|---|
Giza | 0.7 | 1.1 | 3.1 | 1.2 | 1.1 | 1.1 | 0.6 | 1.6 | 0.9 |
Cairo | 0.9 | 1.3 | 2.3 | 1.2 | 0.8 | 1.1 | 1.2 | 1.6 | 1.1 |
Helwan | 0.7 | 1.2 | 2.4 | 1 | 0.8 | 1.1 | 0.4 | 1.6 | 0.9 |
Naser | 0.8 | 1.2 | 2.8 | 1 | 1 | 1.1 | 0.3 | 1.7 | 0.8 |
Beni Suef | 0.8 | 1.2 | 2.1 | 1 | 1.1 | 1.2 | 0.3 | 1.6 | 0.8 |
Biba | 0.8 | 1.3 | 2.7 | 0.8 | 1 | 1.2 | 0.3 | 1.7 | 0.8 |
Minya | 0.7 | 1.2 | 4 | 0.8 | 1 | 1 | 0.3 | 2 | 0.9 |
Beni Mazar | 0.8 | 1.3 | 2.3 | 1.2 | 0.9 | 1.2 | 0.7 | 1.6 | 0.9 |
Samalut | 0.7 | 1.3 | 2.4 | 1.1 | 0.9 | 1.3 | 0.3 | 1.8 | 0.9 |
Asyut | 0.5 | 1.1 | 3.2 | 0.8 | 0.9 | 0.9 | 0.3 | 1.8 | 0.8 |
Abu Tij | 0.8 | 1.4 | 2.2 | 1.1 | 1 | 1.2 | 0.4 | 1.5 | 0.9 |
Sidaf | 0.7 | 1.2 | 2.8 | 1.2 | 1 | 1.2 | 0.3 | 1.7 | 0.9 |
Girga | 0.8 | 1.2 | 2.6 | 1.1 | 1.2 | 1.2 | 0.4 | 1.6 | 0.9 |
Sohag | 0.7 | 1.1 | 3.3 | 1 | 0.9 | 1.1 | 1.2 | 1.7 | 0.9 |
Tahta | 0.5 | 1.2 | 3.1 | 0.8 | 1 | 1 | 0.2 | 1.8 | 0.8 |
Nagaa Hammadi | 0.6 | 1.2 | 3.4 | 0.9 | 1.1 | 1 | 0.2 | 1.8 | 0.9 |
Qena | 0.5 | 1 | 4 | 0.7 | 0.9 | 0.9 | 0.2 | 1.7 | 0.7 |
Luxor | 0.7 | 1.2 | 3.6 | 1 | 1 | 1.2 | 0.5 | 1.8 | 0.8 |
Armant | 0.5 | 1.2 | 2.3 | 0.9 | 0.8 | 1.1 | 0.3 | 1.6 | 0.8 |
Esna | 0.8 | 1.3 | 2.1 | 1.3 | 0.9 | 1.3 | 0.7 | 1.5 | 1.1 |
Edfu | 0.5 | 1.2 | 3.4 | 0.7 | 0.9 | 1.1 | 1.4 | 1.8 | 0.8 |
Kom Ombo | 0.7 | 1.3 | 2.5 | 1.1 | 0.7 | 1.1 | 0.3 | 1.8 | 0.9 |
Aswan | 0.9 | 1.7 | 2.4 | 1.4 | 1.1 | 1.5 | 2.7 | 1.9 | 1.5 |
Sampling Site | As | Co | Cr | Cu | Fe | Mn | Ni | Pb | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|
Cairo | 10.3 | 56 | 12.4 | 27.4 | 18.9 | 91.2 | 46.4 | 20.8 | 30.7 | 32.6 |
Giza | 10.4 | 44.2 | 11.9 | 18.5 | 4.7 | 68.1 | 37.3 | 10 | 7.9 | 27.2 |
Helwan | 18.4 | 56.2 | 8.4 | 21.2 | 10.9 | 89.6 | 43.2 | 12.1 | 21.3 | 26.4 |
Naser | 15.9 | 63.8 | 9.5 | 21.4 | 15.7 | 91.6 | 48.1 | 8.3 | 26.9 | 24.6 |
Beni Suef | 9.4 | 60.4 | 6.8 | 21.7 | 13.1 | 89.2 | 42.4 | 10.8 | 20.6 | 27.2 |
Biba | 3.2 | 30 | 2.7 | 11.9 | 4.3 | 75.4 | 15.9 | 10.3 | 6.1 | 16.9 |
Minya | 15.3 | 41.6 | 3 | 30 | 4.5 | 71.2 | 26.5 | 14.8 | 4.9 | 32.5 |
Beni Mazar | 10 | 66.5 | 8.8 | 18 | 18.3 | 86.8 | 48.7 | 10.3 | 31.2 | 26.8 |
Samalut | 4.6 | 51.8 | 4.5 | 34.4 | 6.8 | 76.5 | 40.0 | 12.5 | 14.7 | 13.9 |
Asyut | 5.9 | 38 | 3.5 | 35.3 | 7.7 | 72.6 | 26.1 | 17.9 | 10.2 | 26.6 |
Abu Tij | 9.9 | 55 | 6.1 | 20.2 | 10 | 75.4 | 41.7 | 9.3 | 24.7 | 18.1 |
Sidaf | 12.6 | 51.3 | 6.3 | 18.6 | 4.9 | 78 | 33.6 | 6.9 | 8.7 | 24.3 |
Girga | 12 | 56.2 | 8.4 | 22.9 | 12.1 | 88.6 | 39.5 | 7.4 | 20.5 | 30 |
Sohag | 10.4 | 45.3 | 4.2 | 23.4 | 4.1 | 66 | 32.9 | 11.3 | 10.2 | 34.1 |
Tahta | 4.1 | 26.6 | 2.6 | 19.1 | 4.8 | 59.9 | 16.9 | 17.3 | 4.1 | 20.6 |
Nagaa Hammadi | 10.3 | 59.7 | 6.1 | 23.8 | 9.8 | 89.2 | 39.9 | 12.1 | 11.7 | 25.5 |
Qena | 8.3 | 33 | 1.7 | 43.1 | 3.9 | 45.1 | 22.1 | 18.9 | 13.6 | 33.2 |
Luxor | 33 | 65.9 | 12.6 | 21 | 16.4 | 92.1 | 46.4 | 16.5 | 24.6 | 44.1 |
Armant | 10.9 | 43.4 | 3.8 | 14.1 | 6.2 | 52.6 | 30.9 | 7.6 | 19.9 | 18.4 |
Esna | 10.5 | 64.2 | 18.1 | 35.3 | 10 | 82.1 | 43.2 | 11.2 | 21.3 | 20.2 |
Edfu | 5.4 | 44 | 1.8 | 31 | 5 | 62.1 | 31.9 | 13.3 | 5.9 | 17.3 |
Kom Ombo | 7.1 | 46.4 | 3.7 | 22.7 | 5.6 | 68.8 | 34.5 | 27 | 6.6 | 65.3 |
Aswan | 7.8 | 66 | 7.6 | 27.6 | 17 | 80.2 | 45.2 | 13.9 | 28.6 | 39.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrosino, M.; El-Saadani, Z.; Khatita, A.A.; Mingqi, W.; Palarea-Albaladejo, J.; Cicchella, D. Geochemical Speciation, Ecological Risk and Assessment of Main Sources of Potentially Toxic Elements (PTEs) in Stream Sediments from Nile River in Egypt. Water 2023, 15, 2308. https://doi.org/10.3390/w15132308
Ambrosino M, El-Saadani Z, Khatita AA, Mingqi W, Palarea-Albaladejo J, Cicchella D. Geochemical Speciation, Ecological Risk and Assessment of Main Sources of Potentially Toxic Elements (PTEs) in Stream Sediments from Nile River in Egypt. Water. 2023; 15(13):2308. https://doi.org/10.3390/w15132308
Chicago/Turabian StyleAmbrosino, Maurizio, Zozo El-Saadani, Atef Abu Khatita, Wang Mingqi, Javier Palarea-Albaladejo, and Domenico Cicchella. 2023. "Geochemical Speciation, Ecological Risk and Assessment of Main Sources of Potentially Toxic Elements (PTEs) in Stream Sediments from Nile River in Egypt" Water 15, no. 13: 2308. https://doi.org/10.3390/w15132308