A Modified SCS Curve Number Method for Temporally Varying Rainfall Excess Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. SMA-Based SCS-CN Method
2.2. SMA Method in the HEC-HMS
2.3. Development of the MCN-TVR Method
2.3.1. Modification of the SMA Method in the HEC-HMS
2.3.2. Method Combination
2.4. Test of the MCN-TVR Method
2.4.1. Hypothetical Rainfall Events
2.4.2. Real Applications
2.4.3. Model Performance Evaluation
3. Results
3.1. Performance in the Hypothetical Event Simulations
3.1.1. Comparison of Rainfall Excess
3.1.2. Infiltration Control Function
3.2. Performance in Real Applications
4. Discussion
4.1. Comparison with Existing Combined Methods
4.2. Performance of the Proposed Method
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- SCS. National Engineering Handbook, Section 4; Soil Conservation Service USDA: Washington, DC, USA, 1972. [Google Scholar]
- Shi, Z.H.; Chen, L.D.; Fang, N.F.; Qin, D.F.; Cai, C.F. Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena 2009, 77, 1–7. [Google Scholar] [CrossRef]
- Soulis, K.X. Soil conservation service curve number (SCS-CN) Method: Current applications, remaining challenges, and future perspectives. Water 2021, 13, 192. [Google Scholar] [CrossRef]
- Giannaros, C.; Dafis, S.; Stefanidis, S.; Giannaros, T.M.; Koletsis, I.; Oikonomou, C. Hydrometeorological analysis of a flash flood event in an ungauged Mediterranean watershed under an operational forecasting and monitoring context. Meteorol. Appl. 2022, 29, 2079. [Google Scholar] [CrossRef]
- Negewo, T.F.; Sarma, A.K. Estimation of water yield under baseline and future climate change scenarios in Genale Watershed, Genale Dawa River Basin, Ethiopia, using SWAT model. J. Hydrol. Eng. 2021, 26, 05020051. [Google Scholar] [CrossRef]
- Psomiadis, E.; Soulis, K.X.; Efthimiou, N. Using SCS-CN and earth observation for the comparative assessment of the hydrological effect of gradual and abrupt spatiotemporal land cover changes. Water 2020, 12, 1386. [Google Scholar] [CrossRef]
- Garen, D.C.; Moore, D.S. Curve number hydrology in water quality modeling: Uses, abuses, and future directions 1. J. Am. Water Resour. Assoc. 2005, 41, 377–388. [Google Scholar] [CrossRef]
- Woodward, D.E.; Hoeft, C.C.; Hawkins, R.H.; Van Mullem, J.; Ward, T.J. Discussion of “Modifications to SCS-CN method for long-term hydrologic simulation” by K. Geetha, S.K. Mishra, T.I. Eldho, A.K. Rastogi, and R. P. Pandey. J. Irrig. Drain. Eng. 2010, 136, 444–446. [Google Scholar] [CrossRef]
- Verma, S.; Verma, R.K.; Mishra, S.K.; Singh, A.; Jayaraj, G.K. A revisit of NRCS-CN inspired models coupled with RS and GIS for runoff estimation. Hydrol. Sci. J. 2017, 62, 1891–1930. [Google Scholar] [CrossRef]
- Eli, R.N.; Lamont, S.J. Curve numbers and urban runoff modeling—Application limitations. In Proceedings of the 2010 International Low Impact Development Conference, San Francisco, CA, USA, 11–14 April 2010. [Google Scholar]
- Mishra, S.K.; Singh, V.P. Soil Conservation Service Curve Number (SCS-CN) Methodology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Williams, J.R.; LaSeur, W.V. Water yield model using SCS curve numbers. J. Hydraul. Div. 1976, 102, 1241–1253. [Google Scholar] [CrossRef]
- Michel, C.; Andréassian, V.; Perrin, C. Soil conservation service curve number method: How to mend a wrong soil moisture accounting procedure? Water Resour. Res. 2005, 41, W02011. [Google Scholar] [CrossRef]
- Durbude, D.G.; Jain, M.K.; Mishra, S.K. Long-term hydrologic simulation using SCS-CN-based improved soil moisture accounting procedure. Hydrol. Process. 2011, 25, 561–579. [Google Scholar] [CrossRef]
- Singh, P.K.; Mishra, S.K.; Berndtsson, R.; Jain, M.K.; Pandey, R.P. Development of a modified SMA based MSCS-CN model for runoff estimation. Water Resour. Manag. 2015, 29, 4111–4127. [Google Scholar] [CrossRef]
- Shi, W.; Huang, M.; Gongadze, K.; Wu, L. A modified SCS-CN method incorporating storm duration and antecedent soil moisture estimation for runoff prediction. Water Resour. Manag. 2017, 31, 1713–1727. [Google Scholar] [CrossRef]
- Shi, W.; Wang, N. Improved SMA-based SCS-CN method incorporating storm duration for runoff prediction on the Loess Plateau, China. Hydrol. Res. 2020, 51, 443–455. [Google Scholar] [CrossRef]
- Verma, S.; Singh, P.K.; Mishra, S.K.; Singh, V.P.; Singh, V.; Singh, A. Activation soil moisture accounting (ASMA) for runoff estimation using soil conservation service curve number (SCS-CN) method. J. Hydrol. 2020, 589, 125114. [Google Scholar] [CrossRef]
- Horton, R.E. Analysis of runoff-plat experiments with varying infiltration-capacity. Trans. Am. Geophys. Union 1939, 20, 693–711. [Google Scholar] [CrossRef]
- Green, W.H.; Ampt, G.A. Studies on soil physics. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar] [CrossRef] [Green Version]
- USACE. Hydrologic Modeling System HEC-HMS User’s Manual; U.S. Army Corps of Engineers: Hanover, NH, USA, 2016. [Google Scholar]
- Akan, A.O. Horton infiltration equation revisited. J. Irrig. Drain. Eng. 1992, 118, 828–830. [Google Scholar] [CrossRef]
- Bauer, S.W. A modified Horton equation for infiltration during intermittent rainfall. Hydrol. Sci. J. 1974, 19, 219–225. [Google Scholar] [CrossRef]
- Aron, G. Adaptation of Horton and SCS infiltration equations to complex storms. J. Irrig. Drain. Eng. 1992, 118, 275–284. [Google Scholar] [CrossRef]
- Wang, N.; Chu, X. Revised Horton model for event and continuous simulations of infiltration. J. Hydrol. 2020, 589, 125215. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model User’s Manual, Version 5.0; U.S. Environmental Protection Agency: Cincinatti, OH, USA, 2010. [Google Scholar]
- Mein, R.G.; Larson, C.L. Modeling infiltration during a steady rain. Water Resour. Res. 1973, 9, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Chu, S.T. Infiltration during an unsteady rain. Water Resour. Res. 1978, 14, 461–466. [Google Scholar] [CrossRef]
- Chu, X.; Mariño, M.A. Simulation of infiltration and surface runoff: A windows-based hydrologic modeling system HYDROL-INF. In Proceedings of the World Environmental and Water Resource Congress 2006, Omaha, NE, USA, 21–25 May 2006. [Google Scholar]
- Deng, P.; Zhu, J.T. Analysis of effective Green-Ampt hydraulic parameters for vertically layered soils. J. Hydrol. 2016, 538, 705–712. [Google Scholar] [CrossRef]
- Mohammadzadeh-Habili, J.; Heidarpour, M. Application of the Green-Ampt model for infiltration into layered soils. J. Hydrol. 2015, 527, 824–832. [Google Scholar] [CrossRef]
- Stewart, R.D. A Dynamic Multidomain Green-Ampt Infiltration Model. Water Resour. Res. 2018, 54, 6844–6859. [Google Scholar] [CrossRef]
- Rawls, W.J.; Brakensiek, D.L.; Miller, N. Green-Ampt infiltration parameters from soils data. J. Hydraul. Eng. 1983, 109, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Risse, L.M.; Nearing, M.A.; Savabi, M.R. Determining the Green-Ampt effective hydraulic conductivity from rainfall–runoff data for the WEPP model. Trans. ASAE 1994, 37, 411–418. [Google Scholar] [CrossRef]
- Risse, L.M.; Liu, B.Y.; Nearing, M.A. Using curve numbers to determine baseline values of Green-Ampt effective hydraulic conductivities. Water Resour. Bull. 1995, 31, 147–158. [Google Scholar] [CrossRef]
- Corradini, C.; Melone, F.; Smith, R.E. A unified model for infiltration and redistribution during complex rainfall patterns. J. Hydrol. 1997, 192, 104–124. [Google Scholar] [CrossRef]
- Brakensiek, D.L.; Engleman, R.L.; Rawls, W.J. Variation within texture classes of soil water parameters. Trans. ASAE 1981, 24, 335–339. [Google Scholar] [CrossRef]
- Risse, L.M.; Nearing, M.A.; Zhang, X.C. Variability in Green-Ampt effective hydraulic conductivity under fallow conditions. J. Hydrol. 1995, 169, 1–24. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Chen, W.W.; Zhang, Y.M. Modification and evaluation of Green-Ampt model: Dynamic capillary pressure and broken-line wetting profile. J. Hydrol. 2019, 575, 1123–1132. [Google Scholar] [CrossRef]
- Woolridge, D.D.; Niemann, J.D.; Perry, M.A.; Bauer, K.E.; McCormick, W.T., III. Identifying runoff production mechanisms for dam safety applications in the Colorado front range. J. Hydrol. Eng. 2020, 25, 05020016. [Google Scholar] [CrossRef]
- Chiang, S.; Chang, C.H.; Chen, W.B. Comparison of rainfall-runoff simulation between support vector regression and HEC-HMS for a rural watershed in Taiwan. Water 2022, 14, 191. [Google Scholar] [CrossRef]
- Sahu, M.K.; Shwetha, H.R.; Dwarakish, G.S. State-of-the-art hydrological models and application of the HEC-HMS model: A review. Model. Earth Syst. Environ. 2023, 1–23. [Google Scholar] [CrossRef]
- Irvin, B.C., IV; Niemann, J.D.; Perry, M.A.; Bauer, K.E.; McCormick, W.T., III. Parameter estimation for models of major rainfall induced floods in ungaged mountain basins of Colorado. J. Hydrol. Reg. Stud. 2023, 45, 101300. [Google Scholar] [CrossRef]
- Gabellani, S.; Silvestro, F.; Rudari, R.; Boni, G. General calibration methodology for a combined Horton-SCS infiltration scheme in flash flood modeling. Nat. Hazards Earth Syst. Sci. 2008, 8, 1317–1327. [Google Scholar] [CrossRef]
- Chu, X.; Steinman, A. Event and continuous hydrologic modeling with HEC-HMS. J. Irrig. Drain. Eng. 2009, 135, 119–124. [Google Scholar] [CrossRef]
- Grimaldi, S.; Petroselli, A.; Romano, N. Curve-Number/Green-Ampt mixed procedure for streamflow predictions in ungauged basins: Parameter sensitivity analysis. Hydrol. Process. 2013, 27, 1265–1275. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Liu, C. A combined rainfall infiltration model based on Green-Ampt and SCS-curve number. Hydrol. Process. 2015, 29, 2628–2634. [Google Scholar] [CrossRef]
- Brevnova, E.V. Green-Ampt Infiltration Model Parameter Determination Using SCS Curve Number (CN) and Soil Texture Class, and Application to the SCS Runoff Model. Master’s Thesis, West Virginia University, Morgantown, WV, USA, 2001. [Google Scholar]
- Advanced Land Observing Satellite. Available online: https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm (accessed on 21 February 2023).
- ScienceBase-Catalog. Available online: https://www.sciencebase.gov/catalog/item/5dfc2280e4b0b207a9fe8235 (accessed on 25 February 2023).
- Web Soil Survey. Available online: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm (accessed on 25 February 2023).
- NRCS. National Engineering Handbook: Part 630—Hydrology; USDA Soil Conservation Service: Washington, DC, USA, 2004. [Google Scholar]
- North Dakota Agricultural Weather Network. Available online: https://ndawn.ndsu.nodak.edu/station-info.html?station=25 (accessed on 2 March 2023).
- National Water Information System. Available online: https://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=05060500 (accessed on 6 March 2023).
- Lyne, V.; Hollick, M. Stochastic time-variable rainfall-runoff modelling. In Proceedings of the Institute of Engineers Australia National Conference, Perth, Australia, 22–26 October 1979. [Google Scholar]
- Ladson, A.R.; Brown, R.; Neal, B.; Nathan, R. A standard approach to baseflow separation using the Lyne and Hollick filter. Australas. J. Water Resour. 2013, 17, 25–34. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Petroselli, A.; Grimaldi, S.; Romano, N. Curve-Number/Green-Ampt mixed procedure for net rainfall estimation: A case study of the Mignone watershed, IT. Procedia Environ. Sci. 2013, 19, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Butts, M.B.; Payne, J.T.; Kristensen, M.; Madsen, H. An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. J. Hydrol. 2004, 298, 242–266. [Google Scholar] [CrossRef]
- Čerkasova, N.; Umgiesser, G.; Ertürk, A. Modelling framework for flow, sediments and nutrient loads in a large transboundary river watershed: A climate change impact assessment of the Nemunas River watershed. J. Hydrol. 2021, 598, 126422. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Chu, X. New model for simulating hydrologic processes under influence of surface depressions. J. Hydrol. Eng. 2019, 24, 04019008. [Google Scholar] [CrossRef]
- Nasab, M.T.; Chu, X. Macro-HyProS: A new macro-scale hydrologic processes simulator for depression-dominated cold climate regions. J. Hydrol. 2020, 580, 124366. [Google Scholar] [CrossRef]
- Zeng, L.; Chu, X. Integrating depression storages and their spatial distribution in watershed-scale hydrologic modeling. Adv. Water Resour. 2021, 151, 103911. [Google Scholar] [CrossRef]
- Wang, N.; Chu, X.; Zhang, X. Functionalities of surface depressions in runoff routing and hydrologic connectivity modeling. J. Hydrol. 2021, 593, 125870. [Google Scholar] [CrossRef]
- De Luca, D.L.; Petroselli, A. STORAGE (STOchastic RAinfall GEnerator): A user-friendly software for generating long and high-resolution rainfall time series. Hydrology 2021, 8, 76. [Google Scholar] [CrossRef]
Event No. | Rainfall Depth (cm) | Effective Hydraulic Conductivity (cm/h) | Capillary Suction Head (cm) | Saturated Water Content | Initial Water Content | Soil Texture | CN | S (cm) | Sa (cm) | V0 (cm) |
---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
1 | 8 | 2.450 | 7.773 | 0.4533 | 0.173 | Sandy Loam | 60.00 | 16.93 | 5.59 | 2.20 |
2 | 16 | 1.226 | 9.745 | |||||||
3 | 24 | 0.653 | 11.972 | |||||||
4 | 32 | 0.524 | 12.864 | |||||||
5 | 8 | 1.269 | 9.636 | 0.501 | 0.332 | Silt Loam | 70.00 | 10.89 | 3.59 | 1.42 |
6 | 16 | 0.394 | 14.119 | |||||||
7 | 24 | 0.306 | 15.342 | |||||||
8 | 32 | 0.292 | 15.578 | |||||||
9 | 8 | 0.201 | 17.602 | 0.464 | 0.316 | Clay Loam | 80.00 | 6.35 | 2.10 | 0.83 |
10 | 16 | 0.133 | 20.150 | |||||||
11 | 24 | 0.136 | 19.970 | |||||||
12 | 32 | 0.140 | 19.805 | |||||||
13 | 8 | 0.025 | 34.826 | 0.479 | 0.320 | Silty Clay | 90.00 | 2.82 | 0.93 | 0.37 |
14 | 16 | 0.027 | 33.699 | |||||||
15 | 24 | 0.029 | 33.258 | |||||||
16 | 32 | 0.029 | 33.971 |
Period | Event No. | Simulation Period | Rainfall Event Period | Event Duration (Hours) | P5 (cm) | CR (cm) | DR (cm) |
---|---|---|---|---|---|---|---|
Calibration | 1 | 8 July 2019 19:00–16 July 2019 18:00 | 8 July 2019 19:00–9 July 2019 20:00 | 26 | 1.30 | 5.59 | 1.06 |
2 | 14 August 2020 7:00–20 August 2020 21:00 | 14 August 2020 7:00 –14 August 2020 15:00 | 9 | 0.30 | 7.19 | 1.04 | |
Validation | 3 | 22 April 2022 4:00–29 April 2022 8:00 | 22 April 2022 4:00–24 April 2022 14:00 | 59 | 0.28 | 7.26 | 1.34 |
4 | 29 April 2022 9:00–7 May 2022 20:00 | 29 April 2022 9:00–30 April 2022 20:00 | 36 | 1.32 | 5.23 | 0.94 | |
5 | 12 May 2022 19:00–18 May 2022 0:00 | 12 May 2022 19:00–12 May 2202 23:00 | 5 | 5.00 | 1.07 | 0.30 |
Calibration Parameters | Range | Initial Value | Calibrated Value |
---|---|---|---|
CN | 0–100 [11] | 68.00 | 61.00 |
α | 0–1 [15] | 0.33 | 0.26 |
β | 0–1 [15] | 0.10 | 0.17 |
Period | Event No. | MCN-SMA | MCN-TVR | ||
---|---|---|---|---|---|
NSE | RSR | NSE | RSR | ||
Calibration | 1 | 0.857 | 0.377 | 0.880 | 0.346 |
2 | 0.854 | 0.380 | 0.838 | 0.402 | |
Validation | 3 | 0.109 | 0.941 | 0.651 | 0.589 |
4 | 0.135 | 0.928 | 0.830 | 0.411 | |
5 | 0.899 | 0.317 | 0.906 | 0.305 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Chu, X. A Modified SCS Curve Number Method for Temporally Varying Rainfall Excess Simulation. Water 2023, 15, 2374. https://doi.org/10.3390/w15132374
Wang N, Chu X. A Modified SCS Curve Number Method for Temporally Varying Rainfall Excess Simulation. Water. 2023; 15(13):2374. https://doi.org/10.3390/w15132374
Chicago/Turabian StyleWang, Ning, and Xuefeng Chu. 2023. "A Modified SCS Curve Number Method for Temporally Varying Rainfall Excess Simulation" Water 15, no. 13: 2374. https://doi.org/10.3390/w15132374
APA StyleWang, N., & Chu, X. (2023). A Modified SCS Curve Number Method for Temporally Varying Rainfall Excess Simulation. Water, 15(13), 2374. https://doi.org/10.3390/w15132374