Removal of Membrane Fouling and Control of Halogenated By-Products by a Combined Cleaning Process with Peroxides and Sodium Hypochlorite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Agents
2.2. Experimental Procedures
2.3. Analytical Methods
3. Results and Discussion
3.1. Removal of Membrane Fouling by the Combination of Peroxide and NaClO
3.2. Formation of Halogenated By-Product in Different Combined Processes
3.3. Effect of Cleaning Time and Temperature on Halogenated By-Products Generation
4. Conclusions
- (1)
- The composite pollutant composed of HA, BSA, and SA caused serious membrane fouling during the filtration process. Combined cleaning processes of peroxide and NaClO effectively removed pollutants and restored membrane flux, with the flux for the cleaned membrane being similar to the initial membrane flux.
- (2)
- Halogenated by-products, including TCM, CH, DCAN, 1,1-DCP, TCNM, TCP, and HAAs, were formed during the cleaning of the membrane by NaClO. Compared with the combined NaClO–peroxide cleaning process, the combined peroxide–NaClO cleaning process resulted in a lower generation of halogenated by-products, and PDS–NaClO cleaning showed the best performance for the control of halogenated by-products.
- (3)
- In the PDS–NaClO cleaning process, the increase in reaction time from 1 h to 4 h mainly promoted the concentration of TCM, CH, DCAA, and TCAA, while TCM, CH, DCAN, DCAA, and TCAA had a relatively high production with the increase in reaction temperature from 15 °C to 35 °C. Most by-products exhibit a positive correlation with both cleaning time and temperature.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, H.; Zhu, Y.; Yu, H.; Qu, F.; Zhou, Z.; Li, X.; Yang, Y.; Tang, X.; Liang, H. Long-term operation of ultrafiltration membrane in full-scale drinking water treatment plants in China: Characteristics of membrane performance. Desalination 2022, 543, 116122. [Google Scholar] [CrossRef]
- Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.-L.; Han, Z.-S.; Li, G.-B. Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination 2011, 272, 1–8. [Google Scholar] [CrossRef]
- Tian, J.-Y.; Ernst, M.; Cui, F.; Jekel, M. Correlations of relevant membrane foulants with UF membrane fouling in different waters. Water Res. 2013, 47, 1218–1228. [Google Scholar] [CrossRef]
- Wan, Y.; Xie, P.; Wang, Z.; Ding, J.; Wang, J.; Wang, S.; Wiesner, M.R. Comparative study on the pretreatment of algae-laden water by UV/persulfate, UV/chlorine, and UV/H2O2: Variation of characteristics and alleviation of ultrafiltration membrane fouling. Water Res. 2019, 158, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Goh, P.; Lau, W.; Othman, M.; Ismail, A. Membrane fouling in desalination and its mitigation strategies. Desalination 2018, 425, 130–155. [Google Scholar] [CrossRef]
- Ly, Q.V.; Nghiem, L.D.; Cho, J.; Hur, J. Insights into the roles of recently developed coagulants as pretreatment to remove effluent organic matter for membrane fouling mitigation. J. Membr. Sci. 2018, 564, 643–652. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Hashaikeh, R.; Hilal, N. Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures. Desalination 2019, 470, 114118. [Google Scholar] [CrossRef]
- Wang, Z.; Wan, Y.; Xie, P.; Zhou, A.; Ding, J.; Wang, J.; Zhang, L.; Wang, S.; Zhang, T.C. Ultraviolet/persulfate (UV/PS) pretreatment of typical natural organic matter (NOM): Variation of characteristics and control of membrane fouling. Chemosphere 2019, 214, 136–147. [Google Scholar] [CrossRef]
- Deng, L.; Ngo, H.-H.; Guo, W.; Zhang, H. Pre-coagulation coupled with sponge-membrane filtration for organic matter removal and membrane fouling control during drinking water treatment. Water Res. 2019, 157, 155–166. [Google Scholar] [CrossRef]
- Asif, M.B.; Zhang, Z. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects. Chem. Eng. J. 2021, 418, 129481. [Google Scholar] [CrossRef]
- Ennaceri, H.; Fischer, K.; Schulze, A.; Moheimani, N.R. Membrane fouling control for sustainable microalgal biodiesel production: A review. Renew. Sustain. Energy Rev. 2022, 161, 112335. [Google Scholar] [CrossRef]
- Liu, H.; Gu, J.; Wang, S.; Zhang, M.; Liu, Y. Performance, membrane fouling control and cost analysis of an integrated anaerobic fixed-film MBR and reverse osmosis process for municipal wastewater reclamation to NEWater-like product water. J. Membr. Sci. 2020, 593, 117442. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Luo, J.; Wan, Y. A novel paradigm of photocatalytic cleaning for membrane fouling removal. J. Membr. Sci. 2022, 641, 119859. [Google Scholar] [CrossRef]
- Aktij, S.A.; Taghipour, A.; Rahimpour, A.; Mollahosseini, A.; Tiraferri, A. A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes. Ultrasonics 2020, 108, 106228. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.Y.; Zhu, X.; Herzberg, M.; Walker, S.; Jassby, D. Impact of physical and chemical cleaning agents on specific biofilm components and the implications for membrane biofouling management. Ind. Eng. Chem. Res. 2018, 57, 3359–3370. [Google Scholar] [CrossRef]
- Liu, J.; He, K.; Zhang, J.; Li, C.; Zhang, Z. Coupling ferrate pretreatment and in-situ ozonation/ceramic membrane filtration for wastewater reclamation: Water quality and membrane fouling. J. Membr. Sci. 2019, 590, 117310. [Google Scholar] [CrossRef]
- Ham, S.-Y.; Kim, H.-S.; Jang, Y.; Ryoo, H.-S.; Lee, J.-H.; Park, J.-H.; Park, H.-D. Synergistic control of membrane biofouling using linoleic acid and sodium hypochlorite. Chemosphere 2021, 268, 128802. [Google Scholar] [CrossRef]
- Yue, X.; Koh YK, K.; Ng, H.Y. Membrane fouling mitigation by NaClO-assisted backwash in anaerobic ceramic membrane bioreactors for the treatment of domestic wastewater. Bioresour. Technol. 2018, 268, 622–632. [Google Scholar] [CrossRef]
- Jiang, C.-K.; Tang, X.; Tan, H.; Feng, F.; Xu, Z.-M.; Mahmood, Q.; Zeng, W.; Min, X.-B.; Tang, C.-J. Effect of scrubbing by NaClO backwashing on membrane fouling in anammox MBR. Sci. Total Environ. 2019, 670, 149–157. [Google Scholar] [CrossRef]
- Rong, C.; Wang, T.; Luo, Z.; Hu, Y.; Kong, Z.; Qin, Y.; Hanaoka, T.; Ito, M.; Kobayashi, M.; Li, Y.-Y. Pilot plant demonstration of temperature impacts on the methanogenic performance and membrane fouling control of the anaerobic membrane bioreactor in treating real municipal wastewater. Bioresour. Technol. 2022, 354, 127167. [Google Scholar] [CrossRef]
- Ding, J.; Wang, S.; Xie, P.; Zou, Y.; Wan, Y.; Chen, Y.; Wiesner, M.R. Chemical cleaning of algae-fouled ultrafiltration (UF) membrane by sodium hypochlorite (NaClO): Characterization of membrane and formation of halogenated by-products. J. Membr. Sci. 2020, 598, 117662. [Google Scholar] [CrossRef]
- Cai, W.; Liu, J.; Zhang, X.; Ng, W.J.; Liu, Y. Generation of dissolved organic matter and byproducts from activated sludge during contact with sodium hypochlorite and its implications to on-line chemical cleaning in MBR. Water Res. 2016, 104, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Woo, Y.C.; Lee, J.J.; Tijing, L.D.; Shon, H.K.; Yao, M.; Kim, H.-S. Characteristics of membrane fouling by consecutive chemical cleaning in pressurized ultrafiltration as pre-treatment of seawater desalination. Desalination 2015, 369, 51–61. [Google Scholar] [CrossRef]
- Tian, J.-Y.; Chen, Z.-L.; Yang, Y.-L.; Liang, H.; Nan, J.; Li, G.-B. Consecutive chemical cleaning of fouled PVC membrane using NaOH and ethanol during ultrafiltration of river water. Water Res. 2010, 44, 59–68. [Google Scholar] [CrossRef]
- Ibrar, I.; Yadav, S.; Ganbat, N.; Samal, A.K.; Altaee, A.; Zhou, J.L.; Nguyen, T.V. Feasibility of H2O2 cleaning for forward osmosis membrane treating landfill leachate. J. Environ. Manag. 2021, 294, 113024. [Google Scholar] [CrossRef]
- Cao, Y.; Qiu, W.; Zhao, Y.; Li, J.; Jiang, J.; Yang, Y.; Pang, S.-Y.; Liu, G. The degradation of chloramphenicol by O3/PMS and the impact of O3-based AOPs pre-oxidation on dichloroacetamide generation in post-chlorination. Chem. Eng. J. 2020, 401, 126146. [Google Scholar] [CrossRef]
- Luo, J.; Liu, T.; Zhang, D.; Yin, K.; Wang, D.; Zhang, W.; Liu, C.; Yang, C.; Wei, Y.; Wang, L. The individual and Co-exposure degradation of benzophenone derivatives by UV/H2O2 and UV/PDS in different water matrices. Water Res. 2019, 159, 102–110. [Google Scholar] [CrossRef]
- Ding, J.; Xiao, H.; Huang, X.; Zou, Y.; Ye, Z.; Wang, S.; Xie, P.; Chen, Y.; Ma, J. Application of heat-activated peroxydisulfate process for the chemical cleaning of fouled ultrafiltration membranes. Chin. Chem. Lett. 2023, 108316, in press. [Google Scholar] [CrossRef]
- Ding, J.; Nie, H.; Wang, S.; Chen, Y.; Wan, Y.; Wang, J.; Xiao, H.; Yue, S.; Ma, J.; Xie, P. Transformation of acetaminophen in solution containing both peroxymonosulfate and chlorine: Performance, mechanism, and disinfection by-product formation. Water Res. 2021, 189, 116605. [Google Scholar] [CrossRef]
- Wang, S.; Chew, J.W.; Liu, Y. An environmentally sustainable approach for online chemical cleaning of MBR with activated peroxymonosulfate. J. Membr. Sci. 2020, 600, 117872. [Google Scholar] [CrossRef]
- He, X.; Li, B.; Wang, P.; Ma, J. Novel H2O2–MnO2 system for efficient physico-chemical cleaning of fouled ultrafiltration membranes by simultaneous generation of reactive free radicals and oxygen. Water Res. 2019, 167, 115111. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Ma, J.; Liu, W.; Zou, J.; Yue, S. Impact of UV/persulfate pretreatment on the formation of disinfection byproducts during subsequent chlorination of natural organic matter. Chem. Eng. J. 2015, 269, 203–211. [Google Scholar] [CrossRef]
- Cheng, X.; Wu, D.; Liang, H.; Zhu, X.; Tang, X.; Gan, Z.; Xing, J.; Luo, X.; Li, G. Effect of sulfate radical-based oxidation pretreatments for mitigating ceramic UF membrane fouling caused by algal extracellular organic matter. Water Res. 2018, 145, 39–49. [Google Scholar] [CrossRef]
- Gokulakrishnan, S.; Mohammed, A.; Prakash, H. Determination of persulphates using N, N-diethyl-p-phenylenediamine as colorimetric reagent: Oxidative coloration and degradation of the reagent without bactericidal effect in water. Chem. Eng. J. 2016, 286, 223–231. [Google Scholar] [CrossRef]
- Bader, H.; Sturzenegger, V.; Hoigne, J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N, N-diethyl-p-phenylenediamine (DPD). Water Res. 1988, 22, 1109–1115. [Google Scholar] [CrossRef]
- Long, X.; Meng, Q.; Zhang, G. Application of biosurfactant rhamnolipid for cleaning of UF membranes. J. Memb. Sci. 2014, 457, 113–119. [Google Scholar] [CrossRef]
- Domino, M.; Pepich, B.; Munch, D.; Fair, P.; Xie, Y. Method 552.3 Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Microextraction, Derivatization, and Gas Chromatography with Electron Capture Detection. Environmental Protection Agency (EPA). Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=901V0400.txt (accessed on 3 July 2023).
- Munch, D.J.; Hautman, D.P. Method 551.1: Determination of Chlorination Disinfection Byproducts, Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by Liquid-Liquid Extraction and Gas Chromatography with Electron-Capture Detection: Methods for the Determination of Organic Compounds in Drinking Water. 1995. Available online: https://www.epa.gov/sites/default/files/2015-06/documents/epa-551.1.pdf (accessed on 3 July 2023).
- Wang, Z.; Ding, J.; Xie, P.; Chen, Y.; Wan, Y.; Wang, S. Formation of halogenated by-products during chemical cleaning of humic acid-fouled UF membrane by sodium hypochlorite solution. Chem. Eng. J. 2018, 332, 76–84. [Google Scholar] [CrossRef]
- Crebelli, R.; Conti, L.; Monarca, S.; Feretti, D.; Zerbini, I.; Zani, C.; Veschetti, E.; Cutilli, D.; Ottaviani, M. Genotoxicity of the disinfection by-products resulting from peracetic acid-or hypochlorite-disinfected sewage wastewater. Water Res. 2005, 39, 1105–1113. [Google Scholar] [CrossRef]
- Madaeni, S.; Samieirad, S. Chemical cleaning of reverse osmosis membrane fouled by wastewater. Desalination 2010, 257, 80–86. [Google Scholar] [CrossRef]
- Ang, W.S.; Lee, S.; Elimelech, M. Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes. J. Membr. Sci. 2006, 272, 198–210. [Google Scholar] [CrossRef]
- Ding, S.; Deng, Y.; Bond, T.; Fang, C.; Cao, Z.; Chu, W. Disinfection byproduct formation during drinking water treatment and distribution: A review of unintended effects of engineering agents and materials. Water Res. 2019, 160, 313–329. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Ling, L.; Dionysiou, D.D.; Wang, Y.; Huang, J.; Guo, K.; Li, X.; Fang, J. Chlorate formation mechanism in the presence of sulfate radical, chloride, bromide and natural organic matter. Environ. Sci. Technol. 2018, 52, 6317–6325. [Google Scholar] [CrossRef] [PubMed]
- Gallard, H.; Von Gunten, U. Chlorination of natural organic matter: Kinetics of chlorination and of THM formation. Water Res. 2002, 36, 65–74. [Google Scholar] [CrossRef]
- To, T.-L.; Fadul, M.J.; Shu, X. Singlet oxygen triplet energy transfer-based imaging technology for mapping protein–protein proximity in intact cells. Nat. Commun. 2014, 5, 4072. [Google Scholar] [CrossRef] [Green Version]
- Brame, J.; Long, M.; Li, Q.; Alvarez, P. Trading oxidation power for efficiency: Differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen. Water Res. 2014, 60, 259–266. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Singlet-oxygen generation in alkaline periodate solution. Environ. Sci. Technol. 2015, 49, 14392–14400. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.D.; Mitch, W.A. Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: A critical review of nitrogenous disinfection byproduct formation pathways. Environ. Sci. Technol. 2012, 46, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, X.; Yang, M.; Liu, J.; Li, W.; Graham, N.J.; Li, X.; Yang, B. Three-step effluent chlorination increases disinfection efficiency and reduces DBP formation and toxicity. Chemosphere 2017, 168, 1302–1308. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Ioannidi, A.A.; Mantzavinos, D.; Frontistis, Z. Heat-activated persulfate for the degradation of micropollutants in water: A comprehensive review and future perspectives. J. Environ. Manag. 2022, 318, 115568. [Google Scholar] [CrossRef]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Yang, H.-W.; Wang, X.-M.; Fu, J.; Xie, Y.F. Formation of disinfection by-products: Effect of temperature and kinetic modeling. Chemosphere 2013, 90, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Schmalz, C.; Zhou, J.; Zwiener, C.; Chang, V.W.-C.; Ge, L.; Wan, M.P. An insight of disinfection by-product (DBP) formation by alternative disinfectants for swimming pool disinfection under tropical conditions. Water Res. 2016, 101, 535–546. [Google Scholar] [CrossRef] [PubMed]
Category | Abbreviation | Compounds | Abbreviation | Molecular Formula |
---|---|---|---|---|
Trihalomethane | THM | Chloroform | TCM | CHCl3 |
Haloacetic acid | HAA | Monochloroacetic acid | MCAA | C2H3ClO2 |
Dichloroacetic acid | DCAA | C2H2Cl2O2 | ||
Trichloroacetic acid | TCAA | C2HCl3O2 | ||
Haloketone | HK | 1,1-dichloro-2-propanon | 1,1-DCP | C3H4Cl2O |
1,1,1-trichloro-2-propanone | 1,1,1-TCP | C3H3Cl3O | ||
Haloaldehyde | HA | Chloral hydrate | CH | C2HCl3O |
Haloacetonitriles | HANs | Dichloroacetonitrile | DCAN | C2HCl2N |
Trihalonitromethane | THNM | Trichloronitromethane | TCNM | CCl3NO2 |
P (t < T, t > T), α = 0.05, n = 2 | |||
---|---|---|---|
PDS–NaClO | PMS–NaClO | H2O2–NaClO | |
TCM | 0.0012 | 0.0012 | 0.0014 |
CH | 0.0033 | 0.0034 | 0.0397 |
DCAN | 0.0006 | 0.0002 | 0.0001 |
1,1-DCP | 0.0118 | 0.0367 | 0.4283 |
TCNM | 0.0037 | 0.0082 | 0.0497 |
TCP | 0.0002 | 0.0032 | 0.0559 |
MCAA | 0.0019 | 0.0220 | 0.0017 |
DCAA | 0.0003 | 0.0029 | 0.0017 |
TCAA | 0.0001 | 0.0013 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, J.; Wan, Y.; Zou, Y.; Wang, S.; Huang, X.; Xie, P. Removal of Membrane Fouling and Control of Halogenated By-Products by a Combined Cleaning Process with Peroxides and Sodium Hypochlorite. Water 2023, 15, 2498. https://doi.org/10.3390/w15132498
Ding J, Wan Y, Zou Y, Wang S, Huang X, Xie P. Removal of Membrane Fouling and Control of Halogenated By-Products by a Combined Cleaning Process with Peroxides and Sodium Hypochlorite. Water. 2023; 15(13):2498. https://doi.org/10.3390/w15132498
Chicago/Turabian StyleDing, Jiaqi, Ying Wan, Yujia Zou, Songlin Wang, Xiaolong Huang, and Pengchao Xie. 2023. "Removal of Membrane Fouling and Control of Halogenated By-Products by a Combined Cleaning Process with Peroxides and Sodium Hypochlorite" Water 15, no. 13: 2498. https://doi.org/10.3390/w15132498
APA StyleDing, J., Wan, Y., Zou, Y., Wang, S., Huang, X., & Xie, P. (2023). Removal of Membrane Fouling and Control of Halogenated By-Products by a Combined Cleaning Process with Peroxides and Sodium Hypochlorite. Water, 15(13), 2498. https://doi.org/10.3390/w15132498