Monitoring, Modeling and Planning Best Management Practices (BMPs) in the Atwood and Tappan Lake Watersheds with Stakeholders Engagements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil and Water Assessment Tool (SWAT)
2.3. SWAT Model Input
2.4. Model Calibration and Validation
2.5. Hydrologic and Water Quality Monitoring
2.6. Best Management Practices Scenarios
3. Results and Discussion
3.1. Model Calibration
3.2. Water Quality Calibration
3.3. BMPs Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs—A User Manual. In Archives of Orthopaedic and Trauma Surgery; Eawag: Dübendorf, Switzerland, 2015. [Google Scholar]
- Abimbola, O.; Mittelstet, A.; Messer, T.; Berry, E.; van Griensven, A. Modeling and Prioritizing Interventions Using Pollution Hotspots for Reducing Nutrients, Atrazine and e. Coli Concentrations in a Watershed. Sustainability 2021, 13, 103. [Google Scholar] [CrossRef]
- Ahsan, A.; Das, S.K.; Khan, M.H.R.B.; Ng, A.W.; Al-Ansari, N.; Ahmed, S.; Imteaz, M.; Tariq, M.A.; Shafiquzzaman, M. Modeling the Impacts of Best Management Practices (BMPs) on Pollution Reduction in the Yarra River Catchment, Australia. Appl. Water Sci. 2023, 13, 98. [Google Scholar] [CrossRef]
- Alam, M.J.; Dutta, D. Modelling of Nutrient Pollution Dynamics in River Basins: A Review with a Perspective of a Distributed Modelling Approach. Geosciences 2021, 11, 369. [Google Scholar] [CrossRef]
- Almeida, R.A.; Pereira, S.B.; Pinto, D.B. Calibration and Validation of the SWAT Hydrological Model for the Mucuri River Basin. Eng. Agric. 2018, 38, 55–63. [Google Scholar] [CrossRef]
- Almendinger, J.E.; Ulrich, J.S. Use of SWAT to Estimate Spatial Scaling of Phosphorus Export Coefficients and Load Reductions Due to Agricultural BMPS. J. Am. Water Resour. Assoc. 2017, 53, 547–561. [Google Scholar] [CrossRef]
- Asl-Rousta, B.; Mousavi, S.J.; Ehtiat, M.; Ahmadi, M. SWAT-Based Hydrological Modelling Using Model Selection Criteria. Water Resour. Manag. 2018, 32, 2181–2197. [Google Scholar] [CrossRef]
- Avesani, D.; Galletti, A.; Piccolroaz, S.; Bellin, A.; Majone, B. A dual-layer MPI continuous large-scale hydrological model including Human Systems. Environ. Model. Softw. 2021, 139, 105003. [Google Scholar] [CrossRef]
- Behmel, S.; Damour, M.; Ludwig, R.; Rodriguez, M.J. Water quality monitoring strategies—A review and future perspectives. Sci. Total Environ. 2016, 571, 1312–1329. [Google Scholar] [CrossRef]
- Mirnasl Bonab, S.N. The Impact of Spatial Decision Variables Influencing Crop Rotation on Phosphorus Load Reduction: A Hydrologic Modeling Approach. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2019. [Google Scholar]
- Bradford, L.; Thapa, A.; Duffy, A.; Hassanzadeh, E.; Strickert, G.; Noble, B.; Lindenschmidt, K.E. Incorporating social dimensions in hydrological and water quality modeling to evaluate the effectiveness of agricultural beneficial management practices in a Prairie River Basin. Environ. Sci. Pollut. Res. 2020, 27, 14271–14287. [Google Scholar] [CrossRef]
- Burigato Costa, C.M.D.S.; da Silva Marques, L.; Almeida, A.K.; Leite, I.R.; de Almeida, I.K. Applicability of Water Quality Models around the World—A Review. Environ. Sci. Pollut. Res. 2019, 26, 36141–36162. [Google Scholar] [CrossRef]
- Carpenter, S.R. Phosphorus Control Is Critical to Mitigating Eutrophication. Proc. Natl. Acad. Sci. USA 2008, 105, 11039–11040. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, I.; Chiang, L.; Gitau, M.W.; Mohamed, S. Effectiveness of Best Management Practices in Improving Water Quality in a Pasture-Dominated Watershed. J. Soil Water Conserv. 2010, 65, 424–437. [Google Scholar] [CrossRef]
- Chen, J.; Du, C.; Nie, T.; Han, X.; Tang, S. Study of Non-Point Pollution in the Ashe River Basin Based on SWAT Model with Different Land Use. Water 2022, 14, 2177. [Google Scholar] [CrossRef]
- Cheng, J.; Gong, Y.; Zhu, D.Z.; Xiao, M.; Zhang, Z.; Bi, J.; Wang, K. Modeling the Sources and Retention of Phosphorus Nutrient in a Coastal River System in China Using SWAT. J. Environ. Manag. 2021, 278, 111556. [Google Scholar] [CrossRef] [PubMed]
- Floress, K.; Akamani, K.; Halvorsen, K.E.; Kozich, A.T.; Davenport, M. The role of social science in successfully implementing watershed management strategies. J. Contemp. Water Res. Educ. 2015, 154, 85–105. [Google Scholar] [CrossRef]
- Folle, S.M. Swat Modeling of Sediment, Nutrients, and Pesticides in the Le-Sueur River Watershed, South-Central Minnesota; University of Minnesota: Minneapolis, MN, USA, 2010. [Google Scholar]
- Giri, S.; Nejadhashemi, A.P.; Woznicki, S.A. Evaluation of Targeting Methods for Implementation of Best Management Practices in the Saginaw River Watershed. J. Environ. Manag. 2012, 103, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Gitau, M.W.; Gburek, W.J.; Bishop, P.L. Use of the SWAT Model to Quantify Water Quality Effects of Agricultural BMPs at the Farm-Scale Level. Trans. ASABE 2008, 51, 1925–1936. [Google Scholar] [CrossRef]
- Gu, J.; Cao, Y.; Wu, M.; Song, M.; Wang, L. A Novel Method for Watershed Best Management Practices Spatial Optimal Layout under Uncertainty. Sustainability 2022, 14, 13088. [Google Scholar] [CrossRef]
- Guo, T.; Confesor Jr, R.; Saleh, A.; King, K. Crop Growth, Hydrology, and Water Quality Dynamics in Agricultural Fields across the Western Lake Erie Basin: Multi-Site Verification of the Nutrient Tracking Tool (NTT). Sci. Total Environ. 2020, 726, 138485. [Google Scholar] [CrossRef]
- Han, J.; Xin, Z.; Han, F.; Xu, B.; Wang, L.; Zhang, C.; Zheng, Y. Source Contribution Analysis of Nutrient Pollution in a P-Rich Watershed: Implications for Integrated Water Quality Management. Environ. Pollut. 2021, 279, 116885. [Google Scholar] [CrossRef]
- Hanief, A.; Laursen, A.E. Meeting Updated Phosphorus Reduction Goals by Applying Best Management Practices in the Grand River Watershed, Southern Ontario. Ecol. Eng. 2019, 130, 169–175. [Google Scholar] [CrossRef]
- Hashemi Aslani, Z.; Nasiri, V.; Maftei, C.; Vaseashta, A. Synergetic Integration of SWAT and Multi-Objective Optimization Algorithms for Evaluating Efficiencies of Agricultural Best Management Practices to Improve Water Quality. Land 2023, 12, 401. [Google Scholar] [CrossRef]
- Hively, W.D.; Lee, S.; Sadeghi, A.M.; McCarty, G.W.; Lamb, B.T.; Soroka, A.; Keppler, J.; Yeo, I.Y.; Moglen, G.E. Estimating the Effect of Winter Cover Crops on Nitrogen Leaching Using Cost-Share Enrollment Data, Satellite Remote Sensing, and Soil and Water Assessment Tool (SWAT) Modeling. J. Soil Water Conserv. 2020, 75, 362–375. [Google Scholar] [CrossRef]
- Homayounfar, M.; Muneepeerakul, R.; Martinez, C.J. Navigating Farming-BMP-Policy Interplay through a Dynamical Model. Ecol. Econ. 2023, 205, 107667. [Google Scholar] [CrossRef]
- Hubbart, J.A. Improving Best Management Practice Decisions in Mixed Land Use and/or Municipal Watersheds: Should Approaches Be Standardized? Land 2021, 10, 1402. [Google Scholar] [CrossRef]
- Iavorivska, L.; Veith, T.L.; Cibin, R.; Preisendanz, H.E.; Steinman, A.D. Mitigating Lake Eutrophication through Stakeholder-Driven Hydrologic Modeling of Agricultural Conservation Practices: A Case Study of Lake Macatawa, Michigan. J. Great Lakes Res. 2021, 47, 1710–1725. [Google Scholar] [CrossRef]
- Imani, S.; Delavar, M.; Niksokhan, M.H. Identification of Nutrients Critical Source Areas with SWAT Model under Limited Data Condition. Water Resour. 2019, 46, 128–137. [Google Scholar] [CrossRef]
- James, R.; Eastridge, M.L.; Brown, L.C.; Elder, K.H.; Foster, S.S.; Hoorman, J.J.; Joyce, M.J.; Keener, H.M.; Manci, K.; Monnin, M.J. Ohio Livestock Manure Management Guide; Ohio State University Extension: Columbus, OH, USA, 2006. [Google Scholar]
- Jang, S.S.; Ahn, S.R.; Kim, S.J. Evaluation of Executable Best Management Practices in Haean Highland Agricultural Catchment of South Korea Using SWAT. Agric. Water Manag. 2017, 180, 224–234. [Google Scholar] [CrossRef]
- Jiang, F.; Drohan, P.J.; Cibin, R.; Preisendanz, H.E.; White, C.M.; Veith, T.L. Reallocating Crop Rotation Patterns Improves Water Quality and Maintains Crop Yield. Agric. Syst. 2021, 187, 103015. [Google Scholar] [CrossRef]
- Wilde, F.D. Water-Quality Sampling by the US Geological Survey: Standard Protocols and Procedures; US Geological Survey Fact Sheet: Reston, VA, USA, 2010; Volume 312.
- Kalcic, M.M.; Kirchhoff, C.; Bosch, N.; Muenich, R.L.; Murray, M.; Griffith Gardner, J.; Scavia, D. Engaging Stakeholders to Define Feasible and Desirable Agricultural Conservation in Western Lake Erie Watersheds. Environ. Sci. Technol. 2016, 50, 8135–8145. [Google Scholar] [CrossRef]
- Kreiling, R.M.; Thoms, M.C.; Richardson, W.B. Beyond the Edge: Linking Agricultural Landscapes, Stream Networks, and Best Management Practices. J. Environ. Qual. 2018, 47, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Leh, M.D.; Sharpley, A.N.; Singh, G.; Matlock, M.D. Assessing the Impact of the MRBI Program in a Data Limited Arkansas Watershed Using the SWAT Model. Agric. Water Manag. 2018, 202, 202–219. [Google Scholar] [CrossRef]
- Lintern, A.; McPhillips, L.; Winfrey, B.; Duncan, J.; Grady, C. Best Management Practices for Diffuse Nutrient Pollution: Wicked Problems across Urban and Agricultural Watersheds. Environ. Sci. Technol. 2020, 54, 9159–9174. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Xu, F.; Zhang, P.; Yu, W.; Men, C. Identifying Non-Point Source Critical Source Areas Based on Multi-Factors at a Basin Scale with SWAT. J. Hydrol. 2016, 533, 379–388. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Guo, T.; Engel, B.A.; Flanagan, D.C.; Lee, J.G.; Li, S.; Pijanowski, B.C.; Collingsworth, P.D.; Wallace, C.W. Evaluating Efficiencies and Cost-Effectiveness of Best Management Practices in Improving Agricultural Water Quality Using Integrated SWAT and Cost Evaluation Tool. J. Hydrol. 2019, 577, 123965. [Google Scholar] [CrossRef]
- López-Ballesteros, A.; Trolle, D.; Srinivasan, R.; Senent-Aparicio, J. Assessing the Effectiveness of Potential Best Management Practices for Science-Informed Decision Support at the Watershed Scale: The Case of the Mar Menor Coastal Lagoon, Spain. Sci. Total Environ. 2023, 859, 160144. [Google Scholar] [CrossRef] [PubMed]
- Makarewicz, J.C.; Lewis, T.W.; Winslow, M.; Rea, E.; Dressel, L.; Pettenski, D.; Snyder, B.J.; Richards, P.; Zollweg, J. Utilizing Intensive Monitoring and Simulations for Identifying Sources of Phosphorus and Sediment and for Directing, Siting, and Assessing BMPs: The Genesee River Example. J. Great Lakes Res. 2015, 41, 743–759. [Google Scholar] [CrossRef]
- Malone, R.; Garbrecht, J.; Busteed, P.; Hatfield, J.; Todey, D.; Gerlitz, J.; Fang, Q.; Sima, M.; Radke, A.; Ma, L. Drainage N Loads under Climate Change with Winter Rye Cover Crop in a Northern Mississippi River Basin Corn-Soybean Rotation. Sustainability 2020, 12, 7630. [Google Scholar] [CrossRef]
- Merriman, K.R.; Gitau, M.W.; Chaubey, I. A Tool for Estimating Best Management Practice Effectiveness in Arkansas. Appl. Eng. Agric. 2009, 25, 199–213. [Google Scholar] [CrossRef]
- Merriman, K.R.; Daggupati, P.; Srinivasan, R.; Hayhurst, B. Assessment of Site-Specific Agricultural Best Management Practices in the Upper East River Watershed, Wisconsin, Using a Field-Scale SWAT Model. J. Great Lakes Res. 2019, 45, 619–641. [Google Scholar] [CrossRef]
- Merriman, K.R.; Russell, A.M.; Rachol, C.M.; Daggupati, P.; Srinivasan, R.; Hayhurst, B.A.; Stuntebeck, T.D. Calibration of a Field-Scale Soil AndWater Assessment Tool (SWAT) Model with Field Placement of Best Management Practices in Alger Creek, Michigan. Sustainability 2018, 10, 851. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. 1.1 Overview of soil and water assessment tool (SWAT) model. Tier B 2009, 8, 3–23. [Google Scholar]
- Ni, X.; Parajuli, P.B. Evaluation of the Impacts of BMPs and Tailwater Recovery System on Surface and Groundwater Using Satellite Imagery and SWAT Reservoir Function. Agric. Water Manag. 2018, 210, 78–87. [Google Scholar] [CrossRef]
- Olaoye, I.A.; Confesor, R.B., Jr.; Ortiz, J.D. Impact of Agricultural Practices on Water Quality of Old Woman Creek Watershed, Ohio. Agriculture 2021, 11, 426. [Google Scholar] [CrossRef]
- Oliver, S.; Corburn, J.; Ribeiro, H. Challenges Regarding Water Quality of Eutrophic Reservoirs in Urban Landscapes: A Mapping Literature Review. Int. J. Environ. Res. Public Health 2018, 16, 40. [Google Scholar] [CrossRef] [PubMed]
- Ongley, E.D.; Xiaolan, Z.; Tao, Y. Current Status of Agricultural and Rural Non-Point Source Pollution Assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef]
- Park, J.Y.; Ale, S.; Teague, W.R. Simulated Water Quality Effects of Alternate Grazing Management Practices at the Ranch and Watershed Scales. Ecol. Model. 2017, 360, 1–13. [Google Scholar] [CrossRef]
- Peacher, R.D.; Lerch, R.N.; Schultz, R.C.; Willett, C.D.; Isenhart, T.M. Factors Controlling Streambank Erosion and Phosphorus Loss in Claypan Watersheds. J. Soil Water Conserv. 2018, 73, 189–199. [Google Scholar] [CrossRef]
- Plunge, S.; Gudas, M.; Povilaitis, A. Effectiveness of Best Management Practices for Non-Point Source Agricultural Water Pollution Control with Changing Climate—Lithuania’s Case. Agric. Water Manag. 2022, 267, 107635. [Google Scholar] [CrossRef]
- Pongpetch, N.; Suwanwaree, P.; Yossapol, C.; Dasananda, S.; Thongplew, K. Using SWAT to Assess the Critical Areas and Nonpoint Source Pollution Reduction Best Management Practices in Lam Takong River Basin, Thailand. Environ. Asia 2015, 8, 41–52. [Google Scholar]
- Qi, H.; Altinakar, M.S. A Conceptual Framework of Agricultural Land Use Planning with BMP for Integrated Watershed Management. J. Environ. Manag. 2011, 92, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Ricci, G.F.; D’Ambrosio, E.; De Girolamo, A.M.; Gentile, F. Efficiency and Feasibility of Best Management Practices to Reduce Nutrient Loads in an Agricultural River Basin. Agric. Water Manag. 2022, 259, 107241. [Google Scholar] [CrossRef]
- Risal, A.; Parajuli, P.B. Quantification and Simulation of Nutrient Sources at Watershed Scale in Mississippi. Sci. Total Environ. 2019, 670, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Risal, A.; Parajuli, P.B. Evaluation of the Impact of Best Management Practices on Streamflow, Sediment and Nutrient Yield at Field and Watershed Scales. Water Resour. Manag. 2022, 36, 1093–1105. [Google Scholar] [CrossRef]
- Roland, V.L.; Garcia, A.M.; Saad, D.A.; Ator, S.W.; Robertson, D.; Schwarz, G. Quantifying Regional Effects of Best Management Practices on Nutrient Losses from Agricultural Lands. J. Soil Water Conserv. 2022, 77, 15–29. [Google Scholar] [CrossRef]
- Rudra, R.P.; Mekonnen, B.A.; Shukla, R.; Shrestha, N.K.; Goel, P.K.; Daggupati, P.; Biswas, A. Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions. Agriculture 2020, 10, 468. [Google Scholar] [CrossRef]
- Saravanan, S.; Singh, L.; Sathiyamurthi, S.; Sivakumar, V.; Velusamy, S.; Shanmugamoorthy, M. Predicting Phosphorus and Nitrate Loads by Using SWAT Model in Vamanapuram River Basin, Kerala, India. Environ. Monit. Assess. 2023, 195, 186. [Google Scholar] [CrossRef]
- Sharma, S.; Shrestha, A.; McLean, C.E.; Martin, S.C. Hydrologic modeling to evaluate the impact of hydraulic fracturing on stream low flows: Challenges and opportunities for a simulation study. Am. J. Environ. Sci. 2015, 11, 199. [Google Scholar] [CrossRef]
- Sheshukov, A.Y.; Douglas-Mankin, K.R.; Sinnathamby, S.; Daggupati, P. Pasture BMP Effectiveness Using an HRU-Based Subarea Approach in SWAT. J. Environ. Manag. 2016, 166, 276–284. [Google Scholar] [CrossRef]
- Shrestha, A. Modeling Impact of Hydraulic Fracturing and Climate Change on Stream Low Flows: A Case Study of Muskingum Watershed in Eastern Ohio; Youngstown State University: Youngstown, OH, USA, 2014. [Google Scholar]
- Shrestha, S.; Sharma, S.; Gupta, R.; Bhattarai, R. Impact of Global Climate Change on Stream Low Flows: A Case Study of the Great Miami River Watershed, Ohio. Int. J. Agric. Biol. Eng. 2019, 12, 84–95. [Google Scholar] [CrossRef]
- Singer, J.W.; Malone, R.W.; Jaynes, D.B.; Ma, L. Cover Crop Effects on Nitrogen Load in Tile Drainage from Walnut Creek Iowa Using Root Zone Water Quality (RZWQ) Model. Agric. Water Manag. 2011, 98, 1622–1628. [Google Scholar] [CrossRef]
- Sith, R.; Watanabe, A.; Nakamura, T.; Yamamoto, T.; Nadaoka, K. Assessment of Water Quality and Evaluation of Best Management Practices in a Small Agricultural Watershed Adjacent to Coral Reef Area in Japan. Agric. Water Manag. 2019, 213, 659–673. [Google Scholar] [CrossRef]
- Srinivasan, R.; Zhang, X.; Arnold, J. SWAT Ungauged: Hydrological Budget and Crop Yield Predictions in the Upper Mississippi River Basin. Trans. ASABE 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- Tasdighi, A.; Arabi, M.; Harmel, D.; Line, D. A Bayesian Total Uncertainty Analysis Framework for Assessment of Management Practices Using Watershed Models. Environ. Model. Softw. 2018, 108, 240–252. [Google Scholar] [CrossRef]
- Tejaswini, V.; Sathian, K.K. Calibration and Validation of Swat Model for Kunthipuzha Basin Using SUFI-2 Algorithm. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2162–2172. [Google Scholar] [CrossRef]
- Turner, C.; Brooke, M. Ohio Agricultural Statistics 2020–2021 Annual Bulletin; United States Department of Agriculture National Agricultural Statistics Service Great Lakes Region: East Lansing, MI, USA, 2021.
- Uribe, N.; Corzo, G.; Quintero, M.; van Griensven, A.; Solomatine, D. Impact of Conservation Tillage on Nitrogen and Phosphorus Runoff Losses in a Potato Crop System in Fuquene Watershed, Colombia. Agric. Water Manag. 2018, 209, 62–72. [Google Scholar] [CrossRef]
- Usman, M.; Ndehedehe, C.E.; Farah, H.; Ahmad, B.; Wong, Y.; Adeyeri, O.E. Application of a Conceptual Hydrological Model for Streamflow Prediction Using Multi-Source Precipitation Products in a Semi-Arid River Basin. Water 2022, 14, 1260. [Google Scholar] [CrossRef]
- Venishetty, V.; Parajuli, P.B. Assessment of BMPs by Estimating Hydrologic and Water Quality Outputs Using SWAT in Yazoo River Watershed. Agriculture 2022, 12, 477. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Xia, J.; Yang, H. Comparing Uncertainty Analysis Techniques for a SWAT Application to the Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Wong, Y.J.; Shimizu, Y.; He, K.; Nik Sulaiman, N.M. Comparison among different ASEAN water quality indices for the assessment of the spatial variation of surface water quality in the Selangor river basin, Malaysia. Environ. Monit. Assess. 2020, 192, 644. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Dai, S.; Han, Y. Analysis of Non-Point Source Nitrogen Pollution in Watersheds Based on SWAT Model. Ecol. Indic. 2022, 138, 108881. [Google Scholar] [CrossRef]
- Zhu, Z.; Klaas, B.; Asit, M. Impacts of Land Use, Fertilizer, and Manure Application on the Stream Nutrient Loadings in the Salmon River Watershed, South-Central British Columbia, Canada. J. Environ. Prot. 2012, 3, 809–822. [Google Scholar] [CrossRef]
- Zuo, D.; Han, Y.; Gao, X.; Ma, G.; Xu, Z.; Bi, Y.; Abbaspour, K.C.; Yang, H. Identification of Priority Management Areas for Non-Point Source Pollution Based on Critical Source Areas in an Agricultural Watershed of Northeast China. Environ. Res. 2022, 214, 113892. [Google Scholar] [CrossRef] [PubMed]
Data Type | Data | Source |
---|---|---|
GIS | Digital Elevation Model | USGS, National Elevation Dataset |
Land use Data | USGS, National Land Cover Dataset | |
Soil Data | SWAT US SSURGO Soils Database | |
Climate | Rainfall and Temperature | NOAA National Climatic Data Center |
Hydrology | Stream flow | USGS, National Water Information System |
Model Outlet | USGS Gage | Calibration (2003–2015) | Validation (2016–2020) | ||||||
---|---|---|---|---|---|---|---|---|---|
NSE | R2 | PBIAS | RSR | NSE | R2 | PBIAS | RSR | ||
1 | 3,117,000 | 0.54 | 0.72 | −20.87 | 0.67 | 0.63 | 0.78 | −18.56 | 0.60 |
4 | 3,124,500 | 0.55 | 0.64 | −10.79 | 0.67 | 0.78 | 0.83 | 19.52 | 0.47 |
42 | 3,129,000 | 0.79 | 0.80 | −0.09 | 0.45 | 0.89 | 0.92 | −5.11 | 0.33 |
17 * | 3,121,500 | 0.50 | 0.52 | 11.29 | 0.71 | ||||
27 ** | 3,128,500 | 0.56 | 0.60 | −8.40 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Bijukshe, S.; Puppala, S.S. Monitoring, Modeling and Planning Best Management Practices (BMPs) in the Atwood and Tappan Lake Watersheds with Stakeholders Engagements. Water 2023, 15, 3028. https://doi.org/10.3390/w15173028
Sharma S, Bijukshe S, Puppala SS. Monitoring, Modeling and Planning Best Management Practices (BMPs) in the Atwood and Tappan Lake Watersheds with Stakeholders Engagements. Water. 2023; 15(17):3028. https://doi.org/10.3390/w15173028
Chicago/Turabian StyleSharma, Suresh, Shuvra Bijukshe, and Sai Sree Puppala. 2023. "Monitoring, Modeling and Planning Best Management Practices (BMPs) in the Atwood and Tappan Lake Watersheds with Stakeholders Engagements" Water 15, no. 17: 3028. https://doi.org/10.3390/w15173028
APA StyleSharma, S., Bijukshe, S., & Puppala, S. S. (2023). Monitoring, Modeling and Planning Best Management Practices (BMPs) in the Atwood and Tappan Lake Watersheds with Stakeholders Engagements. Water, 15(17), 3028. https://doi.org/10.3390/w15173028