Towards Sustainable Consumption and Production in a Thirsty World: Progress and Challenges in Water Footprint Assessment
Author Contributions
Conflicts of Interest
References
- Otto, B.; Schleifer, L. Domestic Water Use Grew 600% Over the Past 50 Years. World Resources Institute. 2020. Available online: https://www.wri.org/insights/domestic-water-use-grew-600-over-past-50-years?utm_source=DesignTAXI&utm_medium=DesignTAXI&utm_term=DesignTAXI&utm_content=DesignTAXI&utm_campaign=DesignTAXI (accessed on 31 July 2023).
- Van Vliet, M.T.H.; Jones, E.R.; Flörke, M.; Franssen, W.H.P.; Hanasaki, N.; Wada, Y.; Yearsley, J.R. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. 2021, 16, 024020. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ang, L.; Ng, K.C. Energy-water-environment nexus underpinning future desalination sustainability. Desalination 2017, 413, 52–64. [Google Scholar] [CrossRef]
- Graham, N.T.; Hejazi, M.I.; Chen, M.; Davies, E.G.R.; Edmonds, J.A.; Kim, S.H.; Turner, S.W.D.; Li, X.; Vernon, C.R.; Calvin, K. Humans drive future water scarcity changes across all Shared Socioeconomic Pathways. Environ. Res. Lett. 2020, 15, 014007. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goals. Department of Economic and Social Affairs, United Nations. 2015. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 15 August 2023).
- Berger, M.; Campos, J.; Carolli, M.; Dantas, I.; Forin, S.; Kosatica, E.; Kramer, A.; Mikosch, N.; Nouri, H.; Schlattmann, A.; et al. Advancing the Water Footprint into an Instrument to Support Achieving the SDGs–Recommendations from the “Water as a Global Resources” Research Initiative (GRoW). Water Resour. Manag. 2021, 35, 1291–1298. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Van Oel, P.R. Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress towards Sustainable Development Goal 6. Water 2017, 9, 438. [Google Scholar] [CrossRef]
- Sauvé, S.; Lamontagne, S.; Dupras, J.; Stahel, W. Circular economy of water: Tackling quantity, quality and footprint of water. Environ. Dev. 2021, 39, 100651. [Google Scholar] [CrossRef]
- Aldaya, M.M. Environmental science: Eating ourselves dry. Nature 2017, 543, 633–634. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Penalver, J.G.; Aldaya, M.M. The Role of the Food Banks in Saving Freshwater Resources through Reducing Food Waste: The Case of the Food Bank of Navarra, Spain. Foods 2022, 11, 163. [Google Scholar] [CrossRef]
- Palhares, J.C.P.; Morelli, M.; Novelli, T.I. Water footprint of a tropical beef cattle production system: The impact of individual-animal and feed management. Adv. Water Resour. 2021, 149, 103853. [Google Scholar] [CrossRef]
- Aldaya, M.M.; Rodriguez, C.I.; Fernandez-Poulussen, A.; Merchan, D.; Beriain, M.J.; Llamas, R. Grey water footprint as an indicator for diffuse nitrogen pollution: The case of Navarra, Spain. Sci. Total Environ. 2020, 698, 134338. [Google Scholar] [CrossRef] [PubMed]
- Vanham, D.; Bruckner, M.; Schwarzmueller, F.; Schyns, J.; Kastner, T. Multi-model assessment identifies livestock grazing as a major contributor to variation in European Union land and water footprints. Nat. Food 2023, 4, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, S.; Skouteris, G.; Choudhari, V.; Rahimifard, S.; Duong, L.N.K. An Internet of Things Approach for Water Efficiency: A Case Study of the Beverage Factory. Sustainability 2021, 13, 3343. [Google Scholar] [CrossRef]
- Gerbens-Leenes, W.; Hoekstra, A.Y.; van der Meer, T.H. The water footprint of bioenergy. Proc. Natl. Acad. Sci. USA 2009, 106, 10219–10223. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The blue water footprint of electricity from hydropower. Hydrol. Earth Syst. Sci. 2012, 16, 179–187. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, P.W.; Hoekstra, A.Y. The consumptive water footprint of electricity and heat: A global assessment. Environ. Sci. Water Res. Technol. 2015, 1, 285–297. [Google Scholar] [CrossRef]
- Sesma-Martín, D.; Rubio-Varas, M. Freshwater for cooling needs: A long-run approach to the nuclear water footprint in Spain. Ecol. Econ. 2017, 140, 146–156. [Google Scholar] [CrossRef]
- Lin, G.; Jiang, D.; Duan, R.; Fu, J.; Hao, M. Water Use of Fossil Energy Production and Supply in China. Water 2017, 9, 513. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, P.W.; Hoekstra, A.Y. Future electricity: The challenge of reducing both carbon and water footprint. Sci. Total Environ. 2016, 569, 1282–1288. [Google Scholar] [CrossRef]
- Aldaya, M.M.; Sesma-Martín, D.; Schyns, J.F. Advances and Challenges in the Water Footprint Assessment Research Field: Towards a More Integrated Understanding of the Water–Energy–Food–Land Nexus in a Changing Climate. Water 2022, 14, 1488. [Google Scholar] [CrossRef]
- Ansorge, L.; Stejskalová, L.; Dlabal, J. Grey water footprint as a tool for implementing the Water Framework Directive–Temelín nuclear power station. J. Clean. Prod. 2020, 263, 121541. [Google Scholar] [CrossRef]
- Miglietta, P.P.; Morrone, D.; De Leo, F. The Water Footprint Assessment of Electricity Production: An Overview of the Economic-Water-Energy Nexus in Italy. Sustainability 2018, 10, 228. [Google Scholar] [CrossRef]
- Vaca-Jiménez, S.; Gerbens-Leenes, P.W.; Nonhebel, S. The water footprint of electricity in Ecuador: Technology and fuel variation indicate pathways towards water-efficient electricity mixes. Water Resour. Ind. 2019, 22, 100112. [Google Scholar] [CrossRef]
- Burchart-Korol, D.; Jursova, S.; Folęga, P.; Pustejovska, P. Life cycle impact assessment of electric vehicle battery charging in European Union countries. J. Clean. Prod. 2020, 257, 120476. [Google Scholar] [CrossRef]
- Gerbens-Leenes, W.; Holtz, K. Consequences of transport low-carbon transitions and the carbon, land and water footprints of different fuel options in The Netherlands. Water 2020, 12, 1968. [Google Scholar] [CrossRef]
- Holmatov, B.; Hoekstra, A.Y. The environmental footprint of transport by car using renewable energy. Earth’s Future 2020, 8, e2019EF001428. [Google Scholar] [CrossRef]
- Patterson, D.; Gonzalez, J.; Hölzle, U.; Le, Q.; Liang, C.; Munguia, L.M.; Rothchild, D.; So, D.; Texier, M.; Dean, J. The carbon footprint of machine learning training will plateau, then shrink. Computer 2022, 55, 18–28. [Google Scholar] [CrossRef]
- Li, P.; Yang, J.; Islam, M.A.; Ren, S. Making AI Less ”Thirsty”: Uncovering and Addressing the Secret Water Footprint of AI Models. arXiv 2023, arXiv:2304.03271. [Google Scholar]
- Zuccon, G.; Scells, H.; Zhuang, S. Beyond CO2 Emissions: The Overlooked Impact of Water Consumption of Information Retrieval Models. In Proceedings of the 2023 ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR ’23), Taipei, Taiwan, 23–27 July 2023; pp. 283–289. [Google Scholar] [CrossRef]
- PNEC. “Water Footprint as a Tool for Education, Integration and Initiating Actions for Local Water Resources Protection” Project. The Association of Municipalities Polish Network “Energie Cites”. Available online: http://www.pnec.org.pl/en/dzialalnosc/projektycat/5-projekty-obecnie-realizowane/546-water-footprint-as-a-tool-for-education-integration-and-initiating-actions-for-local-water-resources-protection (accessed on 15 August 2023).
- GRACE Communications Foundation (2017–2023). Water Footprint Educational Resources. GRACE Communications Foundation. New York, USA. Available online: https://www.watercalculator.org/educational-resources/ (accessed on 15 August 2023).
- InfoDesignLab. “The Water We Eat” Teaching Material. InfoDesignLab. Available online: https://thewaterweeat.com/ (accessed on 15 August 2023).
- Mulero, L.; Pàmies, J.; Grau, M.D. Learn about the water around you: Use with secondary-school students. In Proceedings of the 2nd International Congress on Water and Sustainability (ICWS2021), Terrassa, Spain, 24–26 March 2021; pp. 45–46. [Google Scholar]
- Venckute, M.; Silva, M.M.; Figueiredo, M. Education as a tool to reduce the water footprint of young people. Millenium 2017, 2, 101–111. [Google Scholar] [CrossRef]
- Water Footprint Network (WFN). Water Footprint School Resources. Available online: https://www.waterfootprint.org/resources-explained/school-resources/ (accessed on 15 August 2023).
- UNESCO. SDG Resources for Educators-Clean Water and Sanitation. United Nations Educational, Scientific and Cultural Organization (UNESCO). Available online: https://en.unesco.org/themes/education/sdgs/material/06 (accessed on 15 August 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldaya, M.M.; Sesma-Martín, D.; Rodriguez, C.I. Towards Sustainable Consumption and Production in a Thirsty World: Progress and Challenges in Water Footprint Assessment. Water 2023, 15, 3086. https://doi.org/10.3390/w15173086
Aldaya MM, Sesma-Martín D, Rodriguez CI. Towards Sustainable Consumption and Production in a Thirsty World: Progress and Challenges in Water Footprint Assessment. Water. 2023; 15(17):3086. https://doi.org/10.3390/w15173086
Chicago/Turabian StyleAldaya, Maite M., Diego Sesma-Martín, and Corina Iris Rodriguez. 2023. "Towards Sustainable Consumption and Production in a Thirsty World: Progress and Challenges in Water Footprint Assessment" Water 15, no. 17: 3086. https://doi.org/10.3390/w15173086