A New Land Cover Map of Two Watersheds under Long-Term Environmental Monitoring in the Swedish Arctic Using Sentinel-2 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Geographic Information about the Study Area
2.2. Satellite Image and Digital Elevation Model
2.3. Field Survey
2.4. Classification
3. Results
3.1. Vegetation Map in Current Climatic Conditions
3.2. Influence of Altitude on Land Cover
3.3. Comparison between Past and Present Vegetation Maps
3.3.1. Comparison with the Map of Reese (Based on Data Acquired in 2010)
3.3.2. Comparison with the Map of Lundin (Based on Data Acquired in 2008)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walvoord, M.; Kurylyk, B. Hydrologic Impacts of Thawing Permafrost—A Review. Vadose Zone J. 2016, 15, 6. [Google Scholar] [CrossRef]
- Meyer, G.; Humphreys, E.R.; Melton, J.R.; Cannon, A.J.; Lafleur, P.M. Simulating shrubs and their energy and carbon dioxide fluxes in Canada’s Low Arctic with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC). Biogeosciences 2021, 18, 3263–3283. [Google Scholar] [CrossRef]
- Jones, B.J.; Grosse, G.; Farquharson, L.M.; Roy-Léveillée, P.; Veremeeva, A.; Kanevskiy, M.Z.; Gaglioti, B.V.; Breen, A.L.; Parsekian, A.D.; Ulrich, M.; et al. Lake and drained lake basin systems in lowland permafrost regions. Nat. Rev. Earth Environ. 2022, 3, 85–98. [Google Scholar] [CrossRef]
- Cable, W.L.; Romanovsky, V.E.; Jorgenson, M.T. Scaling-up permafrost thermal measurements in western Alaska using an ecotype approach. Cryosphere 2016, 10, 2517–2532. [Google Scholar] [CrossRef]
- Douglas, T.A.; Zhang, C. Machine learning analyses of remote sensing measurements establish strong relationships between vegetation and snow depth in the boreal forest of Interior Alaska. Environ. Res. Lett. 2021, 16, 065014. [Google Scholar] [CrossRef]
- Zhang, Y.; Lantz, T.C.; Touzi, R.; Feng, W.; Kokelj, S.V. Landscape-scale variations in near-surface soil temperature and active-layer thickness: Implications for high-resolution permafrost mapping. Permafr. Periglac Process 2021, 32, 627–640. [Google Scholar] [CrossRef]
- Heijmans, M.M.P.D.; Magnússon, R.Í.; Lara, M.J.; Frost, G.V.; Myers-Smith, I.; van Huissteden, J.; Jorgenson, M.T.; Fedorov, A.N.; Epstein, H.E.; Lawrence, D.M.; et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 2022, 3, 68–84. [Google Scholar] [CrossRef]
- Bagard, M.-L.; Schmitt, A.-D.; Chabaux, F.; Pokrovsky, O.S.; Viers, J.; Stille, P.; Labolle, F.; Prokushkin, A. Biogeochemistry of stable Ca and radiogenic Sr isotopes in a larch-covered permafrost-dominated watershed of Central Siberia. Geochim. Et Cosmochim. Acta 2013, 114, 169–187. [Google Scholar] [CrossRef]
- Oehri, J.; Schaepman-Strub, G.; Kim, J.-S.; Grysko, R.; Kropp, H.; Grünberg, I.; Zemlianskii, V.; Sonnentag, O.; Euskirchen, E.S.; Reji Chacko, M.; et al. Vegetation type is an important predictor of the arctic summer land surface energy budget. Nat. Commun. 2022, 13, 6379. [Google Scholar] [CrossRef]
- Lenoir, J.; Graae, B.J.; Aarrestad, P.A.; Alsos, I.G.; Armbruster, W.S.; Austrheim, G.; Bergendorff, C.; Birks, H.J.B.; Bråthen, K.A.; Brunet, J.; et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Chang. Biol. 2013, 19, 1470–1481. [Google Scholar] [CrossRef]
- Aalto, J.; Scherrer, D.; Lenoir, J.; Guisan, A.; Luoto, M. Biogeophysical controls on soil-atmosphere thermal differences: Implications on warming Arctic ecosystems. Environ. Res. Lett. 2018, 13, 7. [Google Scholar] [CrossRef]
- De Frenne, P.; Zellweger, F.; Rodríguez-Sánchez, F.; Scheffers, B.R.; Hylander, K.; Luoto, M.; Vellend, M.; Verheyen, K.; Lenoir, J. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 2019, 3, 744–749. [Google Scholar] [CrossRef]
- Stuenzi, S.M.; Boike, J.; Gädeke, A.; Herzschuh, U.; Krise, S.; Pestryakova, A.; Westermann, S.; Langer, M. Sensitivity of ecosystem-protected permafrost under changing boreal forest structures. Environ. Res. Lett. 2021, 16, 8. [Google Scholar] [CrossRef]
- Stuenzi, S.M.; Boike, J.; Cable, W.; Herzschuh, U.; Kruse, S.; Pestryakova, L.A.; von Deimling, T.S.; Westermann, S.; Zakharov, E.S.; Langer, M. Variability of the surface energy balance in permafrost-underlain boreal forest. Biogeosciences 2021, 18, 343–365. [Google Scholar] [CrossRef]
- Park, H.; Yamazaki, T.; Yamamoto, K.; Ohta, T. Tempo-spatial characteristics of energy budget and evapotranspiration in the Eastern Siberia. Agric. For. Meteorol. 2018, 148, 1990–2005. [Google Scholar] [CrossRef]
- Orgogozo, L.; Prokushkin, A.S.; Pokrovsky, O.S.; Grenier, C.; Quintard, M.; Viers, J.; Audry, S. Water and energy transfer modeling in a permafrost-dominated, forested catchment of Central Siberia: The key rôle of rooting depth. Permafr. Periglac. Process. 2019, 30, 75–89. [Google Scholar] [CrossRef]
- Bartsch, A.; Höfler, A.; Kroisleitner, C.; Trofaier, A.M. Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges. Remote Sens. 2016, 8, 979. [Google Scholar] [CrossRef]
- Reese, H.; Nyström, M.; Nordkvist, K.; Olsson, H. Combining airborne laser scanning data and optical satellite data for classification of alpine vegetation. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 81–90. [Google Scholar] [CrossRef]
- Greaves, H.E.; Eitel, J.U.H.; Vierling, L.A.; Boelman, N.T.; Griffin, K.L.; Magney, T.S.; Prager, C.M. 20 cm resolution mapping of tundra vegetation communities provides an ecological baseline for important research areas in a changing Arctic environment. Environ. Res. Commun. 2019, 1, 105004. [Google Scholar] [CrossRef]
- Langford, Z.L.; Kumar, J.; Hoffman, F.M.; Breen, A.L.; Iversen, C.M. Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural Networks. Remote Sens. 2019, 11, 69. [Google Scholar] [CrossRef]
- Beamish, A.; Raynolds, M.K.; Epstein, H.; Frost, G.V.; Macander, M.J.; Bergstedt, H.; Bartsch, A.; Kruse, S.; Miles, V.; Tanis, C.M.; et al. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sens. Environ. 2020, 246, 111872. [Google Scholar] [CrossRef]
- Rudd, D.A.; Karami, M.; Fensholt, R. Towards High-Resolution Land-Cover Classification of Greenland: A Case Study Covering Kobbefjord, Disko and Zackenberg. Remote Sens. 2021, 13, 3559. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., Petzold, J., et al., Eds.; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/site/assets/uploads/sites/3/2019/12/SROCC_FullReport_FINAL.pdf (accessed on 12 April 2023).
- Patzner, M.S.; Logan, M.; McKenna, A.M.; Young, R.B.; Zhou, Z.; Joss, H.; Mueller, C.W.; Carmen, H.; Scholten, T.; Straub, D.; et al. Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw. Commun. Earth Environ. 2022, 3, 76. [Google Scholar] [CrossRef]
- Loranty, M.L.; Abbott, B.W.; Blok, D.; Douglas, T.A.; Epstein, H.E.; Forbes, B.C.; Jones, B.M.; Kholodov, A.L.; Kropp, H.; Malhotra, A.; et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 2018, 15, 5287–5313. [Google Scholar] [CrossRef]
- Malmer, N.; Johansson, T.; Olsrud, M.; Christensen, T.R. Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years. Glob. Chang. Biol. 2005, 11, 1895–1909. [Google Scholar] [CrossRef]
- Tang, J.; Miller, P.A.; Persson, A.; Olefeldt, D.; Pilesjö, P.; Heliasz, M.; Jackowicz-Korczynski, M.; Yang, Z.; Smith, B.; Callaghan, T.V.; et al. Carbon budget estimation of a subarctic catchment using a dynamic ecosystem model at high spatial resolution. Biogeosciences 2015, 12, 2791–2808. [Google Scholar] [CrossRef]
- Orgogozo, L.; Xavier, T.; Oulbani, H.; Grenier, C. Permafrost modelling with OpenFOAM®: New advancements of the permaFoam solver. Comput. Phys. Commun. 2023, 282, 108541. [Google Scholar] [CrossRef]
- Giesler, R.; Lyon, S.W.; Mörth, C.-M.; Karlsson, J.; Karlsson, E.M.; Jantze, E.J.; Destouni, G.; Humborg, C. Catchment-scale dissolved carbon concentrations and export estimates across six subarctic streams in northern Sweden. Biogeosciences 2014, 11, 525–537. [Google Scholar] [CrossRef]
- Lundin, E.J.; Giesler, R.; Persson, A.; Thompson, M.S.; Karlsson, J. Integrating carbon emissions from lakes and streams in a subarctic catchment. JGR Biogeosci. 2013, 118, 1200–1207. [Google Scholar] [CrossRef]
- Lundin, E.J.; Klaminder, J.; Giesler, R.; Persson, A.; Olefeldt, D.; Heliasz, M.; Christensen, T.R.; Karlsson, J. Is the subarctic landscape still a carbon sink? Evidence from a detailed catchment balance. Geophys. Res. Lett. 2016, 43, 1988–1995. [Google Scholar] [CrossRef]
- Mzobe, P.; Berggren, M.; Pilesjö, P.; Lundin, E.; Olefeldt, D.; Roulet, N.T.; Persson, A. Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach. PLoS ONE 2018, 13, e0199608. [Google Scholar] [CrossRef] [PubMed]
- Mzobe, P.; Yan, Y.; Berggren, M.; Roulet, N.T.; Persson, A. Morphometric Control on Dissolved Organic Carbon in Subarctic Streams. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005348. [Google Scholar] [CrossRef]
- Hardisky, M.A.; Kiemas, V.; Daiber, F.C. Remote sensing salt marsh biomass and stress detection. Adv. Space Res. 1983, 2, 219–229. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation for liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Ostadabbas, H.; Weippert, H.; Behr, F.J. Using the synergy of qfield for collecting data on-site and qgis for interactive map creation by alkis® data extraction and implementation in postgresql for urban planning processes. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, 679–683. [Google Scholar] [CrossRef]
- Avci, C.; Budak, M.; Yagmur, N.; Balcik, F.B. Comparison between random forest and support vector machine algorithms for LULC classification. Int. J. Eng. Geosci. 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machies in remote sensing: A review. ISPRS J. Photogramm. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Breiman, L. Statistical Modeling: The Two Cultures. Stat. Sci. 2001, 16, 199–231. [Google Scholar] [CrossRef]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Neteler, M.; Mitasova, H. Open Source GIS: A GRASS GIS Approach, 3rd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Ermakov, N.; Shaulo, D.; Maltseva, T. The class Mulgedio-Aconitetea in Siberia. Phytocoenologia 2000, 30, 145–192. [Google Scholar] [CrossRef]
- Hjort, J.; Luoto, M. Interaction of geomorphic and ecologic features across altitudinal zones in a subarctic landscape. Geomorphology 2009, 112, 324–333. [Google Scholar] [CrossRef]
- Sieg, B.; Drees, B.; Hasse, T. High-altitude vegetation of continental West Greenland. Phytocoenologia 2009, 39, 27–50. [Google Scholar] [CrossRef]
- Sundqvist, M.; Giesler, R.; Graae, B.J.; Wallander, H.; Fogelberg, E.; Wardle, D.A. Interactive effects of vegetation type and elevation on aboveground and belowground properties in a subarctic tundra. Oikos 2011, 120, 128–142. [Google Scholar] [CrossRef]
- Sundqvist, M.; Liu, Z.; Giesler, R.; Wardle, D.A. Plant and microbial responses to nitrogen and phosphorus addition across an elevational gradient in subarctic tundra. Ecology 2014, 95, 1819–1835. [Google Scholar] [CrossRef]
- Lyon, S.W.; Ploum, S.W.; van der Velde, Y.; Rocher-Ros, G.; Mörth, C.-M.; Giesler, R. Lessons learned from monitoring the stable water isotopic variability in precipitation and streamflow across a snow-dominated subarctic catchment. Arct. Antarct. Alp. Res. 2018, 50, e1454778. [Google Scholar] [CrossRef]
- Rocher-Ros, G.; Sponseller, R.A.; Lidberg, W.; Mörth, C.-M.; Giesler, R. Landscape process domains drive patterns of CO2 evasion from river networks. Limnol. Oceanogr. Lett. 2019, 4, 87–95. [Google Scholar] [CrossRef]
- Borgelt, J. Terrestrial Respiration across Tundra Vegetation Types—Implications for Arctic Carbon Modelling. Master’s Thesis, Umeå University, Umeå, Sweden, 2017. [Google Scholar]
- Troll, C. High mountain belts between the polar caps and the equator: Their definition and lower limit. Arct. Alp. Res. 1973, 5, A19–A27. [Google Scholar]
- Rundqvist, S.; Hedenås, H.; Sandström, A.; Emanuelsson, U.; Eriksson, H.; Jonasson, C.; Callaghan, T.V. Tree and Shrub Expansion Over the Past 34 Years at the Tree-Line Near Abisko, Sweden. AMBIO 2011, 40, 683–692. [Google Scholar] [CrossRef]
- Rees, W.G.; Hofgaard, A.; Boudreau, S.; Cairns, D.M.; Harper, K.; Mamet, S.; Mathisen, I.; Swirad, Z.; Tutubalina, O. Is subarctic forest advance able to keep pace with climate change? Glob. Chang. Biol. 2020, 26, 3965–3977. [Google Scholar] [CrossRef]
- Berner, L.T.; Goetz, S.J. Satellite observations document trends consistent with a boreal forest biome shift. Glob. Chang. Biol. 2022, 28, 3275–3292. [Google Scholar] [CrossRef] [PubMed]
Index | Formula |
---|---|
Bright | |
NDVI | |
NDWI | |
NDII |
Class | Number of Polygons | Number of Pixels |
---|---|---|
Rock | 25 | 361 |
Dry heath | 35 | 889 |
Mesic heath | 21 | 801 |
Wetland | 29 | 1614 |
Alpine willow | 19 | 402 |
Mountain birch | 105 | 4587 |
Water | 30 | 8568 |
Human infrastructure | 13 | 312 |
Shadow | 18 | 7026 |
Rock | Dry Heath | Mesic Heath | Wetland | Alpine Willow | Mountain Birch | Water | Human Infrastructure | Shadow | |
---|---|---|---|---|---|---|---|---|---|
Rock | 87 | 11 | 22 | 0 | 2 | 2 | 0 | 1 | 0 |
Dry heath | 0 | 140 | 48 * | 1 | 14 | 0 | 0 | 0 | 0 |
Mesic heath | 17 | 27 | 38 | 0 | 2 | 5 | 0 | 0 | 0 |
Wetland | 0 | 2 | 6 | 550 | 34 * | 11 | 9 | 0 | 0 |
Alpine willow | 0 | 7 | 0 | 6 | 87 | 5 | 0 | 0 | 0 |
Mountain birch | 0 | 101 * | 130 * | 46 * | 14 | 1307 | 7 | 0 | 0 |
Water | 0 | 0 | 0 | 0 | 0 | 0 | 2914 | 17 | 25 |
Human infrastructure | 1 | 0 | 0 | 0 | 0 | 0 | 8 | 46 | 0 |
Shadow | 4 | 0 | 0 | 0 | 0 | 0 | 39 * | 10 | 2335 |
Rock | Dry Heath | Mesic Heath | Wetland | Alpine Willow | Mountain Birch | Water | Human Infrastructure | Shadow | |
---|---|---|---|---|---|---|---|---|---|
Rock | 84 | 2 | 15 | 0 | 0 | 1 | 0 | 3 | 0 |
Dry heath | 0 | 168 | 59 * | 11 | 18 | 2 | 0 | 0 | 0 |
Mesic heath | 17 | 18 | 49 | 5 | 6 | 8 | 0 | 0 | 0 |
Wetland | 0 | 0 | 0 | 484 | 51 * | 6 | 4 | 1 | 0 |
Alpine willow | 0 | 2 | 4 | 0 | 40 | 1 | 0 | 0 | 0 |
Mountain birch | 0 | 98* | 117 * | 102 * | 38 * | 1312 | 8 | 1 | 0 |
Water | 2 | 0 | 0 | 1 | 0 | 0 | 2913 | 12 | 309 |
Human infrastructure | 1 | 0 | 0 | 0 | 0 | 0 | 8 | 47 | 0 |
Shadow | 5 | 0 | 0 | 0 | 0 | 0 | 44 * | 10 | 2051 |
Class | Percentage |
---|---|
Rock | 38 |
Dry heath | 12 |
Mesic heath | 4 |
Wetland | 16 |
Alpine willow | 7 |
Mountain birch | 14 |
Water | 6 |
Human infrastructure | 1 |
Land Cover | Level Class (m) | |||
---|---|---|---|---|
Subalpine <600 | Low Alpine [600,800] | High Alpine [800,1100] | Nival >1100 | |
Rock | 2 | 5 | 42 | 84 |
Dry heath | 3 | 28 | 21 | 1 |
Mesic heath | 3 | 6 | 2 | 10 |
Wetland | 10 | 16 | 17 | 5 |
Alpine willow | 1 | 7 | 16 | 0 |
Mountain birch | 81 | 38 | 2 | 0 |
Class | Reese (2010) | Our Classification |
---|---|---|
Rock | 14 | 39 |
Dry heath/Extremely dry heath/Grass heath | 26 | 12 |
Mesic heath | 4 | 4 |
Wetland | 4 | 17 |
Alpine willow | 19 | 7 |
Mountain birch | 13 | 15 |
Water | 4 | 6 |
Snow Ice, Snow bed | 5 | * |
Alpine meadow/Tall alpine meadow | 11 | * |
Our Classification | ||||||||
---|---|---|---|---|---|---|---|---|
Reese map (2010) | Rock | Dry Heath | Mesic Heath | Wetland | Alpine Willow | Mountain Birch | Water | |
Rock | 27 | 3 | 24 | 3 | 2 | 1 | 33 | |
Dry heath/Extremely dry heath/Grass heath | 33 | 41 | 33 | 18 | 33 | 5 | 10 | |
Mesic heath | 1 | 5 | 3 | 6 | 4 | 11 | 1 | |
Wetland | 2 | 5 | 3 | 6 | 9 | 3 | 1 | |
Alpine willow | 16 | 29 | 20 | 22 | 29 | 12 | 18 | |
Mountain birch | 0 | 3 | 7 | 18 | 3 | 60 | 2 | |
Water | 3 | 2 | 3 | 4 | 2 | 4 | 23 | |
Snow Ice, Snow bed | 9 | 1 | 3 | 2 | 1 | 0 | 6 | |
Alpine meadow/Tall alpine meadow | 9 | 11 | 4 | 21 | 17 | 4 | 6 |
Class | Lundin (2008) | Our Classification |
---|---|---|
Rock | 9 | 5 |
Alpine tundra | 13 | 12 |
Peatland | 11 | 15 |
Forest | 51 | 54 |
Water | 7 | 12 |
Non-vegetated | 9 | 2 |
Our Classification | |||||||
---|---|---|---|---|---|---|---|
Lundin map (2008) | Rock | Dry Heath Mesic Heath Alpine Willow | Wetland | Mountain Birch | Water | Human infrastructure | |
Rock | 41 | 30 | 5 | 3 | 5 | 4 | |
Alpine tundra | 27 | 27 | 9 | 10 | 10 | 7 | |
Peatland | 3 | 6 | 40 | 6 | 5 | 6 | |
Forest | 15 | 24 | 33 | 69 | 45 | 27 | |
Water | 4 | 3 | 7 | 4 | 26 | 4 | |
Non-vegetated | 10 | 10 | 6 | 8 | 9 | 52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auda, Y.; Lundin, E.J.; Gustafsson, J.; Pokrovsky, O.S.; Cazaurang, S.; Orgogozo, L. A New Land Cover Map of Two Watersheds under Long-Term Environmental Monitoring in the Swedish Arctic Using Sentinel-2 Data. Water 2023, 15, 3311. https://doi.org/10.3390/w15183311
Auda Y, Lundin EJ, Gustafsson J, Pokrovsky OS, Cazaurang S, Orgogozo L. A New Land Cover Map of Two Watersheds under Long-Term Environmental Monitoring in the Swedish Arctic Using Sentinel-2 Data. Water. 2023; 15(18):3311. https://doi.org/10.3390/w15183311
Chicago/Turabian StyleAuda, Yves, Erik J. Lundin, Jonas Gustafsson, Oleg S. Pokrovsky, Simon Cazaurang, and Laurent Orgogozo. 2023. "A New Land Cover Map of Two Watersheds under Long-Term Environmental Monitoring in the Swedish Arctic Using Sentinel-2 Data" Water 15, no. 18: 3311. https://doi.org/10.3390/w15183311
APA StyleAuda, Y., Lundin, E. J., Gustafsson, J., Pokrovsky, O. S., Cazaurang, S., & Orgogozo, L. (2023). A New Land Cover Map of Two Watersheds under Long-Term Environmental Monitoring in the Swedish Arctic Using Sentinel-2 Data. Water, 15(18), 3311. https://doi.org/10.3390/w15183311