Preparation of Ceramic Membranes and Their Application in Wastewater and Water Treatment
Abstract
:1. Introduction
2. Preparation of Ceramic Membrane
2.1. Raw Materials for Ceramic Membrane Preparation
2.1.1. Methods of Preparing Ceramic Materials
2.1.2. Low-Cost Ceramic Materials
2.2. Ceramic Membrane Preparation
2.2.1. Extrusion Method
2.2.2. Pressing Method
2.2.3. Slip-Casting Method
2.2.4. Tape Casting
2.2.5. Sol–Gel Method
2.2.6. Phase Inversion/Sintering Technology
2.2.7. Chemical Vapor Deposition Method
3. Application of Ceramic Membranes in Wastewater and Water Treatment
3.1. Oil–Water Separation
3.2. Seawater Desalination
3.3. Textile Wastewater
3.4. Drinking Water Treatment
3.5. Industrial Waste Treatment
Application of this Method in Decolorization of Dyeing Wastewater [114]
3.6. Other Water Treatment Applications
4. Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, N.A.; Leo, C.P.; Ahmad, A.L.; Ramli, W.K.W. Membranes with great hydrophobicity: A review on preparation and characterization. Sep. Purif. Rev. 2015, 44, 109–134. [Google Scholar] [CrossRef]
- Aissat, M.; Hamouda, S.; Bettahar, N.; Abu Tarboush, B.J.; Bahmani, A. Characterization and application of ceramic membranes prepared from Algerian kaolin. Cerâmica 2019, 65, 554–561. [Google Scholar] [CrossRef]
- Larbot, A.; Gazagnes, L.; Krajewski, S.; Bukowska, M.; Kujawski, W. Water desalination using ceramic membrane distillation. Desalination 2004, 168, 367–372. [Google Scholar] [CrossRef]
- Hubadillah, S.K.; Othman, M.H.D.; Matsuura, T.; Ismail, A.F.; Rahman, M.A.; Harun, Z.; Jaafar, J.; Nomura, M. Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive review. Ceram. Int. 2018, 44, 4538–4560. [Google Scholar] [CrossRef]
- Lin, Y.S.; Kumakiri, I.; Nair, B.N.; Alsyouri, H. Microporous inorganic membranes. Sep. Purif. Methods 2002, 31, 229–379. [Google Scholar] [CrossRef]
- Das, D.; Baitalik, S.; Haldar, B.; Saha, R.; Kayal, N. Preparation and characterization of macroporous SiC ceramic membrane for treatment of waste water. J. Porous Mater. 2018, 25, 1183–1193. [Google Scholar] [CrossRef]
- Li, C.; Sun, W.J.; Lu, Z.D.; Ao, X.W.; Li, S.M. Ceramic nanocomposite membranes and membrane fouling: A review. Water Res. 2020, 175, 115674. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, N.N.; Ola, O.; Xia, Y.D.; Zhu, Y.Q. Porous ceramics: Light in weight but heavy in energy and environment technologies. Mater. Sci. Eng. Rep. 2021, 143, 100589. [Google Scholar] [CrossRef]
- Otitoju, T.A.; Okoye, P.U.; Chen, G.T.; Li, Y.; Okoye, M.O.; Li, S.X. Advanced ceramic components: Materials, fabrication, and applications. J. Ind. Eng. Chem. 2020, 85, 34–65. [Google Scholar] [CrossRef]
- He, Z.M.; Lyu, Z.Y.; Gu, Q.L.; Zhang, L.; Wang, J. Ceramic-based membranes for water and wastewater treatment. Colloids Surf. A 2019, 578, 123513. [Google Scholar] [CrossRef]
- Hsieh, H.P.; Liu, P.K.T.; Dillman, T.R. Microporous ceramic membranes. Polym. J. 1991, 23, 407–415. [Google Scholar] [CrossRef]
- Dong, Y.C.; Wu, H.; Yang, F.L.; Gray, S. Cost and efficiency perspectives of ceramic membranes for water treatment. Water Res. 2022, 220, 118629. [Google Scholar] [CrossRef] [PubMed]
- Fernie, J.A.; Drew, R.A.L.; Knowles, K.M. Joining of engineering ceramics. Int. Mater. Rev. 2009, 54, 283–331. [Google Scholar] [CrossRef]
- Qin, H.; Guo, W.M.; Gao, P.Z.; Xiao, H.N. Spheroidization of low-cost alumina powders for the preparation of high-flux flat-sheet ceramic membranes. Ceram. Int. 2020, 46, 13189–13197. [Google Scholar] [CrossRef]
- Kim, Y.-W.; Eom, J.-H.; Wang, C.M.; Park, C.B. Processing of porous silicon carbide ceramics from carbon-filled polysiloxane by extrusion and carbothermal reduction. J. Am. Ceram. Soc. 2008, 91, 1361–1364. [Google Scholar] [CrossRef]
- Sun, L.Q.; Wang, Z.Y.; Gao, B.Y. Ceramic membranes originated from cost-effective and abundant natural minerals and industrial wastes for broad applications—A review. Desalin. Water Treat. 2020, 201, 121–138. [Google Scholar] [CrossRef]
- Abdullayev, A.; Bekheet, M.F.; Hanaor, D.A.H.; Gurlo, A. Materials and applications for low-cost ceramic membranes. Membranes 2019, 9, 105. [Google Scholar] [CrossRef]
- Hedfi, I.; Hamdi, N.; Rodriguez, M.A.; Srasra, E. Development of a low cost micro-porous ceramic membrane from kaolin and Alumina, using the lignite as porogen agent. Ceram. Int. 2016, 42, 5089–5093. [Google Scholar] [CrossRef]
- Wang, H.Y.; Fu, Y.B.; Xing, P.F. Study on preparation technique of unsymmetrical microporous composite ceramics membranes. Acta Chim. Sin. 2000, 58, 1015–1021. [Google Scholar]
- Fang, J.; Qin, G.T.; Wei, W.; Zhao, X.Q. Preparation and characterization of tubular supported ceramic microfiltration membranes from fly ash. Sep. Purif. Technol. 2011, 80, 585–591. [Google Scholar] [CrossRef]
- Tao, S.; Xu, Y.-D.; Gu, J.-Q.; Abadikhah, H.; Wang, J.-W.; Xu, X. Preparation of high-efficiency ceramic planar membrane and its application for water desalination. J. Adv. Ceram. 2018, 7, 117–123. [Google Scholar] [CrossRef]
- Ward, D.A.; Ho, E.I. Preparing catalytic materials by the sol-gel method. Ind. Eng. Chem. Res. 1995, 34, 421–433. [Google Scholar] [CrossRef]
- Yu, L.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. Phase inversion/sintering-induced porous ceramic microsheet membranes for high-quality separation of oily wastewater. J. Membr. Sci. 2020, 595, 117477. [Google Scholar] [CrossRef]
- Ciora, R.J.; Fayyaz, B.; Liu, P.K.T.; Suwanmethanond, V.; Mallada, R.; Sahimi, M.; Tsotsis, T.T. Preparation and reactive applications of nanoporous silicon carbide membranes. Chem. Eng. Sci. 2004, 59, 4957–4965. [Google Scholar] [CrossRef]
- Ewis, D.; Ismail, N.A.; Hafiz, M.; Benamor, A.; Hawari, A.H. Nanoparticles functionalized ceramic membranes: Fabrication, surface modification, and performance. Environ. Sci. Pollut. Res. 2021, 28, 12256–12281. [Google Scholar] [CrossRef] [PubMed]
- Vitorino, N.; Freitas, C.; Ribeiro, M.J.; Abrantes, J.C.C.; Frade, J.R. Extrusion of ceramic emulsions: Plastic behavior. Appl. Clay Sci. 2014, 101, 315–319. [Google Scholar] [CrossRef]
- Liang, D.H.; Huang, J.G.; Zhang, H.; Fu, H.M.; Zhang, Y.T.; Chen, H.P. Influencing factors on the performance of tubular ceramic membrane supports prepared by extrusion. Ceram. Int. 2021, 47, 10464–10477. [Google Scholar] [CrossRef]
- Grote, J.J. Reconstruction of the middle-ear with hydroxylapatite implants-long-term results. Ann. Otol. Rhinol. Laryngol. 1990, 99, 12–16. [Google Scholar]
- Rodriguez, M.; Hernandez, R.T. Ceramic tubular supports. Rev. Mex. Fis. 1999, 45, 61–63. [Google Scholar]
- Aljlil, S.A. Fabrication of bentonite-silica sand/suspended waste palm leaf composite membrane for water purification. Membranes 2020, 10, 290. [Google Scholar] [CrossRef]
- Ouallal, H.; Azrour, M.; Messaoudi, M.; Moussout, H.; Messaoudi, L.; Tijani, N. Incorporation effect of olive pomace on the properties of tubular membranes. J. Environ. Chem. Eng. 2020, 8, 103668. [Google Scholar] [CrossRef]
- Hubadillah, S.K.; Othman, M.H.D.; Rahman, M.A.; Ismail, A.F.; Jaafar, J. Preparation and characterization of inexpensive kaolin hollow fibre membrane (KHFM) prepared using phase inversion/sintering technique for the efficient separation of real oily wastewater. Arab. J. Chem. 2020, 13, 2349–2367. [Google Scholar] [CrossRef]
- Aloulou, W.; Aloulou, H.; Khemakhem, M.; Duplay, J.; Daramola, M.O.; Ben Amar, R. Synthesis and characterization of clay-based ultrafiltration membranes supported on natural zeolite for removal of heavy metals from wastewater. Environ. Technol. Innov. 2020, 18, 100794. [Google Scholar] [CrossRef]
- Jafari, B.; Abbasi, M.; Hashemifard, S.A.; Sillanpaa, M. Elaboration and characterization of novel two-layer tubular ceramic membranes by coating natural zeolite and activated carbon on mullite-alumina-zeolite support: Application for oily wastewater treatment. J. Asian Ceram. Soc. 2020, 8, 848–861. [Google Scholar] [CrossRef]
- Raji, Y.O.; Othman, M.H.D.; Nordin, N.A.H.S.M.; Zhong, S.T.; Usman, J.; Mamah, S.C.; Ismail, A.F.; Rahman, M.A.; Jaafar, J. Fabrication of magnesium bentonite hollow fibre ceramic membrane for oil-water separation. Arab. J. Chem. 2020, 13, 5996–6008. [Google Scholar] [CrossRef]
- Tai, Z.S.; Othman, M.H.D.; Mustafa, A.; Dzahir, M.I.H.M.; Hubadillah, S.K.; Koo, K.N.; Azali, M.A.; Alias, N.H.; Ooi, B.S.; Kurniawan, T.A. Design and characterization of ceramic hollow fiber membrane derived from waste ash using phase inversion-based extrusion/sintering technique for water filtration. J. Asian Ceram. Soc. 2021, 9, 318–335. [Google Scholar] [CrossRef]
- Kamoun, N.; Jamoussi, F.; Rodríguez, M.A. Development of a ceramic membrane for emulsion water-diesel treatment. Cerâmica 2022, 68, 250–256. [Google Scholar] [CrossRef]
- Anis, S.F.; Lalia, B.S.; Lesimple, A.; Hashaikeh, R.; Hilal, N. Superhydrophilic and underwater superoleophobic nano zeolite membranes for efficient oil-in-water nanoemulsion separation. J. Water Process Eng. 2021, 40, 101802. [Google Scholar] [CrossRef]
- Belgada, A.; Charik, F.Z.; Achiou, B.; Kambuyi, T.N.; Younssi, S.A.; Beniazza, R.; Dani, A.; Benhida, R.; Ouammou, M. Optimization of phosphate/kaolinite microfiltration membrane using Box-Behnken design for treatment of industrial wastewater. J. Environ. Chem. Eng. 2021, 9, 104972. [Google Scholar] [CrossRef]
- Mouratib, R.; Achiou, B.; El Krati, M.; Younssi, S.A.; Tahiri, S. Low-cost ceramic membrane made from alumina- and silica-rich water treatment sludge and its application to wastewater filtration. J. Eur. Ceram. Soc. 2020, 40, 5942–5950. [Google Scholar] [CrossRef]
- Kim, W.-B.; Sukcheol, K.; Cho, S.-H.; Lee, J.-H. Effect of pressing process on the high-temperature stability of yttria-stabilized zirconia ceramic material in molten salt of CaCl2-CaF2-CaO. Korean J. Mater. Res. 2020, 30, 176–183. [Google Scholar] [CrossRef]
- Teng, H.-D.; Wei, Q.; Wang, Y.-L.; Cui, S.-P.; Li, Q.-Y.; Nie, Z.-R. Asymmetric porous cordierite ceramic membranes prepared by phase inversion tape casting and their desalination performance. Ceram. Int. 2020, 46, 23677–23685. [Google Scholar] [CrossRef]
- Manni, A.; Achiou, B.; Karim, A.; Harrati, A.; Sadik, C.; Ouammou, M.; Younssi, S.A.; El Bouari, A. New low-cost ceramic microfiltration membrane made from natural magnesite for industrial wastewater treatment. J. Environ. Chem. Eng. 2020, 8, 103906. [Google Scholar] [CrossRef]
- Queiroga, J.A.; Nunes, E.H.M.; Souza, D.F.; Vasconcelos, D.C.L.; Ciminelli, V.S.T.; Vasconcelos, W.L. Microstructural investigation and performance evaluation of slip-cast alumina supports. Ceram. Int. 2017, 43, 3824–3830. [Google Scholar] [CrossRef]
- Zyryanov, V.V.; Karakchiev, L.G. Porous supports for conducting ceramic membranes. Inorg. Mater. 2008, 44, 429–437. [Google Scholar] [CrossRef]
- Elyassi, B.; Sahimi, M.; Tsotsis, T.T. A novel sacrificial interlayer-based method for the preparation of silicon carbide membranes. J. Membr. Sci. 2008, 316, 73–79. [Google Scholar] [CrossRef]
- Boulesteix, R.; Chevarin, C.; Belon, R.; Maitre, A.; Cochain, L.; Salle, C. Manufacturing of large size and highly transparent Nd:YAG ceramics by pressure slip-casting and post-sintering by HIP: An experimental and simulation study. Materials 2020, 13, 2199. [Google Scholar] [CrossRef]
- Azaman, F.; Nor, M.A.M.; Abdullah, W.R.W.; Razali, M.H.; Adnen, N.A.I.; Zulkifli, R.C.; Ali, A. Fabrication of natural ball clay ceramic membrane using pore former and additive agents based on modified slip casting technique. Desalin. Water Treat. 2021, 223, 290–298. [Google Scholar] [CrossRef]
- Nishihora, R.K.; Rachadel, P.L.; Novy Quadri, M.G.; Hotza, D. Manufacturing porous ceramic materials by tape casting-A review. J. Eur. Ceram. Soc. 2018, 38, 988–1001. [Google Scholar] [CrossRef]
- Ohji, T.; Fukushima, M. Macro-porous ceramics: Processing and properties. Int. Mater. Rev. 2012, 57, 115–131. [Google Scholar] [CrossRef]
- Kaur, H.; Bulasara, V.K.; Gupta, R.K. Preparation of kaolin-based low-cost porous ceramic supports using different amounts of carbonates. Desalin. Water Treat. 2016, 57, 15154–15163. [Google Scholar] [CrossRef]
- Das, B.; Chakrabarty, B.; Barkakati, P. Preparation and characterization of novel ceramic membranes for micro-filtration applications. Ceram. Int. 2016, 42, 14326–14333. [Google Scholar] [CrossRef]
- Tabit, K.; Waqif, M.; Saadi, L. Crystallization behavior and properties of cordierite synthesized by sol-gel technique and hydrothermal treatment. J. Aust. Ceram. Soc. 2019, 55, 469–477. [Google Scholar] [CrossRef]
- Delange, R.S.A.; Hekkink, J.H.A.; Keizer, K.; Burggraaf, A.J. Formation and characterization of supported microporous ceramic membranes prepared by sol-gel modification techniques. J. Membr. Sci. 1995, 99, 57–75. [Google Scholar] [CrossRef]
- Nasani, N.; Gavinola, S.R.; Graca, V.; Allu, A.R.; Reddy, R.C.; Kale, B.B. The effect of nickel doping on the microstructure and conductivity of Ca(Ti,Al)O3-delta for solid oxide fuel cells. J. Am. Ceram. Soc. 2021, 104, 5689–5697. [Google Scholar] [CrossRef]
- Zhu, B.; Rundgren, K.; Mellander, B.E. Ceramic membranes—Potential uses for solid state protonic conductors. Solid State Ion. 1997, 97, 385–391. [Google Scholar] [CrossRef]
- Coelho, F.E.B.; Magnacca, G.; Boffa, V.; Candelario, V.M.; Luiten-Olieman, M.; Zhang, W.J. From ultra to nanofiltration: A review on the fabrication of ZrO2 membranes. Ceram. Int. 2023, 49, 8683–8708. [Google Scholar] [CrossRef]
- Luyten, J.; Buekenhoudt, A.; Adriansens, W.; Cooymans, J.; Weyten, H.; Servaes, F.; Leysen, R. Preparation of LaSrCoFeO3−x membranes. Solid State Ion. 2000, 135, 637–642. [Google Scholar] [CrossRef]
- Rahman, M.A.; Ghazali, M.A.; Abd Aziz, W.M.S.W.; Othman, M.H.D.; Jaafar, J.; Ismail, A.F. Preparation of titanium dioxide hollow fiber membrane using phase inversion and sintering technique for gas separation and water purification. Sains Malays. 2015, 44, 1195–1201. [Google Scholar] [CrossRef]
- Wu, Z.T.; Othman, N.H.; Zhang, G.R.; Liu, Z.K.; Jin, W.Q.; Li, K. Effects of fabrication processes on oxygen permeation of Nb2O5-doped SrCo0.8Fe0.2O3-delta micro-tubular membranes. J. Membr. Sci. 2013, 442, 1–7. [Google Scholar] [CrossRef]
- Kingsbury, B.F.K.; Li, K. A morphological study of ceramic hollow fibre membranes. J. Membr. Sci. 2009, 328, 134–140. [Google Scholar] [CrossRef]
- Li Puma, G.L.; Bono, A.; Krishnaiah, D.; Collin, J.G. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. J. Hazard. Mater. 2008, 157, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Chauhan, R.S. Membranes for gas separation. Prog. Polym. Sci. 2001, 26, 853–893. [Google Scholar] [CrossRef]
- Yuan, K.; Feng, S.S.; Zhang, F.; Zhong, Z.X.; Xing, W.H. Steric configuration-controllable carbon nanotubes-integrated SiC membrane for ultrafine particles filtration. Ind. Eng. Chem. Res. 2020, 59, 19680–19688. [Google Scholar] [CrossRef]
- Chen, M.L.; Shang, R.; Sberna, P.M.; Luiten-Olieman, M.W.J.; Rietveld, L.C.; Heijman, S.G.J. Highly permeable silicon carbide-alumina ultrafiltration membranes for oil-in-water filtration produced with low-pressure chemical vapor deposition. Sep. Purif. Technol. 2020, 253, 117496. [Google Scholar] [CrossRef]
- Ragunath, S.; Roy, S.; Mitra, S. Carbon nanotube immobilized membrane with controlled nanotube incorporation via phase inversion polymerization for membrane distillation based desalination. Sep. Purif. Technol. 2018, 194, 249–255. [Google Scholar] [CrossRef]
- Pendergast, M.M.; Hoek, E.M.V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971. [Google Scholar] [CrossRef]
- Zhu, Y.Z.; Wang, D.; Jiang, L.; Jin, J. Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater. 2014, 6, e101. [Google Scholar] [CrossRef]
- Chen, W.J.; Peng, J.M.; Su, Y.L.; Zheng, L.L.; Wang, L.J.; Jiang, Z.Y. Separation of oil/water emulsion using Pluronic F127 modified polyethersulfone ultrafiltration membranes. Sep. Purif. Technol. 2009, 66, 591–597. [Google Scholar] [CrossRef]
- Peng, Y.B.; Guo, Z.G. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. J. Mater. Chem. A 2016, 4, 15749–15770. [Google Scholar] [CrossRef]
- Tanudjaja, H.J.; Hejase, C.A.; Tarabara, V.V.; Fane, A.G.; Chew, J.W. Membrane-based separation for oily wastewater: A practical perspective. Water Res. 2019, 156, 347–365. [Google Scholar] [CrossRef]
- Ding, D.; Mao, H.Y.; Chen, X.F.; Qiu, M.H.; Fan, Y.Q. Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions. J. Membr. Sci. 2018, 565, 303–310. [Google Scholar] [CrossRef]
- Karimnezhad, H.; Rajabi, L.; Salehi, E.; Derakhshan, A.A.; Azimi, S. Novel nanocomposite Kevlar fabric membranes: Fabrication characterization, and performance in oil/water separation. Appl. Surf. Sci. 2014, 293, 275–286. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, M.L.; Dong, Y.C.; Tang, C.Y.Y.; Huang, A.S.; Li, L.L. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion. Water Res. 2016, 90, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.W.; Zhang, T.; Ma, J. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets. Environ. Sci. Technol. 2015, 49, 4235–4244. [Google Scholar] [CrossRef]
- Zhou, J.-e.; Chang, Q.B.; Wang, Y.Q.; Wang, J.M.; Meng, G.Y. Separation of stable oil-water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane. Sep. Purif. Technol. 2010, 75, 243–248. [Google Scholar] [CrossRef]
- Gao, N.W.; Fan, Y.Q.; Quan, X.J.; Cai, Y.W.; Zhou, D.W. Modified ceramic membranes for low fouling separation of water-in-oil emulsions. J. Mater. Sci. 2016, 51, 6379–6388. [Google Scholar] [CrossRef]
- Chang, Q.B.; Zhou, J.-e.; Wang, Y.Q.; Liang, J.; Zhang, X.Z.; Cerneaux, S.; Wang, X.; Zhu, Z.W.; Dong, Y.C. Application of ceramic microfiltration membrane modified by nano-TiO2 coating in separation of a stable oil-in-water emulsion. J. Membr. Sci. 2014, 456, 128–133. [Google Scholar] [CrossRef]
- Gao, S.J.; Shi, Z.; Zhang, W.B.; Zhang, F.; Jin, J. Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. Acs Nano 2014, 8, 6344–6352. [Google Scholar] [CrossRef]
- Jin, X.P.; Peng, S.G.; Chen, Y.M.; Ma, J.Y.; Niu, Q.S. A polymer-ceramic composite membrane for the oil/water separation with enhanced antifouling performance. Ferroelectrics 2020, 565, 137–147. [Google Scholar] [CrossRef]
- Wei, Y.B.; Xie, Z.X.; Qi, H. Superhydrophobic-superoleophilic SiC membranes with micro-nano hierarchical structures for high-efficient water-in-oil emulsion separation. J. Membr. Sci. 2020, 601, 117842. [Google Scholar] [CrossRef]
- Wang, J.R.; Wang, X.F.; Zhao, S.; Sun, B.; Wang, Z.; Wang, J.X. Robust superhydrophobic mesh coated by PANI/TiO2 nanoclusters for oil/water separation with high flux, self-cleaning, photodegradation and anti-corrosion. Sep. Purif. Technol. 2020, 235, 116166. [Google Scholar] [CrossRef]
- Wei, Y.; Qi, H.; Gong, X.; Zhao, S. Specially Wettable Membranes for Oil–Water Separation. Adv. Mater. Interfaces 2018, 5, 1800576. [Google Scholar] [CrossRef]
- Yan, X.H.; Xiao, X.; Au, C.; Mathur, S.; Huang, L.J.; Wang, Y.X.; Zhang, Z.J.; Zhu, Z.J.; Kipper, M.J.; Tang, J.G.; et al. Electrospinning nanofibers and nanomembranes for oil/water separation. J. Mater. Chem. A 2021, 9, 21659–21684. [Google Scholar] [CrossRef]
- Lu, J.W.; Li, F.C.; Miao, G.; Miao, X.; Ren, G.N.; Wang, B.; Song, Y.M.; Li, X.M.; Zhu, X.T. Superhydrophilic/superoleophobic shell powder coating as a versatile platform for both oil/water and oil/oil separation. J. Membr. Sci. 2021, 637, 119624. [Google Scholar] [CrossRef]
- Ullah, A.; Tanudjaja, J.H.; Ouda, M.; Hasan, W.S.; Chew, J.W. Membrane fouling mitigation techniques for oily wastewater: A short review. J. Water Process Eng. 2021, 43, 102293. [Google Scholar] [CrossRef]
- Gomaa, H.G.; Rao, S. Analysis of flux enhancement at oscillating flat surface membranes. J. Membr. Sci. 2011, 374, 59–66. [Google Scholar] [CrossRef]
- Ullah, A. The influence of interfacial tension on rejection and permeation of the oil droplets through a slit pore membrane. Sep. Purif. Technol. 2021, 266, 118581. [Google Scholar] [CrossRef]
- Bin Bandar, K.; Alsubei, M.D.; Aljlil, S.A.; Bin Darwish, N.; Hilal, N. Membrane distillation process application using a novel ceramic membrane for Brackish water desalination. Desalination 2021, 500, 114906. [Google Scholar] [CrossRef]
- Schnittger, J.; McCutcheon, J.; Hoyer, T.; Weyd, M.; Fischer, G.; Puhlfurss, P.; Halisch, M.; Voigt, I.; Lerch, A. Hydrophobic ceramic membranes in MD processes—Impact of material selection and layer characteristics. J. Membr. Sci. 2021, 618, 118678. [Google Scholar] [CrossRef]
- Kujawa, J.; Kujawski, W.; Cerneaux, S.; Li, G.Q.; Al-Gharabli, S. Zirconium dioxide membranes decorated by silanes based-modifiers for membrane distillation—Material chemistry approach. J. Membr. Sci. 2020, 596, 117597. [Google Scholar] [CrossRef]
- Hubadillah, S.K.; Othman, M.H.D.; Jamalludin, M.R.; Naim, R.; Kadir, S.H.S.A.; Puteh, M.H.; Pauzan, M.A.B.; Sobri, F.A.M. Fabrication and characterisation of superhydrophobic bio-ceramic hollow fibre membranes prepared from cow bone waste. Ceram. Int. 2021, 47, 4178–4186. [Google Scholar] [CrossRef]
- Fan, Y.F.; Chen, S.; Zhao, H.M.; Liu, Y.M. Distillation membrane constructed by TiO2 nanofiber followed by fluorination for excellent water desalination performance. Desalination 2017, 405, 51–58. [Google Scholar] [CrossRef]
- Pagliero, M.; Bottino, A.; Comite, A.; Costa, C. Silanization of tubular ceramic membranes for application in membrane distillation. J. Membr. Sci. 2020, 601, 117911. [Google Scholar] [CrossRef]
- Hubadillah, S.K.; Tai, Z.S.; Othman, M.H.D.; Harun, Z.; Jamalludin, M.R.; Rahman, M.A.; Jaafar, J.; Ismail, A.F. Hydrophobic ceramic membrane for membrane distillation: A mini review on preparation, characterization, and applications. Sep. Purif. Technol. 2019, 217, 71–84. [Google Scholar] [CrossRef]
- Gazagnes, L.; Cerneaux, S.; Persin, M.; Prouzet, E.; Larbot, A. Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes. Desalination 2007, 217, 260–266. [Google Scholar] [CrossRef]
- Chen, X.F.; Gao, X.Y.; Fu, K.Y.; Qiu, M.H.; Xiong, F.; Ding, D.; Cui, Z.L.; Wang, Z.H.; Fan, Y.Q.; Drioli, E. Tubular hydrophobic ceramic membrane with asymmetric structure for water desalination via vacuum membrane distillation process. Desalination 2018, 443, 212–220. [Google Scholar] [CrossRef]
- Abd Aziz, M.H.; Othman, M.H.D.; Alias, N.H.; Nakayama, T.; Shingaya, Y.; Hashim, N.A.; Kurniawan, T.A.; Matsuura, T.; Rahman, M.A.; Jaafar, J. Enhanced omniphobicity of mullite hollow fiber membrane with organosilane-functionalized TiO2 micro-flowers and nanorods layer deposition for desalination using direct contact membrane distillation. J. Membr. Sci. 2020, 607, 118137. [Google Scholar] [CrossRef]
- Ma, J.H.; Qin, J.R.; Huang, J.Y.; Fang, C. The application of ceramic membranes in the pretreatment of seawater desalinization. Tianjin Chem. Ind. 2007, 21, 26–28. (In Chinese) [Google Scholar]
- Samaei, S.M.; Gato-Trinidad, S.; Altaee, A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters—A review. Sep. Purif. Technol. 2018, 200, 198–220. [Google Scholar] [CrossRef]
- Dilaver, M.; Hocaoglu, S.M.; Soydemir, G.; Dursun, M.; Keskinler, B.; Koyuncu, I.; Agtas, M. Hot wastewater recovery by using ceramic membrane ultrafiltration and its reusability in textile industry. J. Clean. Prod. 2018, 171, 220–233. [Google Scholar] [CrossRef]
- Avdicevic, M.Z.; Kosutic, K.; Dobrovic, S. Effect of operating conditions on the performances of multichannel ceramic UF membranes for textile mercerization wastewater treatment. Environ. Technol. 2017, 38, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Agtas, M.; Yilmaz, O.; Dilaver, M.; Alp, K.; Koyuncu, I. Hot water recovery and reuse in textile sector with pilot scale ceramic ultrafiltration/nanofiltration membrane system. J. Clean. Prod. 2020, 256, 120359. [Google Scholar] [CrossRef]
- Hubadillah, S.K.; Othman, M.H.D.; Tai, Z.S.; Jamalludin, M.R.; Yusuf, N.K.; Ahmad, A.; Rahman, M.A.; Jaafar, J.; Kadir, S.H.S.A.; Harun, Z. Novel hydroxyapatite-based bio-ceramic hollow fiber membrane derived from waste cow bone for textile wastewater treatment. Chem. Eng. J. 2020, 379, 122396. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Dutta, S.; Ghosh, S.; Vedajnananda, S.; Bandyopadhyay, S. Crossflow microfiltration using ceramic membrane for treatment of sulphur black effluent from garment processing industry. Desalination 2010, 261, 67–72. [Google Scholar] [CrossRef]
- Santra, B.; Ramrakhiani, L.; Kar, S.; Ghosh, S.; Majumdar, S. Ceramic membrane-based ultrafiltration combined with adsorption by waste derived biochar for textile effluent treatment and management of spent biochar. J. Environ. Health Sci. 2020, 18, 973–992. [Google Scholar] [CrossRef]
- Ciardelli, G.; Ciabatti, I.; Ranieri, L.; Capannelli, G.; Bottino, A. Membrane contactors for textile wastewater ozonation. Ann. N. Y. Acad. Sci. 2003, 984, 29–38. [Google Scholar] [CrossRef]
- Idrissi, D.E.; Elidrissi, Z.C.; Achiou, B.; Ouammou, M.; Younssi, S.A. Fabrication of low-cost kaolinite/perlite membrane for microfiltration of dairy and textile wastewaters. J. Environ. Chem. Eng. 2023, 11, 109281. [Google Scholar] [CrossRef]
- Goswami, K.P.; Pugazhenthi, G. Credibility of polymeric and ceramic membrane filtration in the removal of bacteria and virus from water: A review. J. Environ. Manag. 2020, 268, 110583. [Google Scholar] [CrossRef]
- Werner, J.; Besser, B.; Brandes, C.; Kroll, S.; Rezwan, K. Production of ceramic membranes with different pore sizes for virus retention. J. Water Process Eng. 2014, 4, 201–211. [Google Scholar] [CrossRef]
- Salsali, H.; McBean, E.; Brunsting, J. Virus removal efficiency of Cambodian ceramic pot water purifiers. J. Water Health 2011, 9, 306–311. [Google Scholar] [CrossRef]
- Yasui, M.; Ikner, L.; Yonetani, T.; Liu, M.M.; Katayama, H. Effects of surface hydrophobicity on the removal of F-specific RNA phages from reclaimed water by coagulation and ceramic membrane microfiltration. Water Sci. Technol. 2023, 87, 2304–2314. [Google Scholar] [CrossRef] [PubMed]
- Mouiya, M.; Bouazizi, A.; Abourriche, A.; Benhammou, A.; El Hafiane, Y.; Ouammou, M.; Abouliatim, Y.; Younssi, S.A.; Smith, A.; Hannache, H. Fabrication and characterization of a ceramic membrane from clay and banana peel powder: Application to industrial wastewater treatment. Mater. Chem. Phys. 2019, 227, 291–301. [Google Scholar] [CrossRef]
- Liang, J.Y. Application of ceramic membrane in industrial water treatment. Guangdong Chem. Ind. 2013, 40, 191–192. (In Chinese) [Google Scholar]
- Lee, Y.J.; Cha, M.J.; So, Y.; Song, I.H.; Park, C. Functionalized boron nitride ceramic nanofiltration membranes for semiconductor wastewater treatment. Sep. Purif. Technol. 2022, 300, 121945. [Google Scholar] [CrossRef]
- Chang, M.F.; Liu, J.C. Precipitation removal of fluoride from semiconductor wastewater. J. Environ. Eng. 2007, 133, 419–425. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Ji, M.; Zhang, Y.; Li, R.Q.; Zhong, H.; Xu, N.P.; Shi, J. Study on decolorization of printing and dyeing wastewater by magnesium hydroxide adsorption-ceramic membrane microfiltration. Membr. Sci. Technol. 2000, 41–45. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, J. Application of inorganic ceramic membrane in printing and dyeing wastewater treatment. Membr. Sci. Technol. 2010, 30, 116–119. (In Chinese) [Google Scholar]
- Veerapaneni, S.; Brejchova, D.; Schmelling, D.C.; Nazzal, F.F.; Wiesner, M.R. Pilot evaluation of ceramic membranes in surface-water treatment with coagulant pretreatment. Water Sci. Technol. 1992, 26, 2285–2288. [Google Scholar] [CrossRef]
- Mynin, V.N.; Terpugov, G.V. Purification of waste water from heavy metals by using ceramic membranes and natural polyelectrolytes. Desalination 1998, 119, 361–362. [Google Scholar] [CrossRef]
- Saffaj, N.; Loukili, H.; Younssi, S.A.; Albizane, A.; Bouhria, M.; Persin, M.; Larbot, A. Filtration of solution containing heavy metals and dyes by means of ultrafiltration membranes deposited on support made of Moroccan clay. Desalination 2004, 168, 301–306. [Google Scholar] [CrossRef]
- Masmoudi, S.; Larbot, A.; El Feki, H.; Ben Amar, R. Elaboration and properties of new ceramic microfiltration membranes from natural and synthesised apatite. Desalination 2006, 190, 89–103. [Google Scholar] [CrossRef]
- Khemakhem, S.; Larbot, A.; Amar, R.B. Study of performances of ceramic microfiltration membrane from Tunisian clay applied to cuttlefish effluents treatment. Desalination 2006, 200, 307–309. [Google Scholar] [CrossRef]
- Jana, S.; Purkait, M.K.; Mohanty, K. Preparation and characterization of low-cost ceramic microfiltration membranes for the removal of chromate from aqueous solutions. Appl. Clay Sci. 2010, 47, 317–324. [Google Scholar] [CrossRef]
- Simonic, M.; Vnucec, D. Coagulation and UF treatment of pulp and paper mill wastewater in comparison. Cent. Eur. J. Chem. 2012, 10, 127–136. [Google Scholar] [CrossRef]
- Khemakhem, M.; Khemakhem, S.; Ayedi, S.; Ben Amar, R. Study of ceramic ultrafiltration membrane support based on phosphate industry subproduct: Application for the cuttlefish conditioning effluents treatment. Ceram. Int. 2011, 37, 3617–3625. [Google Scholar] [CrossRef]
- Abubakar, M.; Tamin, M.N.; Saleh, M.A.; Uday, M.B.; Ahmad, N. Preparation and characterization of a nigerian mesoporous clay-based membrane for uranium removal from underground water. Ceram. Int. 2016, 42, 8212–8220. [Google Scholar] [CrossRef]
- Shahzad, H.K.; Hussein, M.A.; Patel, F.; Al-Aqeeli, N.; Atieh, M.A.; Laoui, T. Synthesis and characterization of alumina-CNT membrane for cadmium removal from aqueous solution. Ceram. Int. 2018, 44, 17189–17198. [Google Scholar] [CrossRef]
- Qin, H.; Guo, W.M.; Huang, X.; Gao, P.Z.; Xiao, H.N. Preparation of yttria-stabilized ZrO2 nanofiltration membrane by reverse micelles-mediated sol-gel process and its application in pesticide wastewater treatment. J. Eur. Ceram. Soc. 2020, 40, 145–154. [Google Scholar] [CrossRef]
- Zoli, L.; Failla, S.; Sani, E.; Sciti, D. Novel ceramic fibre—Zirconium diboride composites for solar receivers in concentrating solar power systems. Compos. Part B-Eng. 2022, 242, 110081. [Google Scholar] [CrossRef]
- Gild, J.; Zhang, Y.; Harrington, T.; Jiang, S.; Hu, T.; Quinn, M.C.; Mellor, W.M.; Zhou, N.; Vecchio, K.; Luo, J. High-Entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 2016, 6, 37946. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.T.; Liu, Y.F.; Dong, S.; Wang, J.M. Study on novel molten salt-ceramics composite as energy storage material. J. Energy Storage 2020, 28, 101237. [Google Scholar] [CrossRef]
Advantages | Disadvantages |
---|---|
Capable of withstanding high temperatures up to 280 °C Special development of modules and systems up to 700 °C | Brittleness; needs to be handled very carefully |
Excellent corrosion resistance along a wide pH range | Most ceramic membranes are disc or tube shaped, resulting in low surface area/volume |
Endures organic solvents | The investment cost for ceramic membranes is very high |
Long life | |
High membrane flux for porous membranes |
Content | Ceramic Membranes | Hollow-Fiber Membranes |
---|---|---|
Support material | Al2O3, TiO2, ZrO2 and SiO2 | Synthetic resin |
Aperture | 0.1 μm, the pore size distribution is narrow and does not deform | 0.1 μm, the aperture is easy to deform and unstable |
Water production | 40–100 L/m2·h | 30–60 L/m2h |
Acid and alkali resistance | Acid and alkali resistance | Not resistant to acids, not resistant to alkalis |
Operating pressure | Filter pressure: 0.15 MPa Backwash pressure: 0.7 MPa | Filter pressure: 0–0.1 MPa |
Mechanical strength | Strong | Weak |
Treatment Method | Characteristics |
---|---|
Solid-state reaction | Suitable for large-scale and low-production-cost ceramic powder |
Gas phase reaction | Synthesis of high-purity ultrafine powder |
Hydrothermal synthesis and coprecipitation | The homogeneous fine powder was synthesized in a liquid phase |
Chemical vapor deposition | Used for preparing ceramic powder |
Sol–gel method | The ceramic powders with small particle sizes, uniform distribution, and high purity were prepared |
Raw Material | Source | Ceramic Powder Preparation | |
---|---|---|---|
Natural mineral | Clay (kaolin, montmorillonite, illite) | Natural source | Crushing and grinding |
Other clays (sepiolite, ball clay, bentonite, attapulgite) | Natural source | ||
Zeolite mineral [(SiO2)(AlO2)x]M.YH2O | Hydrothermal synthesis or other applicable methods | ||
Apatite Ca5(PO4)3(F,Cl,OH) | Obtained in a low-cost form from naturally occurring sediments or synthesized from waste | ||
Quartz sand | Geological deposit | ||
Natural volcanic ash | Lime binds to water at ambient temperature | ||
Bauxite | Sedimentary rock composed of aluminum ore | ||
Waste | Fly ash | Coal source | Straight knot use |
Rice husk ash | Rice husks burn | ||
Cane bagasse ash | Sugar cane is crushed and burned | ||
Cement | Portland cement | Calcium and aluminosilicate materials are mixed in proportion | Hydrothermal process |
Geopolymer cement | From the precursor (calcined clay, volcanic rock, blast furnace slag, fly ash) |
Serial Number | Year | Ceramic Membrane Preparation Method | Membrane Configuration | Application | References |
---|---|---|---|---|---|
1 | 1992 | - | Tubular | Disposal with medium to high concentration natural organic matter of turbid surface water | Veerapaneni et al. [119] |
2 | 1998 | - | Tubular | Purification of heavy metal wastewater | Mynin and Terpugov [120] |
3 | 2004 | Preparation of support by extrusion; preparation of intermediate layer by slip casting; preparation of ultrafiltration layer by sol–gel method | Tubular | Interception of heavy metals | Saffaj et al. [121] |
4 | 2006 | Slide-casting method | Tubular | Treatment of cuttlefish sewage | Masmoudi et al. [122] |
5 | 2006 | Slide-casting method | - | Washing cuttlefish wastewater treatment | Khemakhem et al. [123] |
6 | 2010 | Paste-casting method | Disc-shaped | Removal of chromium ions from wastewater | Jana et al. [124] |
7 | 2012 | - | Tubular | Pilot test of ultrafiltration pulp wastewater | Simonic and Vnucec [125] |
8 | 2011 | Porous support prepared by extrusion and the ultrafiltration layer prepared by slip casting | Treatment of cuttlefish conditioning wastewater | Khemakhem et al. [126] | |
9 | 2016 | Pressing method | Disc-shaped | Treatment of uranium-containing wastewater | Abubakar et al. [127] |
10 | 2018 | Pressing method | Disc-shaped | Removal of cadmium from the liquid solution | Shahzad et al. [128] |
11 | 2020 | Sol–gel method | Treatment of pesticide wastewater | Qin et al. [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Tan, Y.; Sun, R.; Zhang, W. Preparation of Ceramic Membranes and Their Application in Wastewater and Water Treatment. Water 2023, 15, 3344. https://doi.org/10.3390/w15193344
Zhang Y, Tan Y, Sun R, Zhang W. Preparation of Ceramic Membranes and Their Application in Wastewater and Water Treatment. Water. 2023; 15(19):3344. https://doi.org/10.3390/w15193344
Chicago/Turabian StyleZhang, Yibo, Yuqi Tan, Ronglin Sun, and Wenjie Zhang. 2023. "Preparation of Ceramic Membranes and Their Application in Wastewater and Water Treatment" Water 15, no. 19: 3344. https://doi.org/10.3390/w15193344
APA StyleZhang, Y., Tan, Y., Sun, R., & Zhang, W. (2023). Preparation of Ceramic Membranes and Their Application in Wastewater and Water Treatment. Water, 15(19), 3344. https://doi.org/10.3390/w15193344