Presentation of DeMa (Decision Support Software and Database for Wellfield Management) and Its Application for the Wadi Al Arab Wellfield
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Concept of DeMa
3.2. Technical Description
- Forty-two files to allow the user to update, delete, insert data, and run the database backup in the database management tool (DbMT);
- Four files to graphically visualize the data and the relation between different observations in the observation-based tool (OBT);
- Three files to manage the well- and wellfield-related documents in the documents management tool (DMT);
- Two files to use the best from the published scientific articles in the research-based tool (RBT);
- Two base constructor files.
3.3. Integrating the Study Area Data and Information into DeMa
3.4. Integrating the Analysis of the Radius of Influence of a Well in the Research-Based Tool
4. Application of the DeMa
4.1. Data and Document Management for the Identification of Missing Information Concerning the Wellfield
4.2. Identification of Maintenance Needs
4.3. Identification of a Suitable Location for a New Well
5. Discussion and Outlook
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schutte, C.F.; Pretorius, W.A. Water demand and population growth. Water SA Pretoria 1997, 23, 127–134. [Google Scholar]
- Butler, D.; Memon, F.A. Water Demand Management; Iwa Publishing: London, UK, 2005; ISBN 1843390787. [Google Scholar]
- Zubaidi, S.L.; Ortega-Martorell, S.; Al-Bugharbee, H.; Olier, I.; Hashim, K.S.; Gharghan, S.K.; Kot, P.; Al-Khaddar, R. Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng province case study. Water 2020, 12, 1885. [Google Scholar] [CrossRef]
- UN-Water and UNESCO. The United Nations World Water Development Report 2022—Making the Invisible Visible; UN: Paris, France, 2022. [Google Scholar]
- Jahan, C.S.; Rahaman, M.F.; Arefin, R.; Ali, M.S.; Mazumder, Q.H. Delineation of groundwater potential zones of Atrai–Sib river basin in north-west Bangladesh using remote sensing and GIS techniques. Sustain. Water Resour. Manag. 2019, 5, 689–702. [Google Scholar] [CrossRef]
- Polemio, M.; Voudouris, K. Groundwater Resources Management: Reconciling Demand, High Quality Resources and Sustainability. Water 2022, 14, 2107. [Google Scholar] [CrossRef]
- Koop, S.H.A.; Grison, C.; Eisenreich, S.J.; Hofman, J.; van Leeuwen, K.J. Integrated water resources management in cities in the world: Global solutions. Sustain. Cities Soc. 2022, 86, 104137. [Google Scholar] [CrossRef]
- Priyan, K. Issues and Challenges of Groundwater and Surface Water Management in Semi-Arid Regions. Groundw. Resour. Dev. Plan. Semi-Arid Reg. 2021, 1–17. [Google Scholar] [CrossRef]
- Al-Karablieh, E.; Salman, A. Water Resources, Use and Management in Jordan—A Focus on Groundwater; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Salameh, E.; Shteiwi, M.; Al Raggad, M. Water Resources of Jordan: Political, Social and Economic Implications of Scarce Water Resources; Springer: Cham, Switzerland, 2018; Volume 1, ISBN 3319777483. [Google Scholar]
- Mirdashtvan, M.; Najafinejad, A.; Malekian, A.; Sa’doddin, A. Sustainable Water Supply and Demand Management in Semi-arid Regions: Optimizing Water Resources Allocation Based on RCPs Scenarios. Water Resour. Manag. 2021, 35, 5307–5324. [Google Scholar] [CrossRef]
- Falkenmark, M.; Widstrand, C. Population and Water Resources: A Delicate Balance. Popul. Bull. 1992, 3, 47. [Google Scholar]
- Nzama, S.M.; Kanyerere, T.O.B.; Mapoma, H.W.T. Using groundwater quality index and concentration duration curves for classification and protection of groundwater resources: Relevance of groundwater quality of reserve determination, South Africa. Sustain. Water Resour. Manag. 2021, 7, 31. [Google Scholar] [CrossRef]
- Ahmed, K.M. Challenges of sustainable groundwater development and management in Bangladesh: Vision 2050. Glob. Groundw. 2021, 27, 425–438. [Google Scholar] [CrossRef]
- Zheng, C.; Guo, Z. Plans to protect China’s depleted groundwater. Science 2022, 375, 827. [Google Scholar] [CrossRef]
- Tang, X.; Adesina, J.A. Integrated Watershed Management Framework and Groundwater Resources in Africa—A Review of West Africa Sub-Region. Water 2022, 14, 288. [Google Scholar] [CrossRef]
- Liu, X.; Hu, L.; Sun, K.; Yang, Z.; Sun, J.; Yin, W. Improved Understanding of Groundwater Storage Changes under the Influence of River Basin Governance in Northwestern China Using GRACE Data. Remote Sens. 2021, 13, 2672. [Google Scholar] [CrossRef]
- Pollicino, L.C.; Masetti, M.; Stevenazzi, S.; Cristaldi, A.; Righetti, C.; Gorla, M. Multi-aquifer susceptibility analyses for supporting groundwater management in urban areas. J. Contam. Hydrol. 2021, 238, 103774. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Talukdar, S.; Rahman, A.; Shahfahad; Roy, S.K. Groundwater potentiality mapping using ensemble machine learning algorithms for sustainable groundwater management. Front. Eng. Built Environ. 2021, 2, 43–54. [Google Scholar] [CrossRef]
- Rossetto, R.; Borsi, I.; Schifani, C.; Bonari, E.; Mogorovich, P.; Primicerio, M. SID & GRID: Hydroinformatics system for the management of the water resource. Rend. Online Soc. Geol. It. 2010, 11, 193–194. [Google Scholar]
- Pierce, S.A.; Sharp, J.M.; Eaton, D.J. Decision support systems and processes for groundwater. Integr. Groundw. Manag. Concepts Approaches Chall. 2016, 369–665. [Google Scholar] [CrossRef]
- Fitch, P.; Brodaric, B.; Stenson, M.; Booth, N. Integrated groundwater data management. Integr. Groundw. Manag. Concepts Approaches Chall. 2016, 667–692. [Google Scholar] [CrossRef]
- Aderemi, B.A.; Olwal, T.O.; Ndambuki, J.M.; Rwanga, S.S. A Review of Groundwater Management Models with a Focus on IoT-Based Systems. Sustainability 2021, 14, 148. [Google Scholar] [CrossRef]
- Avesani, D.; Galletti, A.; Piccolroaz, S.; Bellin, A.; Majone, B. A dual-layer MPI continuous large-scale hydrological model including Human Systems. Environ. Model. Softw. 2021, 139, 105003. [Google Scholar] [CrossRef]
- Lu, Q.; Xie, X.; Parlikad, A.K.; Schooling, J.M. Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance. Autom. Constr. 2020, 118, 103277. [Google Scholar] [CrossRef]
- Wu, C.; Wu, P.; Wang, J.; Jiang, R.; Chen, M.; Wang, X. Critical review of data-driven decision-making in bridge operation and maintenance. Struct. Infrastruct. Eng. 2020, 18, 47–70. [Google Scholar] [CrossRef]
- Schmidt, B.; Wang, L. Cloud-enhanced predictive maintenance. Int. J. Adv. Manuf. Technol. 2016, 99, 5–13. [Google Scholar] [CrossRef]
- Montero, J.; Finger, M. Digitalizing infrastructure: Active management for smarter networks. Mod. Guid. Digit. Infrastruct. 2021, 1, 1–44. [Google Scholar]
- Zonta, T.; da Costa, C.A.; da Rosa Righi, R.; de Lima, M.J.; da Trindade, E.S.; Li, G.P. Predictive maintenance in the Industry 4.0: A systematic literature review. Comput. Ind. Eng. 2020, 150, 106889. [Google Scholar] [CrossRef]
- Singh, O.; Kasana, A.; Sharma, T. Groundwater irrigation market patterns and practices over an agriculturally developed province of north-west India. GeoJournal 2020, 85, 703–729. [Google Scholar] [CrossRef]
- Mora, M.; Vera, J.; Rocamora, C.; Abadia, R. Energy Efficiency and Maintenance Costs of Pumping Systems for Groundwater Extraction. Water Resour. Manag. 2013, 27, 4395–4408. [Google Scholar] [CrossRef]
- Beebe, R.S. Predictive Maintenance of Pumps Using Condition Monitoring; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 1856174085. [Google Scholar]
- Alqadi, M.; Margane, A.; Al Raggad, M.; Subah, H.A.; Disse, M.; Hamdan, I.; Chiogna, G. Implementation of simple strategies to improve wellfield management in arid regions: The case study of Wadi Al Arab Wellfield, Jordan. Sustainability 2019, 11, 5903. [Google Scholar] [CrossRef] [Green Version]
- Sajid, S.; Haleem, A.; Bahl, S.; Javaid, M.; Goyal, T.; Mittal, M. Data science applications for predictive maintenance and materials science in context to Industry 4.0. Mater. Today Proc. 2021, 45, 4898–4905. [Google Scholar] [CrossRef]
- Cao, Q.; Zanni-Merk, C.; Samet, A.; Reich, C.; Beuvron, F.; de Beuvron, F.d.B.; Beckmann, A.; Giannetti, C. KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0. Robot. Comput. Integr. Manuf. 2022, 74, 102281. [Google Scholar] [CrossRef]
- Teoh, Y.K.; Gill, S.S.; Parlikad, A.K. IoT and Fog Computing based Predictive Maintenance Model for Effective Asset Management in Industry 4.0 using Machine Learning. IEEE Internet Things J. 2021, 3050441. [Google Scholar] [CrossRef]
- Nordal, H.; El-Thalji, I. Modeling a predictive maintenance management architecture to meet industry 4.0 requirements: A case study. Syst. Eng. 2020, 24, 21565. [Google Scholar] [CrossRef]
- Drakaki, M.; Karnavas, Y.L.; Tzionas, P.; Chasiotis, I.D. Recent Developments towards Industry 4.0 Oriented Predictive Maintenance in Induction Motors. Procedia Comput. Sci. 2021, 180, 943–949. [Google Scholar] [CrossRef]
- Drakaki, M.; Karnavas, Y.L.; Tziafettas, I.A.; Linardos, V.; Tzionas, P. Machine learning and deep learning based methods toward industry 4.0 predictive maintenance in induction motors: State of the art survey. J. Ind. Eng. Manag. 2022, 15, 31–57. [Google Scholar] [CrossRef]
- Müller-Czygan, G.; Tarasyuk, V.; Wagner, C.; Wimmer, M. How does digitization succeed in the municipal water sector? The waterexe4.0 meta-study identifies barriers as well as success factors, and reveals expectations for the future. Energies 2021, 14, 7709. [Google Scholar] [CrossRef]
- Xu, M.; David, J.M.; Kim, S.H. The fourth industrial revolution: Opportunities and challenges. Int. J. Financ. Res. 2018, 9, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Sarker, I.H. Data science and analytics: An overview from data-driven smart computing, decision-making and applications perspective. SN Comput. Sci. 2021, 2, 1–22. [Google Scholar] [CrossRef]
- Sun, A.Y.; Scanlon, B.R. How can Big Data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environ. Res. Lett. 2019, 14, 73001. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Fu, R.; Li, D.; Jiang, H.; Wang, C.; Peng, Y.; Jia, K.; Hicks, B.J. Remote sensing big data for water environment monitoring: Current status, challenges, and future prospects. Earth’s Futur. 2022, 10, e2021EF002289. [Google Scholar] [CrossRef]
- Gijzen, H. Big data for a sustainable future. Nature 2013, 502, 38. [Google Scholar] [CrossRef] [Green Version]
- Seele, P.; Lock, I. The game-changing potential of digitalization for sustainability: Possibilities, perils, and pathways. Sustain. Sci. 2017, 12, 183–185. [Google Scholar] [CrossRef] [Green Version]
- Gaffoor, Z.; Pietersen, K.; Jovanovic, N.; Bagula, A.; Kanyerere, T. Big data analytics and its role to support groundwater management in the southern African development community. Water 2020, 12, 2796. [Google Scholar] [CrossRef]
- Lee, S.; Hyun, Y.; Lee, M.-J. Groundwater potential mapping using data mining models of big data analysis in Goyang-si, South Korea. Sustainability 2019, 11, 1678. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Santos, P.; Renard, P. Mapping groundwater potential through an ensemble of big data methods. Groundwater 2020, 58, 583–597. [Google Scholar] [CrossRef]
- Shafiee, M.E.; Barker, Z.; Rasekh, A. Enhancing water system models by integrating big data. Sustain. Cities Soc. 2018, 37, 485–491. [Google Scholar] [CrossRef]
- Ghernaout, D.; Aichouni, M.; Alghamdi, A. Applying big data in water treatment industry: A new era of advance. Int. J. Adv. Appl. Sci. 2018, 5, 89–97. [Google Scholar] [CrossRef]
- Naeem, M.; Jamal, T.; Diaz-Martinez, J.; Butt, S.A.; Montesano, N.; Tariq, M.I.; De-la-Hoz-Franco, E.; De-La-Hoz-Valdiris, E. Trends and Future Perspective Challenges in Big Data. Smart Innov. Syst. Technol. 2022, 253, 309–325. [Google Scholar] [CrossRef]
- Wu, W. Credit Risk Measurement, Decision Analysis, Transformation and Upgrading for Financial Big Data. Complexity 2022, 2022, 8942773. [Google Scholar] [CrossRef]
- Shamim, S.; Zeng, J.; Shariq, S.M.; Khan, Z. Role of big data management in enhancing big data decision-making capability and quality among Chinese firms: A dynamic capabilities view. Inf. Manag. 2019, 56, 103135. [Google Scholar] [CrossRef]
- Abd Rahman, M.S.B.; Mohamad, E.; Abdul Rahman, A.A. Bin Development of IoT—Enabled data analytics enhance decision support system for lean manufacturing process improvement. Concurr. Eng. 2021, 29, 208–220. [Google Scholar] [CrossRef]
- Rossi, R.; Hirama, K. Characterizing Big Data Management. arXiv 2015, arXiv:2201.05929. [Google Scholar]
- ESdat.Net Environmental Data Management Software|ESdat. Available online: https://esdat.net/Default.aspx (accessed on 22 December 2021).
- RockWare. RockWorks 2021 Training Manual; RockWare: Golden, CA, USA, 2020. [Google Scholar]
- Borehole Management—EDAMS. Available online: https://edams.com/products/licensing-permits/borehole-management/ (accessed on 4 January 2022).
- Ribeka Die Experten für effizientes Wasser-Ressourcen-Management 2018. Available online: https://www.ribeka.com/ (accessed on 22 November 2022).
- Barlow, P.M.; Moench, A.F. WTAQ Version 2—A Computer Program for Analysis of Aquifer Tests in Confined and Water-Table Aquifers with Alternative Representations of Drainage from the Unsaturated Zone; US Geological Survey Office: Washington, DC, USA, 2011. [Google Scholar]
- Halford, K.J.; Kunianksy, E.L. USGS OFR 02-197 Spreadsheets for the Analysis of Aquifer Pumping and Slug Test Data; US Geological Survey Office: Washington, DC, USA, 2002. [Google Scholar]
- Xin, J.; Wang, Y.; Shen, Z.; Liu, Y.; Wang, H.; Zheng, X. Critical review of measures and decision support tools for groundwater nitrate management: A surface-to-groundwater profile perspective. J. Hydrol. 2021, 598, 126386. [Google Scholar] [CrossRef]
- Selvaraj, A.; Saravanan, S.; Jennifer, J.J. Mamdani fuzzy based decision support system for prediction of groundwater quality: An application of soft computing in water resources. Environ. Sci. Pollut. Res. 2020, 27, 25535–25552. [Google Scholar] [CrossRef] [PubMed]
- Machiwal, D.; Jha, M.K.; Singh, V.P.; Mohan, C. Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth Sci. Rev. 2018, 185, 901–927. [Google Scholar] [CrossRef]
- Hecht, C.; Cordeira, J.; Kawsenuk, B.; Kalansky, J.; Ralph, F.; Hecht, C.; Cordeira, J.; Kawsenuk, B.; Kalansky, J.; Ralph, F. Decision Support Tools for Forecast Informed Reservoir Operations: Atmospheric River Related Situational Awareness Products at the Center for Western Weather and Water Extremes. AGUFM 2021, 2021, H43H-09. [Google Scholar]
- Phan, T.D.; Smart, J.C.R.; Stewart-Koster, B.; Sahin, O.; Hadwen, W.L.; Dinh, L.T.; Tahmasbian, I.; Capon, S.J. Applications of bayesian networks as decision support tools for water resource management under climate change and socio-economic stressors: A critical appraisal. Water 2019, 11, 2642. [Google Scholar] [CrossRef]
- Roozbahani, A.; Ebrahimi, E.; Banihabib, M.E. A Framework for Ground Water Management Based on Bayesian Network and MCDM Techniques. Water Resour. Manag. 2018, 32, 4985–5005. [Google Scholar] [CrossRef]
- Rossetto, R.; De Filippis, G.; Borsi, I.; Foglia, L.; Cannata, M.; Criollo, R.; Vázquez-Suñé, E. Integrating free and open source tools and distributed modelling codes in GIS environment for data-based groundwater management. Environ. Model. Softw. 2018, 107, 210–230. [Google Scholar] [CrossRef]
- Wang, H.; Asefa, T.; Wanakule, N.; Adams, A. Application of Decision-Support Tools for Seasonal Water Supply Management that Incorporates System Uncertainties and Operational Constraints. J. Water Resour. Plan. Manag. 2020, 146, 1225. [Google Scholar] [CrossRef]
- Yao, A.B.; Mangoua, O.M.J.; Georges, E.S.; Kane, A.; Goula, B.T.A. Using “Water Evaluation and Planning” (WEAP) Model to Simulate Water Demand in Lobo Watershed (Central-Western Cote d’Ivoire). J. Water Resour. Prot. 2021, 13, 216–235. [Google Scholar] [CrossRef]
- Chelangat, C.; Abebe, A. Reservoir operation for optimal water use of Kabalega reservoir in Uganda. Int. J. Energy Water Resour. 2021, 5, 311–321. [Google Scholar] [CrossRef]
- Huang, X.; Xu, B.; Zhong, P.A.; Yao, H.; Yue, H.; Zhu, F.; Lu, Q.; Sun, Y.; Mo, R.; Li, Z.; et al. Robust multiobjective reservoir operation and risk decision-making model for real-time flood control coping with forecast uncertainty. J. Hydrol. 2022, 605, 127334. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Sitzenfrei, R. Rethinking the Framework of Smart Water System: A Review. Water 2020, 12, 412. [Google Scholar] [CrossRef] [Green Version]
- Subah, A.; Hobler, M.; HajAli, Z.; Khalifa, N.; Momani, T.; Atrash, M.; Hijazi, H.; Ouran, S.; Jaber, A.; Tarawneh, R. Hydrogeological Proposal for the Delineation of a Groundwater Protection Area for the Wadi Al Arab Well Field; Ministry of Water and Irrigation (MWI): Amman, Jordan, 2006. [Google Scholar]
- DoS. 2019 Figures in Jordan; Department of Statistics (DoS): Amman, Jordan, 2019. [Google Scholar]
- MWI Water Information System (WIS) 2019. Available online: https://water.europa.eu/ (accessed on 15 December 2022).
- Brückner, F.; Bahls, R.; Alqadi, M.; Lindenmaier, F.; Hamdan, I.; Alhiyari, M.; Atieh, A. Causes and consequences of long-term groundwater overabstraction in Jordan. Hydrogeol. J. 2021, 29, 2789–2802. [Google Scholar] [CrossRef]
- Gropius, M.; Dahabiyeh, M.; Al Hyari, M.; Brückner, F.; Lindenmaier, F.; Vassolo, S. Estimation of unrecorded groundwater abstractions in Jordan through regional groundwater modelling. Hydrogeol. J. 2022, 30, 1769–1787. [Google Scholar] [CrossRef]
- Al Kuisi, M.; Al-Hwaiti, M.; Mashal, K.; Abed, A.M. Spatial distribution patterns of molybdenum (Mo) concentrations in potable groundwater in Northern Jordan. Environ. Monit. Assess. 2015, 187, 148. [Google Scholar] [CrossRef]
- Hiasat, T.H.; Rimawi, O.A.; Makhlouf, I.M. Hydrochemical Evaluation of Molybdenum Content of the Groundwater Aquifer System in Northern Jordan. J. Water Resour. Prot. 2020, 12, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Alqadi, M.; Margane, A.; Hamdan, I.; Al Kordi, R.; Hiasat, T.; Al Wriekat, M.; Maharmeh, H.; Bali, A.; Taha, W.; Mrayyan, K.; et al. Wadi Al Arab Wellfield Management Report—Version 2; Ministry of Water and Irrigation (MWI): Amman, Jordan, 2018. [Google Scholar]
- Margane, A.; Alqadi, M.; el Kurdi, O. Updating the Groundwater Contour Map of the A7/B2 Aquifer in North Jordan; BGR: Amman, Jordan, 2015. [Google Scholar]
- GIZ. Rapid Assessment of the Consequences of Declining Resources Availability and Exploitability for the Existing Water Supply Infrastructure; The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH in Cooperation of the Ministry of Water and Irrigation (MWI): Berlin, Germany, 2020. [Google Scholar]
- Moh’d, B.K. The Geology of Irbid and Ash Shuna Ash Shamaliyya (Waqqas): Map Sheets no. 3154-II and 3154-III; The Hashemite Kingdom of Jordan, Natural Resources Authority, Geology Directorate, Geological Mapping Division: Amman, Jordan, 2000. [Google Scholar]
- Subah, A.; Hobler, M.; Hajali, Z.; Khalifa, N.; Momani, T.; Atrash, M.; Hijazi, H.; Ouran, S.; Jaber, A.; Tarwaneh, R. Delineation of a Groundwater Protection Area for the Wadi Al Arab Well Field; The Hashemite Kingdom of Jordan, Natural Resources Authority, Geology Directorate, Geological Mapping Division: Amman, Jordan, 2006. [Google Scholar]
- Dorsch, T.; Alqadi, M.; Hamdan, A.; Hiasat, T.; Subeh, A.; Margane, A. TR-1: Wadi Al Arab Well Field Management—Part I—Well Field Assessmen; BGR: Amman, Jordan, 2017. [Google Scholar]
- WMI. Customer Service-Focused Business Plan 2019–2021 Yarmouk Water Company—Final Report; WMI: Burlington, VT, USA, 2020. [Google Scholar]
- KFW. Ex Post Evaluation Water Loss Reduction Irbid/Jerash, Jordan; KFW: Berlin, Germany, 2021. [Google Scholar]
- JICA. Water Sector for the Host Communities of Syrian Refugees in Northern Governorates in the Hashemite Kingdom of Jordan—Master plan; JICA: Tokyo, Japan, 2015. [Google Scholar]
- Alqadi, M.; Aldwairi, A.; Margane, A.; Brueckner, F.; Schneider, M. Development of a user-friendly tool for groundwater wellfields management. In Proceedings of the 39th IAHR World Congress, Granada, Spain, 19–24 June 2022; International Association for Hydro-Environment Engineering and Research: Granada, Spain, 2022; p. 10. [Google Scholar]
- Chang, S.W.; Memari, S.S.; Clement, T.P. Pytheis—A python tool for analyzing pump test data. Water 2021, 13, 2180. [Google Scholar] [CrossRef]
- Katsifarakis, K.L.; Nikoletos, I.A.; Stavridis, C. Minimization of Transient Groundwater Pumping Cost—Analytical and Practical Solutions. Water Resour. Manag. 2018, 32, 1053–1069. [Google Scholar] [CrossRef]
- Nagkoulis, N.; Katsifarakis, K.L. Minimization of Total Pumping Cost from an Aquifer to a Water Tank, Via a Pipe Network. Water Resour. Manag. 2020, 34, 4147–4162. [Google Scholar] [CrossRef]
- Hipp, R.D. SQLite. Available online: https://www.sqlite.org/index.html. (accessed on 15 February 2022).
- Bresciani, E.; Shandilya, R.N.; Kang, P.K.; Lee, S. Well radius of influence and radius of investigation: What exactly are they and how to estimate them? J. Hydrol. 2020, 583, 124646. [Google Scholar] [CrossRef]
- Cervera-Gascó, J.; Montero, J.; Moreno, M.A. AS-Solar, a Tool for Predictive Maintenance of Solar Groundwater Pumping Systems. Agronomy 2021, 11, 2356. [Google Scholar] [CrossRef]
- Borch, M.A.; Smith, S.A.; Noble, L.N. Evaluation and Restoration of Water Supply Wells; American Water Works Association: Washington, DC, USA, 1993; ISBN 0898676592. [Google Scholar]
- Brückner, F. Update of Structure Contour Maps of the Ajloun Institute, Belqa Groups; Ministry of Water and Irrigation and Federal Institute for Geosciences and Natural Resources: Amman, Jordan, 2018. [Google Scholar]
- Rödiger, T.; Magri, F.; Geyer, S.; Morandage, S.T.; Subah, H.E.A.; Alraggad, M.; Siebert, C. Assessing anthropogenic impacts on limited water resources under semi-arid conditions: Three-dimensional transient regional modelling in Jordan. Hydrogeol. J. 2017, 25, 2139–2149. [Google Scholar] [CrossRef]
- Al Manaseer, N.; Ta’any, R. Hydrological Study and Aquifer Characteristics Evaluation of Wadi El Arab Catchment Area/Jordan. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2058–2070. [Google Scholar] [CrossRef]
- McDonald, M.G.; Harbaugh, A.W. A modular three-dimensional finite-difference ground-water flow model. Tech. Water-Resour. Investig. 1988. [Google Scholar] [CrossRef]
- Trefry, M.G.; Muffels, C. FEFLOW: A Finite-Element Ground Water Flow and Transport Modeling Tool. Groundwater 2007, 45, 525–528. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, Z.; Zhan, H. Semi-analytical solutions for transient flow to a partially penetrated well with variable discharge in a general three-layer aquifer system. J. Hydrol. 2021, 598, 126329. [Google Scholar] [CrossRef]
- Nagkoulis, N.; Katsifarakis, K.L. Cost minimization of groundwater supply to a central tank. Water Supply 2021, 22, 2055–2066. [Google Scholar] [CrossRef]
- Zhai, Y.; Cao, X.; Jiang, Y.; Sun, K.; Hu, L.; Teng, Y.; Wang, J.; Li, J. Further Discussion on the Influence Radius of a Pumping Well: A Parameter with Little Scientific and Practical Significance That Can Easily Be Misleading. Water 2021, 13, 2050. [Google Scholar] [CrossRef]
Content of the Document | # of Documents | # of Sources | Linked to | Sources to Collect the Documents from |
---|---|---|---|---|
CCTV report | 6 | 2 | Well | Private drilling company, water utility |
Completion report | 9 | 3 | Well | MWI, Private drilling company, water utility |
General guidelines | 10 | 2 | - | Online, International cooperation projects in Jordan |
Project report | 7 | 2 | Area/wellfield | MWI, International cooperation projects in Jordan |
Pump curves | 11 | 1 | Well | Water Utility |
Scientific article | 11 | 1 | Area/wellfield | Online |
Well ID | Casing | Drilling | Lithology | Completion Report Availability |
---|---|---|---|---|
AE1007 | Yes | No * | Yes | x |
AE1008 | Yes | No * | Yes | x |
AE1009 | Yes | No * | Yes | x |
AE1010 | Yes | No | Yes | |
AE1011 | Yes | No | Yes | |
AE1012 | No | No | Yes | |
AE3005 | Yes | Yes | No | |
AE3006 | Yes | Yes | No | |
AE3016 | Yes | Yes | No | |
AE3017 | Yes | Yes | No | |
AE3018 | Yes | Yes | No | |
AE3019 | Yes | Yes | No | |
AE3020 | Yes | Yes | Yes | |
AE3021 | Yes | Yes | No | |
AE3024 | Yes | Yes | Yes | x |
AE3027 | No * | No* | Yes | x |
AE3030 | Yes | Yes | Yes | x |
AE3034 | Yes | Yes | Yes | x |
AE3035 | Yes | Yes | Yes | x |
AE3042 | Yes | Yes | No * | x |
AE3043 | Yes | Yes | No |
Well ID | Well Elevation | Well Depth | Elevation of Base of A7 | Fully Penetrating the Aquifer? | Confinement Condition |
---|---|---|---|---|---|
AE3005 | −14.89 | 243 | −632 | No | Confined |
AE3006 | 79.29 | 260 | −329 | No | Unconfined |
AE3016 | 85.63 | 195 | −276 | No | Unconfined |
AE3017 | 74.65 | 230 | −420 | No | Confined |
AE3018 | −40.89 | 230 | −597 | No | Confined |
AE3019 | 104.87 | 304 | −469 | No | Confined |
AE3021 | 70.98 | 347 | −219 | Yes | Unconfined |
AE3042 | 104.87 | 450 | −469 | No | Confined |
AE3043 | 109.59 | 450 | −287 | Yes | Unconfined |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqadi, M.; Al Dwairi, A.; Merchán-Rivera, P.; Chiogna, G. Presentation of DeMa (Decision Support Software and Database for Wellfield Management) and Its Application for the Wadi Al Arab Wellfield. Water 2023, 15, 331. https://doi.org/10.3390/w15020331
Alqadi M, Al Dwairi A, Merchán-Rivera P, Chiogna G. Presentation of DeMa (Decision Support Software and Database for Wellfield Management) and Its Application for the Wadi Al Arab Wellfield. Water. 2023; 15(2):331. https://doi.org/10.3390/w15020331
Chicago/Turabian StyleAlqadi, Mohammad, Ala Al Dwairi, Pablo Merchán-Rivera, and Gabriele Chiogna. 2023. "Presentation of DeMa (Decision Support Software and Database for Wellfield Management) and Its Application for the Wadi Al Arab Wellfield" Water 15, no. 2: 331. https://doi.org/10.3390/w15020331
APA StyleAlqadi, M., Al Dwairi, A., Merchán-Rivera, P., & Chiogna, G. (2023). Presentation of DeMa (Decision Support Software and Database for Wellfield Management) and Its Application for the Wadi Al Arab Wellfield. Water, 15(2), 331. https://doi.org/10.3390/w15020331