Computing River Discharge Using Water Surface Elevation Based on Deep Learning Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area
2.1.2. Data Description
2.2. Deep Learning Networks
2.3. Computation Procedure Design
2.3.1. Computation Procedure
2.3.2. Evaluation Metrics
3. Results
3.1. Comparison of the Effect of Different Deep Learning Networks
3.2. Estimated Results in Different Parameters
3.3. Estimated Results in Different Datasets
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarpanelli, A.; Paris, A.; Sichangi, A.W.; O’Loughlin, F.; Papa, F. Water Resources in Africa: The Role of Earth Observation Data and Hydrodynamic Modeling to Derive River Discharge. Surv. Geophys. 2023, 44, 97–122. [Google Scholar] [CrossRef]
- Xia, M.; Craig, P.M.; Schaeffer, B.; Stoddard, A.; Liu, Z.; Peng, M.; Zhang, H.; Wallen, C.M.; Bailey, N.; Mandrup-Poulsen, J. Influence of Physical Forcing on Bottom-Water Dissolved Oxygen within Caloosahatchee River Estuary, Florida. J. Environ. Eng. 2010, 136, 1032–1044. [Google Scholar] [CrossRef]
- Xia, M.; Craig, P.M.; Wallen, C.M.; Stoddard, A.; Mandrup-Poulsen, J.; Peng, M.; Schaeffer, B.; Liu, Z. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean. J. Coast. Res. 2011, 27, 73. [Google Scholar] [CrossRef]
- Chen, J.; Weisberg, R.H.; Liu, Y.; Zheng, L. Hillsborough Bay Inflow Modification Study: An Application of the Tampa Bay Coastal Ocean Model. Estuar. Coast. Shelf Sci. 2023, 281, 108213. [Google Scholar] [CrossRef]
- Cheng, Z.; Lee, K.; Kim, D.; Muste, M.; Vidmar, P.; Hulme, J. Experimental Evidence on the Performance of Rating Curves for Continuous Discharge Estimation in Complex Flow Situations. J. Hydrol. 2019, 568, 959–971. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Yang, T.-M.; Hsu, N.-S.; Kuo, T.-M. Real-Time Discharge Measurement in Tidal Streams by an Index Velocity. Environ. Monit. Assess. 2012, 184, 6423–6436. [Google Scholar] [CrossRef] [PubMed]
- Le Coz, J.; Pierrefeu, G.; Paquier, A. Evaluation of River Discharges Monitored by a Fixed Side-Looking Doppler Profiler. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Lee, K.; Firoozfar, A.R.; Muste, M. Technical Note: Monitoring of Unsteady Open Channel Flows Using the Continuous Slope-Area Method. Hydrol. Earth Syst. Sci. 2017, 21, 1863–1874. [Google Scholar] [CrossRef]
- Lee, K.; Muste, M. Refinement of the Fread Method for Improved Tracking of Stream Discharges during Unsteady Flows. J. Hydraul. Eng. 2017, 143, 06017003. [Google Scholar] [CrossRef]
- Muste, M.; Lee, K.; Kim, D.; Bacotiu, C.; Oliveros, M.R.; Cheng, Z.; Quintero, F. Revisiting Hysteresis of Flow Variables in Monitoring Unsteady Streamflows. J. Hydraul. Res. 2020, 58, 867–887. [Google Scholar] [CrossRef]
- Gonçalves, G.M.S.; Bartels, G.K.; Lima, L.S.; Boeira, L.d.S.; Collares, G.L. Continuous Discharge Monitoring of the Mirim-São Gonçalo System by the Index Velocity Rating Curve Method. J. Hydroinformatics 2023, 25, 20–35. [Google Scholar] [CrossRef]
- Pappenberger, F.; Matgen, P.; Beven, K.J.; Henry, J.-B.; Pfister, L.; Fraipont, P. Influence of Uncertain Boundary Conditions and Model Structure on Flood Inundation Predictions. Adv. Water Resour. 2006, 29, 1430–1449. [Google Scholar] [CrossRef]
- Gensen, M.R.A.; Warmink, J.J.; Huthoff, F.; Hulscher, S.J.M.H. Feedback Mechanism in Bifurcating River Systems: The Effect on Water-Level Sensitivity. Water 2020, 12, 1915. [Google Scholar] [CrossRef]
- Berends, K.D.; Straatsma, M.W.; Warmink, J.J.; Hulscher, S.J.M.H. Uncertainty Quantification of Flood Mitigation Predictions and Implications for Interventions. Nat. Hazards Earth Syst. Sci. 2019, 19, 1737–1753. [Google Scholar] [CrossRef]
- Le Coz, J.; Renard, B.; Bonnifait, L.; Branger, F.; Le Boursicaud, R. Combining Hydraulic Knowledge and Uncertain Gaugings in the Estimation of Hydrometric Rating Curves: A Bayesian Approach. J. Hydrol. 2014, 509, 573–587. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Claps, P. A Hydraulic Study on the Applicability of Flood Rating Curves. Hydrol. Res. 2011, 42, 10–19. [Google Scholar] [CrossRef]
- Lang, M.; Pobanz, K.; Renard, B.; Renouf, E.; Sauquet, E. Extrapolation of Rating Curves by Hydraulic Modelling, with Application to Flood Frequency Analysis. Hydrol. Sci. J. 2010, 55, 883–898. [Google Scholar] [CrossRef]
- Yilmaz, A.G.; Muttil, N. Runoff Estimation by Machine Learning Methods and Application to the Euphrates Basin in Turkey. J. Hydrol. Eng. 2014, 19, 1015–1025. [Google Scholar] [CrossRef]
- Hu, C.; Wu, Q.; Li, H.; Jian, S.; Li, N.; Lou, Z. Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water 2018, 10, 1543. [Google Scholar] [CrossRef]
- Wee, W.J.; Zaini, N.B.; Ahmed, A.N.; El-Shafie, A. A Review of Models for Water Level Forecasting Based on Machine Learning. Earth Sci. Inform. 2021, 14, 1707–1728. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Q.; Shao, J.; Wang, G.; Zhang, W. A New Few-Shot Learning Model for Runoff Prediction: Demonstration in Two Data Scarce Regions. Environ. Model. Softw. 2023, 162, 105659. [Google Scholar] [CrossRef]
- Pokharel, S.; Roy, T.; Admiraal, D. Effects of Mass Balance, Energy Balance, and Storage-Discharge Constraints on LSTM for Streamflow Prediction. Environ. Model. Softw. 2023, 166, 105730. [Google Scholar] [CrossRef]
- Ni, J.; Liu, R.; Li, Y.; Tang, G.; Shi, P. An Improved Transfer Learning Model for Cyanobacterial Bloom Concentration Prediction. Water 2022, 14, 1300. [Google Scholar] [CrossRef]
- Shan, S.; Ni, H.; Chen, G.; Lin, X.; Li, J. A Machine Learning Framework for Enhancing Short-Term Water Demand Forecasting Using Attention-BiLSTM Networks Integrated with XGBoost Residual Correction. Water 2023, 15, 3605. [Google Scholar] [CrossRef]
- Wongburi, P.; Park, J.K. Prediction of Wastewater Treatment Plant Effluent Water Quality Using Recurrent Neural Network (RNN) Models. Water 2023, 15, 3325. [Google Scholar] [CrossRef]
- Liu, G.; Tang, Z.; Qin, H.; Liu, S.; Shen, Q.; Qu, Y.; Zhou, J. Short-Term Runoff Prediction Using Deep Learning Multi-Dimensional Ensemble Method. J. Hydrol. 2022, 609, 127762. [Google Scholar] [CrossRef]
- Matsui, K.; Shirai, H.; Kageyama, Y.; Yokoyama, H.; Asano, M. Estimating Water Quality through Neural Networks Using Terra ASTER Data, Water Depth, and Temperature of Lake Hachiroko, Japan. Environ. Model. Softw. 2023, 159, 105584. [Google Scholar] [CrossRef]
- Han, H.; Morrison, R.R. Improved Runoff Forecasting Performance through Error Predictions Using a Deep-Learning Approach. J. Hydrol. 2022, 608, 127653. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Xiao, M.; Zhou, S.; Xiong, B.; Jin, Z. Medium-Long-Term Prediction of Water Level Based on an Improved Spatio-Temporal Attention Mechanism for Long Short-Term Memory Networks. J. Hydrol. 2023, 618, 129163. [Google Scholar] [CrossRef]
- Xiang, Z.; Yan, J.; Demir, I. A Rainfall-Runoff Model With LSTM-Based Sequence-to-Sequence Learning. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
- Lu, J.; Gu, J.; Han, J.; Xu, J.; Liu, Y.; Jiang, G.; Zhang, Y. Evaluation of Spatiotemporal Patterns and Water Quality Conditions Using Multivariate Statistical Analysis in the Yangtze River, China. Water 2023, 15, 3242. [Google Scholar] [CrossRef]
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. arXiv 2014, arXiv:1409.1259. [Google Scholar]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2016, arXiv:1409.0473. [Google Scholar]
- Samantaray, S.; Sahoo, P.; Sahoo, A.; Satapathy, D.P. Flood Discharge Prediction Using Improved ANFIS Model Combined with Hybrid Particle Swarm Optimisation and Slime Mould Algorithm. Environ. Sci. Pollut. Res. Int. 2023, 30, 83845–83872. [Google Scholar] [CrossRef]
- Samantaray, S.; Sahoo, A. Prediction of Flow Discharge in Mahanadi River Basin, India, Based on Novel Hybrid SVM Approaches. Environ. Dev. Sustain. 2023, 1–25. [Google Scholar] [CrossRef]
- Samantaray, S.; Ghose, D.K. Sediment Assessment for a Watershed in Arid Region via Neural Networks. Sādhanā 2019, 44, 219. [Google Scholar] [CrossRef]
- Samantaray, S.; Ghose, D.K. Prediction of S12-MKII Rainfall Simulator Experimental Runoff Data Sets Using Hybrid PSR-SVM-FFA Approaches. J. Water Clim. Chang. 2022, 13, 707–734. [Google Scholar] [CrossRef]
Hyperparameters | a | b | c | d | e | f | g | h | i |
---|---|---|---|---|---|---|---|---|---|
Batch size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 | 24 |
Time step | 72 | 72 | 48 | 72 | 72 | 96 | 72 | 72 | 72 |
Number of neurons | 128 | 64 | 128 | 128 | 128 | 128 | 256 | 128 | 128 |
Number of layers | 2 | 2 | 2 | 4 | 6 | 2 | 2 | 2 | 2 |
Evaluation Metrics | a | b | c | d | e | f | g | h | i |
---|---|---|---|---|---|---|---|---|---|
RMSE | 266.008 | 258.448 | 268.750 | 267.236 | 269.780 | 266.016 | 256.950 | 261.046 | 256.058 |
NSE | 0.9971 | 0.9973 | 0.9971 | 0.9971 | 0.9970 | 0.9971 | 0.9973 | 0.9972 | 0.9973 |
MAE | 216.089 | 210.169 | 219.553 | 210.205 | 213.596 | 215.500 | 207.430 | 213.075 | 207.624 |
MAPE | 0.0369 | 0.0355 | 0.0355 | 0.0352 | 0.0336 | 0.0369 | 0.0360 | 0.0357 | 0.0355 |
Evaluation Metrics | a | b | c | d | e | f | g | h | i |
---|---|---|---|---|---|---|---|---|---|
RMSE | 5 | 3 | 8 | 7 | 9 | 6 | 2 | 4 | 1 |
NSE | 5 | 1 | 5 | 5 | 9 | 5 | 1 | 4 | 1 |
MAE | 8 | 3 | 9 | 4 | 6 | 7 | 1 | 5 | 2 |
MAPE | 8 | 3 | 3 | 2 | 1 | 8 | 7 | 6 | 3 |
Total scores | 26 | 10 | 25 | 18 | 25 | 26 | 11 | 19 | 7 |
Evaluation Metrics | Gaochang | Fushun | Panzhihua | Sanduizi | Wudongde | Zhutuo |
---|---|---|---|---|---|---|
RMSE | 154.084 | 77.161 | 214.67 | 16.257 | 98.836 | 266.009 |
NSE | 0.9898 | 0.9800 | 0.9678 | 0.9999 | 0.9984 | 0.9971 |
MAE | 70.546 | 47.760 | 94.089 | 12.443 | 80.534 | 216.089 |
MAPE | 0.0536 | 0.1272 | 0.0548 | 0.004 | 0.0276 | 0.0370 |
Evaluation Metrics | Gaochang | Fushun | Panzhihua | Sanduizi | Wudongde | Zhutuo |
---|---|---|---|---|---|---|
RMSE | 4 | 2 | 5 | 1 | 3 | 6 |
NSE | 4 | 5 | 6 | 1 | 2 | 3 |
MAE | 3 | 2 | 5 | 1 | 4 | 6 |
MAPE | 4 | 6 | 5 | 1 | 2 | 3 |
Total scores | 15 | 15 | 21 | 4 | 11 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zou, P.; Jiang, D.; Quan, X.; Dai, H. Computing River Discharge Using Water Surface Elevation Based on Deep Learning Networks. Water 2023, 15, 3759. https://doi.org/10.3390/w15213759
Liu W, Zou P, Jiang D, Quan X, Dai H. Computing River Discharge Using Water Surface Elevation Based on Deep Learning Networks. Water. 2023; 15(21):3759. https://doi.org/10.3390/w15213759
Chicago/Turabian StyleLiu, Wei, Peng Zou, Dingguo Jiang, Xiufeng Quan, and Huichao Dai. 2023. "Computing River Discharge Using Water Surface Elevation Based on Deep Learning Networks" Water 15, no. 21: 3759. https://doi.org/10.3390/w15213759
APA StyleLiu, W., Zou, P., Jiang, D., Quan, X., & Dai, H. (2023). Computing River Discharge Using Water Surface Elevation Based on Deep Learning Networks. Water, 15(21), 3759. https://doi.org/10.3390/w15213759