A Review of Drought Disturbance on Socioeconomic Development
Abstract
:1. Introduction
2. Co-Citation Analysis of Literature Related to Socioeconomic Drought
3. Identification and Characterization of Drought
3.1. Drought Definition
3.2. Drought Identification
3.3. Drought Characterization
4. Socioeconomic Drought under Climate Change
4.1. Social and Economic Impacts of Drought under Climate Change
4.2. Response of Socioeconomic Development to Drought
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Degroot, D.; Anchukaitis, K.; Bauch, M.; Burnham, J.; Carnegy, F.; Cui, J.; De Luna, K.; Guzowski, P.; Hambrecht, G.; Huhtamaa, H.; et al. Towards a Rigorous Understanding of Societal Responses to Climate Change. Nature 2021, 591, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Kohler, T.A.; Lenton, T.M.; Svenning, J.-C.; Scheffer, M. Future of the Human Climate Niche. Proc. Natl. Acad. Sci. USA 2020, 117, 11350–11355. [Google Scholar] [CrossRef] [PubMed]
- Getirana, A.; Libonati, R.; Cataldi, M. Brazil Is in Water Crisis—It Needs a Drought Plan. Nature 2021, 600, 218–220. [Google Scholar] [CrossRef]
- Prudhomme, C.; Giuntoli, I.; Robinson, E.L.; Clark, D.B.; Arnell, N.W.; Dankers, R.; Fekete, B.M.; Franssen, W.; Gerten, D.; Gosling, S.N.; et al. Hydrological Droughts in the 21st Century, Hotspots and Uncertainties from a Global Multimodel Ensemble Experiment. Proc. Natl. Acad. Sci. USA 2014, 111, 3262–3267. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, P.; Huang, Q.; Leng, G.; Hou, B.; Ma, L. The Propagation from Meteorological to Hydrological Drought and Its Potential Influence Factors. J. Hydrol. 2017, 547, 184–195. [Google Scholar] [CrossRef]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 17–22. [Google Scholar]
- Trenberth, K.E.; Dai, A.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global Warming and Changes in Drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Van Loon, A.F. Hydrological Drought Explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate Change and Drought: A Perspective on Drought Indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Burke, M.; Driscoll, A.; Heft-Neal, S.; Xue, J.; Burney, J.; Wara, M. The Changing Risk and Burden of Wildfire in the United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2011048118. [Google Scholar] [CrossRef]
- Xie, Y.; Lin, M.; Decharme, B.; Delire, C.; Horowitz, L.W.; Lawrence, D.M.; Li, F.; Séférian, R. Tripling of Western US Particulate Pollution from Wildfires in a Warming Climate. Proc. Natl. Acad. Sci. USA 2022, 119, e2111372119. [Google Scholar] [CrossRef]
- Barnabás, B.; Jäger, K.; Fehér, A. The Effect of Drought and Heat Stress on Reproductive Processes in Cereals. Plant Cell Environ. 2007, 31, 11–38. [Google Scholar] [CrossRef]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of Extreme Weather Disasters on Global Crop Production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- Yordanov, I.; Velikova, V.; Tsonev, T. Plant Responses to Drought, Acclimation, and Stress Tolerance. Photosynthetica 2000, 38, 171–186. [Google Scholar] [CrossRef]
- Leng, G.; Tang, Q.; Rayburg, S. Climate Change Impacts on Meteorological, Agricultural and Hydrological Droughts in China. Glob. Planet. Chang. 2015, 126, 23–34. [Google Scholar] [CrossRef]
- Bevacqua, E.; Zappa, G.; Lehner, F.; Zscheischler, J. Precipitation Trends Determine Future Occurrences of Compound Hot–Dry Events. Nat. Clim. Chang. 2022, 12, 350–355. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Sivakumar, M.V.K.; Pulwarty, R. Managing Drought Risk in a Changing Climate: The Role of National Drought Policy. Weather Clim. Extrem. 2014, 3, 4–13. [Google Scholar] [CrossRef]
- Cattivelli, L.; Rizza, F.; Badeck, F.-W.; Mazzucotelli, E.; Mastrangelo, A.M.; Francia, E.; Marè, C.; Tondelli, A.; Stanca, A.M. Drought Tolerance Improvement in Crop Plants: An Integrated View from Breeding to Genomics. Field Crop. Res. 2008, 105, 1–14. [Google Scholar] [CrossRef]
- Hu, H.; Dai, M.; Yao, J.; Xiao, B.; Li, X.; Zhang, Q.; Xiong, L. Overexpressing a NAM, ATAF, and CUC (NAC) Transcription Factor Enhances Drought Resistance and Salt Tolerance in Rice. Proc. Natl. Acad. Sci. USA 2006, 103, 12987–12992. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Dai, A. Drought under Global Warming: A Review. WIREs Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little Change in Global Drought over the Past 60 Years. Nature 2012, 491, 435–438. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. Drought Modeling—A Review. J. Hydrol. 2011, 403, 157–175. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Dai, A. Increasing Drought under Global Warming in Observations and Models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (Ed.) Climate Change 2013—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2014; ISBN 978-1-107-05799-9. [Google Scholar]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel Assessment of Water Scarcity under Climate Change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Stahl, K.; Di Baldassarre, G.; Clark, J.; Rangecroft, S.; Wanders, N.; Gleeson, T.; Van Dijk, A.I.J.M.; Tallaksen, L.M.; Hannaford, J.; et al. Drought in a Human-Modified World: Reframing Drought Definitions, Understanding, and Analysis Approaches. Hydrol. Earth Syst. Sci. 2016, 20, 3631–3650. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Kelley, C.P.; Mohtadi, S.; Cane, M.A.; Seager, R.; Kushnir, Y. Climate Change in the Fertile Crescent and Implications of the Recent Syrian Drought. Proc. Natl. Acad. Sci. USA 2015, 112, 3241–3246. [Google Scholar] [CrossRef] [PubMed]
- Diffenbaugh, N.S.; Swain, D.L.; Touma, D. Anthropogenic Warming Has Increased Drought Risk in California. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Gleeson, T.; Clark, J.; Van Dijk, A.I.J.M.; Stahl, K.; Hannaford, J.; Di Baldassarre, G.; Teuling, A.J.; Tallaksen, L.M.; Uijlenhoet, R.; et al. Drought in the Anthropocene. Nat. Geosci. 2016, 9, 89–91. [Google Scholar] [CrossRef]
- Cook, B.I.; Ault, T.R.; Smerdon, J.E. Unprecedented 21st Century Drought Risk in the American Southwest and Central Plains. Sci. Adv. 2015, 1, e1400082. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Sun, J. Changes in Drought Characteristics over China Using the Standardized Precipitation Evapotranspiration Index. J. Clim. 2015, 28, 5430–5447. [Google Scholar] [CrossRef]
- Blauhut, V.; Gudmundsson, L.; Stahl, K. Towards Pan-European Drought Risk Maps: Quantifying the Link between Drought Indices and Reported Drought Impacts. Environ. Res. Lett. 2015, 10, 014008. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Marvel, K.; Williams, A.P.; Smerdon, J.E.; Anchukaitis, K.J. Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios. Earth’s Future 2020, 8, e2019EF001461. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Challinor, A.J.; Ewert, F.; Arnold, S.; Simelton, E.; Fraser, E. Crops and Climate Change: Progress, Trends, and Challenges in Simulating Impacts and Informing Adaptation. J. Exp. Bot. 2009, 60, 2775–2789. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A. A Nonparametric Multivariate Multi-Index Drought Monitoring Framework. J. Hydrometeorol. 2014, 15, 89–101. [Google Scholar] [CrossRef]
- Burke, M.B.; Miguel, E.; Satyanath, S.; Dykema, J.A.; Lobell, D.B. Warming Increases the Risk of Civil War in Africa. Proc. Natl. Acad. Sci. USA 2009, 106, 20670–20674. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; El Kenawy, A. A New Global 0.5° Gridded Dataset (1901–2006) of a Multiscalar Drought Index: Comparison with Current Drought Index Datasets Based on the Palmer Drought Severity Index. J. Hydrometeorol. 2010, 11, 1033–1043. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Cheng, L.; Mazdiyasni, O.; Farahmand, A. Global Warming and Changes in Risk of Concurrent Climate Extremes: Insights from the 2014 California Drought. Geophys. Res. Lett. 2014, 41, 8847–8852. [Google Scholar] [CrossRef]
- Tallaksen, L.M.; van Lanen, H.A.J. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 978-0-323-91679-0. [Google Scholar]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Atlas, R.; Wolfson, N.; Terry, J. The Effect of SST and Soil Moisture Anomalies on GLA Model Simulations of the 1988 U.S. Summer Drought. J. Clim. 1993, 6, 2034–2048. [Google Scholar] [CrossRef]
- Woli, P.; Jones, J.W.; Ingram, K.T.; Fraisse, C.W. Agricultural Reference Index for Drought (ARID). Agron. J. 2012, 104, 287–300. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; US Department of Commerce: Washington, DC, USA, 1965; Volume 30. [Google Scholar]
- Palmer, W.C. Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- Dracup, J.A.; Lee, K.S.; Paulson, E.G. On the Definition of Droughts. Water Resour. Res. 1980, 16, 297–302. [Google Scholar] [CrossRef]
- Hannaford, J.; Lloyd-Hughes, B.; Keef, C.; Parry, S.; Prudhomme, C. Examining the Large-scale Spatial Coherence of European Drought Using Regional Indicators of Precipitation and Streamflow Deficit. Hydrol. Process. 2011, 25, 1146–1162. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B. A Spatio-Temporal Structure-Based Approach to Drought Characterisation. Int. J. Climatol. 2012, 32, 406–418. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Ma, M.; Ren, L.; Yuan, F.; Jiang, S.; Liu, Y.; Kong, H.; Gong, L. A New Standardized Palmer Drought Index for Hydro-meteorological Use. Hydrol. Process. 2014, 28, 5645–5661. [Google Scholar] [CrossRef]
- Gu, L.; Chen, J.; Yin, J.; Slater, L.J.; Wang, H.; Guo, Q.; Feng, M.; Qin, H.; Zhao, T. Global Increases in Compound Flood-Hot Extreme Hazards Under Climate Warming. Geophys. Res. Lett. 2022, 49, e2022GL097726. [Google Scholar] [CrossRef]
- Shukla, S.; Wood, A.W. Use of a Standardized Runoff Index for Characterizing Hydrologic Drought. Geophys. Res. Lett. 2008, 35, L02405. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Azorin-Molina, C.; Morán-Tejeda, E. Accurate Computation of a Streamflow Drought Index. J. Hydrol. Eng. 2012, 17, 318–332. [Google Scholar] [CrossRef]
- Orlowsky, B.; Seneviratne, S.I. Elusive Drought: Uncertainty in Observed Trends and Short- and Long-Term CMIP5 Projections. Hydrol. Earth Syst. Sci. 2013, 17, 1765–1781. [Google Scholar] [CrossRef]
- Mehran, A.; Mazdiyasni, O.; AghaKouchak, A. A Hybrid Framework for Assessing Socioeconomic Drought: Linking Climate Variability, Local Resilience, and Demand. J. Geophys. Res. Atmos. 2015, 120, 7520–7533. [Google Scholar] [CrossRef]
- Pascale, S.; Kapnick, S.B.; Delworth, T.L.; Cooke, W.F. Increasing Risk of Another Cape Town “Day Zero” Drought in the 21st Century. Proc. Natl. Acad. Sci. USA 2020, 117, 29495–29503. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Y. An Analysis of the Drought in Yunnan, China, from a Perspective of Society Drought Severity. Nat. Hazards 2013, 67, 431–458. [Google Scholar] [CrossRef]
- Malek, K.; Stöckle, C.; Chinnayakanahalli, K.; Nelson, R.; Liu, M.; Rajagopalan, K.; Barik, M.; Adam, J.C. VIC–CropSyst-v2: A Regional-Scale Modeling Platform to Simulate the Nexus of Climate, Hydrology, Cropping Systems, and Human Decisions. Geosci. Model Dev. 2017, 10, 3059–3084. [Google Scholar] [CrossRef]
- Andreadis, K.M.; Clark, E.A.; Wood, A.W.; Hamlet, A.F.; Lettenmaier, D.P. Twentieth-Century Drought in the Conterminous United States. J. Hydrometeorol. 2005, 6, 985–1001. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-Temporal Variation of Drought in China during 1961–2012: A Climatic Perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- Zhao, Y.; Qu, J.; Jiang, G.; Wu, D.; Qu, J.; Liu, W. Drought Driving Mechanism and Simulation Evaluation; Science Press: Beijing, China, 2017; ISBN 978-7-03-054582-4. [Google Scholar]
- Thober, S.; Kumar, R.; Sheffield, J.; Mai, J.; Schäfer, D.; Samaniego, L. Seasonal Soil Moisture Drought Prediction over Europe Using the North American Multi-Model Ensemble (NMME). J. Hydrometeorol. 2015, 16, 2329–2344. [Google Scholar] [CrossRef]
- Ukkola, A.M.; De Kauwe, M.G.; Roderick, M.L.; Abramowitz, G.; Pitman, A.J. Robust Future Changes in Meteorological Drought in CMIP6 Projections Despite Uncertainty in Precipitation. Geophys. Res. Lett. 2020, 47, e2020GL087820. [Google Scholar] [CrossRef]
- Liu, N.; Li, X.; Waddington, S.R. Soil and Fertilizer Constraints to Wheat and Rice Production and Their Alleviation in Six Intensive Cereal-Based Farming Systems of the Indian Sub-Continent and China. Food Sec. 2014, 6, 629–643. [Google Scholar] [CrossRef]
- Srinivasa Rao, C.; Gopinath, K.A.; Prasad, J.V.N.S.; Prasannakumar; Singh, A.K. Climate Resilient Villages for Sustainable Food Security in Tropical India: Concept, Process, Technologies, Institutions, and Impacts. Adv. Agron. 2016, 140, 101–214. [Google Scholar]
- Zscheischler, J.; Orth, R.; Seneviratne, S.I. Bivariate Return Periods of Temperature and Precipitation Explain a Large Fraction of European Crop Yields. Biogeosciences 2017, 14, 3309–3320. [Google Scholar] [CrossRef]
- Harding, R.; Best, M.; Blyth, E.; Hagemann, S.; Kabat, P.; Tallaksen, L.M.; Warnaars, T.; Wiberg, D.; Weedon, G.P.; van Lanen, H.; et al. WATCH: Current Knowledge of the Terrestrial Global Water Cycle. J. Hydrometeorol. 2011, 12, 1149–1156. [Google Scholar] [CrossRef]
- Mesquita, P.S.; Bursztyn, M. Food Acquisition Programs in the Brazilian Semi-Arid Region: Benefits to Farmers and Impacts of Climate Change. Food Secur. 2017, 9, 1041–1051. [Google Scholar] [CrossRef]
- Quinn, C.H.; Ziervogel, G.; Taylor, A.; Takama, T.; Thomalla, F. Coping with Multiple Stresses in Rural South Africa. Ecol. Soc. 2011, 16, art2. [Google Scholar] [CrossRef]
- Sato, M.; Seki, M. Sustainable Business, Sustainable Planet— A Japanese Insurance Perspective. Geneva Pap. Risk Insur.-Issues Pract. 2010, 35, 325–335. [Google Scholar] [CrossRef]
- Lund, J.; Medellin-Azuara, J.; Durand, J.; Stone, K. Lessons from California’s 2012–2016 Drought. J. Water Resour. Plann. Manag. 2018, 144, 04018067. [Google Scholar] [CrossRef]
- Freire-González, J.; Decker, C.; Hall, J.W. The Economic Impacts of Droughts: A Framework for Analysis. Ecol. Econ. 2017, 132, 196–204. [Google Scholar] [CrossRef]
- Rachunok, B.; Fletcher, S. Socio-Hydrological Drought Impacts on Urban Water Affordability. Nat. Water 2023, 1, 83–94. [Google Scholar] [CrossRef]
- Stafford Smith, D.M.; McKeon, G.M.; Watson, I.W.; Henry, B.K.; Stone, G.S.; Hall, W.B.; Howden, S.M. Learning from Episodes of Degradation and Recovery in Variable Australian Rangelands. Proc. Natl. Acad. Sci. USA 2007, 104, 20690–20695. [Google Scholar] [CrossRef]
- Luh, J.; Christenson, E.C.; Toregozhina, A.; Holcomb, D.A.; Witsil, T.; Hamrick, L.R.; Ojomo, E.; Bartram, J. Vulnerability Assessment for Loss of Access to Drinking Water Due to Extreme Weather Events. Clim. Chang. 2015, 133, 665–679. [Google Scholar] [CrossRef]
- Palazzo, J.; Liu, O.R.; Stillinger, T.; Song, R.; Wang, Y.; Hiroyasu, E.H.T.; Zenteno, J.; Anderson, S.; Tague, C. Urban Responses to Restrictive Conservation Policy during Drought. Water Resour. Res. 2017, 53, 4459–4475. [Google Scholar] [CrossRef]
- Magaña, V. Considerations for a Research Program on Drought in México. Tecnol. Cienc. Agua 2016, 7, 115–133. [Google Scholar]
Reference | Cluster | Begin | End | Topic |
---|---|---|---|---|
[21] | #15 | 2008 | 2015 | South Asia and Southern Africa face significant crop-related climate risks without adaptation, requiring focused investment in these regions. |
[22] | #0 | 2012 | 2019 | The review discusses historical droughts, recent global aridity changes, and projections for increased aridity in various regions due to climate change. |
[23] | #0 | 2012 | 2015 | This review covers drought definitions, classification, indices, paleoclimatic studies, and links between droughts and climate indices, identifying research gaps. |
[24] | #0 | 2012 | 2019 | The increase in global droughts previously reported may be overestimated due to the simplified PDSI model not accounting for recent global warming effects. |
[25] | #3 | 2012 | 2019 | This paper reviews various methodologies used for drought modeling, including forecasting, probability-based modeling, and spatio-temporal analysis, emphasizing improvements and future research needs. |
[26] | #0 | 2012 | 2019 | CMIP5 is a significant global project providing climate modeling data for research, featuring long-term simulations, Earth system models, and decadal predictions. |
[27] | #0 | 2012 | 2015 | Global terrestrial net primary productivity (NPP) initially increased but has recently decreased due to large-scale droughts, potentially weakening the carbon sink. |
[28] | #0 | 2013 | 2019 | This analysis indicates that historical records and model predictions show increased aridity since 1950, with the models reproducing global aridity trends and linking aridity changes to sea surface temperatures. Future droughts are expected due to decreased precipitation and increased evaporation. |
[29] | #8 | 2013 | 2019 | Human-made greenhouse gases intensify the greenhouse effect with increasing radiative forcing. Aerosols partially counteract this effect, introducing uncertainty. Effective radiative forcing (ERF) is introduced alongside radiative forcing (RF) to assess temperature responses better, especially for aerosols impacting clouds and snow cover. ERF captures rapid cloud adjustments and better indicates temperature changes over the Industrial Era (1750–2011). |
[7] | #0 | 2014 | 2019 | This assessment highlights issues with the Palmer Drought Severity Index (PDSI) and emphasizes the importance of accurate precipitation data and accounting for natural variability, such as El Niño/Southern Oscillation, in attributing drought causes. |
[4] | #10 | 2014 | 2019 | Global hydrological droughts are expected to intensify due to rising greenhouse gas concentrations, with regions like Southern Europe, the Middle East, Southeast US, Chile, and Southwest Australia emerging as potential hotspots. |
[30] | #10 | 2014 | 2019 | Climate change will significantly worsen global and regional water scarcity, especially if global warming exceeds 2 °C above preindustrial levels. Uncertainty in estimates emphasizes the need for improved hydrological models. |
[8] | #3 | 2016 | 2023 | This review focuses on hydrological drought, its definition, processes, climate influences, indicators, monitoring, predictions, impacts, management, and future research challenges. |
[31] | #10 | 2016 | 2023 | Rethinking drought to incorporate human influence for better management due to the incomplete understanding of drought-people feedback. |
[32] | #3 | 2016 | 2019 | This article discusses methods for computing the Standardized Precipitation Evapotranspiration Index (SPEI), including parameter estimation, reference evapotranspiration (ET0), and weighting kernels. It also provides software tools and a real-time drought monitoring system. |
[33] | #7 | 2016 | 2023 | The severe Syrian drought before the 2011 uprising resulted from natural variability and a long-term drying trend. Human-induced climate change made such droughts over twice as likely. |
[34] | #1 | 2016 | 2019 | California’s record-setting drought is exacerbated by the increasing likelihood of warm and dry conditions influenced by human emissions. |
[35] | #3 | 2016 | 2023 | Droughts in the Anthropocene era resulted from complex interactions of meteorological anomalies, land processes, and human influences. We need new drought definitions, multi-driver analyses, and robust tools for drought research and management. Key questions focus on drivers, impacts, feedback, and adaptation. A holistic framework is essential for addressing drought challenges in the Anthropocene. |
[36] | #0 | 2016 | 2023 | Future climate change is expected to bring more severe and persistent droughts to the Southwest and Central Plains of Western North America, surpassing even the most extreme droughts of the past millennium. This severe drying trend is consistent across various models and metrics, indicating a robust response to warming. |
[37] | #7 | 2016 | 2023 | The Penman-Monteith-based Standardized Precipitation Evapotranspiration Index (SPEI_PM) is more effective for drought monitoring in China, especially in arid regions, than the Thornthwaite-based SPEI_TH. Droughts in China have increased since the late 1990s, with varying impacts from temperature and precipitation anomalies across different regions. |
[18] | #3 | 2016 | 2019 | Current drought management is reactive and crisis-based. A shift towards national drought policies focusing on risk reduction and preparedness is necessary due to increasing drought impacts and climate change. |
[38] | #3 | 2016 | 2019 | Droughts in Europe cause substantial losses. A new approach links climatological drought indices like SPI and SPEI to observed drought impacts to assess drought risk at the European scale, helping improve drought risk management. |
[39] | #2 | 2020 | 2023 | Climate change will increase drought risk, with drying evident in many regions. Drought responses are similar between CMIP5 and CMIP6 models, but uncertainties remain. |
[40] | #4 | 2020 | 2023 | CMIP, a cornerstone of climate science, is evolving to address diverse research needs with a federated structure, common standards, and specific MIPs in CMIP6. |
[41] | #2 | 2020 | 2023 | CRU TS v4, a widely used climate dataset, is updated to span 1901–2018, improving data quality and traceability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Liao, X.; Di, D.; Shi, W. A Review of Drought Disturbance on Socioeconomic Development. Water 2023, 15, 3912. https://doi.org/10.3390/w15223912
Yang X, Liao X, Di D, Shi W. A Review of Drought Disturbance on Socioeconomic Development. Water. 2023; 15(22):3912. https://doi.org/10.3390/w15223912
Chicago/Turabian StyleYang, Xinyue, Xingliang Liao, Dongrui Di, and Weiyu Shi. 2023. "A Review of Drought Disturbance on Socioeconomic Development" Water 15, no. 22: 3912. https://doi.org/10.3390/w15223912
APA StyleYang, X., Liao, X., Di, D., & Shi, W. (2023). A Review of Drought Disturbance on Socioeconomic Development. Water, 15(22), 3912. https://doi.org/10.3390/w15223912