Development of Slow-Releasing Tablets Combined with Persulfate and Ferrous Iron for In Situ Chemical Oxidation in Trichloroethylene-Contaminated Aquifers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacture of Slow-Release Tablets
2.2. Soil Column Setup
2.3. Experiments Procedural
2.4. Data Analysis
2.5. Analytical Methods
3. Results and Discussion
3.1. Persulfate and Ferrous Releasing Characteristics in PTRT
3.2. Optimization Mixed Ratio of Oxidizer with Activator in CTBT
3.3. Evaluation of TCE Removal Efficacy in CTST
3.4. Estimating Longevity of OACT (1.0)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Greenberg, R.S.; Andrews, T.; Kakarla, P.K.; Watts, R.J. In-Situ Fenton-Like Oxidation of Volatile Organics: Laboratory, Pilot, and Full-Scale Demonstrations. Remediation 1998, 8, 29–42. [Google Scholar] [CrossRef]
- Nelson, M.D.; Parker, B.L.; Al, T.A.; Cherry, J.A.; Loomer, D. Geochemical reactions resulting from in situ oxidation of PCE-DNAPL by KMnO4 in a sandy aquifer. Environ. Sci. Technol. 2001, 35, 1266–1275. [Google Scholar] [CrossRef] [PubMed]
- Kakarla, P.K.; Andrews, T.; Greenberg, R.S.; Zervas, D.S. Modified Fenton’s processes for effective in-situ chemical oxidation—Laboratory and field evaluation. Remediation 2002, 12, 23–36. [Google Scholar] [CrossRef]
- Lowe, K.S.; Gardner, E.G.; Siegrist, R.L. Field evaluation of in situ chemical oxidation through vertical well-to-well recirculation of NaMnO4. Groundw. Monit. Remediat. 2002, 22, 106–115. [Google Scholar] [CrossRef]
- McGuire, T.M.; McDade, J.M.; Newell, C.J. Performance of DNAPL source depletion technologies at 59 chlorinated solvent-impacted sites. Groundw. Monit. Remediat. 2006, 26, 73–84. [Google Scholar] [CrossRef]
- O’Connor, D.; Hou, D.; Ok, Y.S.; Song, Y.; Sarmah, A.K.; Li, X.; Tack, F.M. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review. J. Control. Release 2018, 283, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Hong, U.; Park, S.; Lee, G.; Kwon, S.; Kim, Y. Long-term monitoring and evaluating biological activity of in situ anaerobic reductive dechlorination at a highly recharged and TCE-contaminated aquifer. Desalination Water Treat. 2016, 57, 24085–24095. [Google Scholar] [CrossRef]
- Han, K.; Yoon, J.; Yeum, Y.; Park, S.; Kim, H.K.; Kim, M.; Chung, H.M.; Kwon, S.; Yun, S.-T.; Kim, Y. Efficacy of in situ well-based denitrification bio-barrier (WDB) remediating high nitrate flux in groundwater near a stock-raising complex. J. Environ. Manag. 2020, 258, 110004. [Google Scholar] [CrossRef]
- Christenson, M.; Kambhu, A.; Reece, J.; Comfort, S.; Brunner, L. A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements. Chemosphere 2016, 150, 239–247. [Google Scholar] [CrossRef]
- Christenson, M.D.; Kambhu, A.; Comfort, S.D. Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill. Chemosphere 2012, 89, 680–687. [Google Scholar] [CrossRef]
- Kambhu, A.; Comfort, S.; Chokejaroenrat, C.; Sakulthaew, C. Developing slow-release persulfate candles to treat BTEX contaminated groundwater. Chemosphere 2012, 89, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.D.; Dong, Z.L.; Lim, T.T. Generation of sulfate radicals through heterogeneous catalysis for organic contaminant removal:Current development, challenges, and prospects. Appl. Catal. B Environ. 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Ike, I.A.; Linden, K.G.; Orbell, J.D.; Duke, M. Critical review of the science and sustainability of persulphate advanced oxidationprocesses. Chem. Eng. J. 2018, 338, 651–669. [Google Scholar] [CrossRef]
- Waclawek, S.; Lutze, H.V.; Grubel, K.; Padil, V.V.T.; Cernik, M.; Dionysiou, D.D. Chemistry of persulfates in water andwastewater treatment: A review. Chem. Eng. J. 2017, 330, 44–62. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfateand its activation methods for degradation of environmental organicpollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Iqbal, J.; Shah, N.S.; Khan, J.A.; Habila, M.A.; Boczkaj, G.; Shad, A.; Nazzal, Y.; Al-Taani, A.A.; Howari, F. Bimetallic Bi/Cu0-catalyzed persulfate-based advanced oxidation processes towards clofibric acid degradation in wastewater. Water Resour. Ind. 2023, 30, 100226. [Google Scholar] [CrossRef]
- Yeum, Y.; Han, K.; Kang, J.H.; Kim, D.W.; Park, C.W.; Kwon, S.; Kim, Y. Production, characterization, and evaluation of two types of slow-releasing carbon source tablets for in-situ heterotrophic nitrate denitrification in aquifers. Chemosphere 2020, 260, 127478. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Wang, W.H.; Song, L.; Lu, L.Q.; Wang, Z.Y.; Jiang, X.F.; Dong, C.N.; Qiu, R.Y. Acceleration comparison between Fe2+/H2O2and Co2+/oxone for decolouration of azo dyes in homogeneoussystems. Chem. Eng. J. 2013, 234, 475–483. [Google Scholar]
- Chen, Y.D.; Bai, S.; Li, R.; Su, G.; Duan, X.; Wang, S.; Ren, N.Q.; Ho, S.H. Magnetic biochar catalysts from anaerobic digested sludge: Production, application and environment impact. Environ. Int. 2019, 126, 302–308. [Google Scholar] [CrossRef]
- Liu, H.; Bruton, T.A.; Doyle, F.M.; Sedlak, D.L. In situ chemical oxidation of contaminated groundwater by persulfate: Decomposition by Fe (III)-and Mn (IV)-containing oxides and aquifer materials. Environ. Sci. Technol. 2014, 48, 10330–10336. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.; Wang, H.; Wang, C. Separation of hazardous polyvinyl chloride from waste plastics by flotation assisted with surface modification of ammonium persulfate: Process and mechanism. J. Hazard. Mater. 2020, 389, 121918. [Google Scholar] [CrossRef] [PubMed]
- Suriyaprakash, T.; Prabu, S.; Satyam, T. In-vitro studies of diclofenac sodium controlled-release dosage from biopolymeric hydrophilic matrices. Ars. Pharm. 2011, 52, 20–24. [Google Scholar]
- Desai, S.; Simonelli, A.; Higuchi, W. Investigation of factors influencing release of solid drug dispersed in inert matrices. J. Pharm. Sci. 1965, 54, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.; Hua, I.; Rao, P.S.C. Production and characterization of encapsulated potassium permanganate for sustained release as an in situ oxidant. Ind. Eng. Chem. Res. 2004, 43, 5187–5193. [Google Scholar] [CrossRef]
- Lee, E.S.; Schwartz, F.W. Characteristics and applications of controlled–release KMnO4 for groundwater remediation. Chemosphere 2007, 66, 2058–2066. [Google Scholar] [CrossRef]
- Chapelle, F.H.; Bradley, P.M.; Casey, C.C. Behavior of a chlorinated ethene plume following source-area treatment with Fenton’s reagent. Groundw. Monit. Remediat. 2005, 25, 131–141. [Google Scholar] [CrossRef]
- Chokejaroenrat, C.; Comfort, S.; Sakulthaew, C.; Dvorak, B. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate. J. Hazard. Mater. 2014, 268, 177–184. [Google Scholar] [CrossRef]
- Huang, K.C.; Hoag, G.E.; Chheda, P.; Woody, B.A.; Dobbs, G.M. Chemical oxidation of trichloroethylene with potassium permanganate in a porous medium. Adv. Environ. Res. 2002, 7, 217–229. [Google Scholar] [CrossRef]
- Lin, D.; Fu, Y.; Li, X.; Wang, L.; Hou, M.; Hu, D.; Li, Q.; Zhang, Z.; Xu, C.; Qiu, S.; et al. Application of persulfate-based oxidation processes to address diverse sustainability challenges: A critical review. J. Hazard. Mater. 2022, 440, 129722. [Google Scholar] [CrossRef]
- Tsitonaki, A.; Petri, B.; Crimi, M.; Mosbaek, H.A.N.S.; Siegrist, R.L.; Bjerg, P.L. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 55–91. [Google Scholar] [CrossRef]
Component | Prototype Slow-Releasing Oxidation Tablets [SROT(p)] | Prototype Slow-Releasing Activator Tablets [SRAT(p)] | Oxidation-Activation Combined Tablet 1:0.5 [OACT(0.5)] | Oxidation-Activation Combined Tablet 1:1 [OACT(1.0)] | ||||
---|---|---|---|---|---|---|---|---|
(mg/Tablet) | (Mass %) | (mg/Tablet) | (Mass %) | (mg/Tablet) | (Mass%) | (mg/Tablet) | (Mass%) | |
Sodium persulfate | 600 | 60 | N.I. 1 | N.A. 2 | 270 | 37.9 | 200 | 27.7 |
Iron (II) sulfate heptahydrate | N.I. | N.A. | 600 | 60 | 158 | 22.1 | 233 | 32.3 |
MCC 101 | 290 | 29 | 290 | 29 | 207 | 29.0 | 209 | 29.0 |
HPMC 70 k | 100 | 10 | 100 | 10 | 71 | 10.0 | 72 | 10.0 |
Magnesium stearate | 10 | 1 | 10 | 1 | 7 | 1.0 | 7 | 1.0 |
Total (mg) | 1000 | 100 | 1000 | 100 | 713 | 100 | 721 | 100 |
Injected Tablet (Tablet) | Flow Rate (mL/min) | Initial or Injected Solution Conc. (mg/L) | ||||||
---|---|---|---|---|---|---|---|---|
SROT (P) | SRAT (P) | OACT (0.5) | OACT (1.0) | Br- | TCE | |||
Prototype tablet release test (PTRT) | SROT | 1 | N.I. 1 | N.I. | N.I. | 0.1 | N.I. | N.I. |
SRAT | N.I. | 1 | N.I. | N.I. | 0.1 | N.I. | N.I. | |
Prototype tablet batch test (PTBT) | Control | N.I. | N.I. | N.I. | N.I. | N.A. 2 | N.I. | 6.6 3 |
SROT | 1 | N.I. | N.I. | N.I. | N.A. | N.I. | 6.5 | |
SRAT | N.I. | 1 | N.I. | N.I. | N.A. | N.I. | 6.4 | |
SROT + SRAT | 1 | 1 | N.I. | N.I. | N.A. | N.I. | 6.6 | |
Combined tablet batch test (CTBT) | Control | N.I. | N.I. | N.I. | N.I. | N.A. | N.I. | 6.7 |
SROT + SRAT | 2 | 2 | N.I. | N.I. | N.A. | N.I. | 7.8 | |
OACT (0.5) | N.I. | N.I. | 4 | N.I. | N.A. | N.I. | 8.5 | |
OACT (1.0) | N.I. | N.I. | N.I. | 6 | N.A. | N.I. | 8.9 | |
Combined tablet soil column test (CTST) | Control | N.I. | N.I. | N.I. | N.I. | 0.1 | 34 ± 1.7 3 | 2.6 ± 0.2 |
OACT (0.5) | N.I. | N.I. | 3 | N.I. | 0.1 | 1075 ± 65.5 | 2.5 ± 0.2 | |
OACT (1.0) | N.I. | N.I. | N.I. | 4 | 0.1 | 1120 ± 72.8 | 2.3 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, G.; Park, S.; Kim, Y.; Han, K. Development of Slow-Releasing Tablets Combined with Persulfate and Ferrous Iron for In Situ Chemical Oxidation in Trichloroethylene-Contaminated Aquifers. Water 2023, 15, 4103. https://doi.org/10.3390/w15234103
Yun G, Park S, Kim Y, Han K. Development of Slow-Releasing Tablets Combined with Persulfate and Ferrous Iron for In Situ Chemical Oxidation in Trichloroethylene-Contaminated Aquifers. Water. 2023; 15(23):4103. https://doi.org/10.3390/w15234103
Chicago/Turabian StyleYun, Geumhee, Sunhwa Park, Young Kim, and Kyungjin Han. 2023. "Development of Slow-Releasing Tablets Combined with Persulfate and Ferrous Iron for In Situ Chemical Oxidation in Trichloroethylene-Contaminated Aquifers" Water 15, no. 23: 4103. https://doi.org/10.3390/w15234103
APA StyleYun, G., Park, S., Kim, Y., & Han, K. (2023). Development of Slow-Releasing Tablets Combined with Persulfate and Ferrous Iron for In Situ Chemical Oxidation in Trichloroethylene-Contaminated Aquifers. Water, 15(23), 4103. https://doi.org/10.3390/w15234103