Groundwater Detection Using Resistivity at Nubutautau Village in Viti Levu in Fiji
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Geology
2.2. Field Assessment
2.3. Experimental Setup
2.4. Data and Analysis
3. Results and Discussion
- A very low-resistivity layer, with a shallow depth down to 20 m (1–19 Ohm.m), identified as a low-permeability silty loam or clay or weathered siltstone that is partly or fully saturated, resulting in a low resistivity response.
- A zone of low resistivity (20–30 Ohm.m), interpreted as a fractured and/or weathered rock formation and represented as a vertical or near-vertical feature, expected to yield groundwater.
- A medium-resistivity layer (31–99 Ohm.m), suggesting a less-weathered volcanic or sandstone formation that may yield little to no groundwater.
- A high-resistivity layer (>100 Ohm.m) suggesting the presence of unweathered high-resistivity material, such as basaltic material, at the base was observed in survey lines 4 and 5, indicating low to no groundwater potential at depth [17]. The geophysical results displayed are in terms of the ERT along five survey lines, as presented in Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9.
3.1. Tomogram Observations
3.1.1. Survey Line 1
3.1.2. Survey Line 2
3.1.3. Survey Line 3
3.1.4. Survey Line 4
3.1.5. Survey Line 5
3.2. Hydrochemistry of Selected Aquifers
3.3. Hydrogeological Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldman, M.; Neubauer, F. Groundwater exploration using integrated geophysical techniques. Surv. Geophys. 1994, 15, 331–361. [Google Scholar] [CrossRef]
- Hasan, M.; Shang, Y.; Jin, W. Delineation of weathered/fracture zones for aquifer potential using an integrated geophysical approach: A case study from South China. J. Appl. Geophys. 2018, 157, 47–60. [Google Scholar] [CrossRef]
- Islami, N.; Irianti, M.; Nor, M. 2018 Geophysical survey for groundwater potential investigation in peat land area, Riau, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 144, 012001. [Google Scholar] [CrossRef]
- Saad, R.; Nawawi, M.; Mohamad, E. Groundwater detection in alluvium using 2-D electrical resistivity tomography (ERT). Electron. J. Geotech. Eng. 2012, 17, 369–376. [Google Scholar]
- Siemon, B.; Christiansen, A.V.; Auken, E. A review of helicopter-borne electromagnetic methods for groundwater exploration. Near Surf. Geophys. 2009, 7, 629–646. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Loke, M. RES2DINVx64 Ver. 4.06 with Multi-Core and 64-Bit Support, Rapid 2-D Resistivity & IP Inversion Using the Least-Squares Method; Geotomosoft Solutions Geotomo Software Pty Ltd.: Penang, Malaysia, 2016. [Google Scholar]
- Ungureanu, C.; Priceputu, A.; Bugea, A.L.; Chirică, A. Use of electric resistivity tomography (ERT) for detecting underground voids on highly anthropized urban construction sites. Procedia Eng. 2017, 209, 202–209. [Google Scholar] [CrossRef]
- Sikakwe, G.U. GIS-based model of groundwater occurrence using geological and hydrogeological data in Precambrian Oban Massif southeastern Nigeria. Appl. Water Sci. 2018, 8, 79. [Google Scholar] [CrossRef]
- Abdullahi, M.G.; Toriman, M.E.; Gasim, M.B. The application of vertical electrical sounding (VES) for groundwater exploration in Tudun Wada Kano state, Nigeria. Int. J. Eng. Res. Rev. 2014, 2, 51–55. [Google Scholar] [CrossRef]
- Ariyo, S.O.; Adeyemi, G.O. Role of electrical resistivity method for groundwater exploration in hard rock areas: A case study from Fidiwo/Ajebo areas of Southwestern Nigeria. Pac. J. Sci. Technol. 2009, 10, 483–486. [Google Scholar]
- Allen, D.J.; Darling, W.G.; Gooddy, D.C.; Lapworth, D.J.; Newell, A.J.; Williams, A.T.; Allen, D.; Abesser, C. Interaction between groundwater, the hyporheic zone and a Chalk stream: A case study from the River Lambourn, UK. Hydrogeol. J. 2010, 18, 1125–1141. [Google Scholar] [CrossRef]
- Cox, S.; Rutter, H.; Sims, A.; Manga, M.; Weir, J.; Ezzy, T.; White, P.; Horton, T.; Scott, D. Hydrological effects of the MW 7.1 Darfield (Canterbury) earthquake, 4 September 2010, New Zealand. N. Z. J. Geol. Geophys. 2012, 55, 231–247. [Google Scholar] [CrossRef]
- Brooks, P.D.; Chorover, J.; Fan, Y.; Godsey, S.E.; Maxwell, R.M.; McNamara, J.P.; Tague, C. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resour. Res. 2015, 51, 6973–6987. [Google Scholar] [CrossRef]
- Antoniou, A.; Sinclair, P.; Loco, A.; Kumar, A. Pacific Island Recovery Support from Tropical Cyclone Pam; Secretariat of the Pacific Community: Suva, Fiji, 2017; pp. 1–58. [Google Scholar]
- Antoniou, A.; Sinclair, P.; Loco, A.; Kumar, A. Pacific Community Recovery Support From the Tropical Cyclone Winston Micro Projects Programme; Secretariat of the Pacific Community: Suva, Fiji, 2018; pp. 1–163. [Google Scholar]
- Loco, A.; Antoniu, A.; Sinclair, P.; Kumar, A. Report Letter on the Groundwater Assesment of the Nubutautau Village; Secretariat of the Pacific Community: Suva, Fiji, 2020; pp. 1–16. [Google Scholar]
- Stratford, J.M.; Rodda, P. Late Miocene to Pliocene palaeogeography of Viti Levu, Fiji Islands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 162, 137–153. [Google Scholar] [CrossRef]
- Loco, A.; Sinclair, P.; Chand, A.; Boseerelle, A.; Pattersen, M. Groundwater Assessment of the Nubutautau Village; Secretariat of the Pacific Community: Suva, Fiji, 2015; pp. 1–11. [Google Scholar]
- Terrameter, L. Instruction Manual, Edited, ABEM, 2012. Available online: https://wwwguidelinegeoc.cdn.triggerfish.cloud/uploads/2016/03/User-Guide-Terrameter-LS-2012-10-25.pdf (accessed on 27 August 2023).
- Raqona, V.K.; Singh, S.K.; Shankar, U. Toward mapping potential groundwater recharge zones across Viti Levu and Vanua Levu (Fiji islands). Sustain. Earth Rev. 2020, 1, 7–15. [Google Scholar] [CrossRef]
- Ghosh, S.; Sivasankar, T.; Anand, G. Performance evaluation of multi-parametric synthetic aperture radar data for geological lineament extraction. Int. J. Remote Sens. 2021, 42, 2574–2593. [Google Scholar] [CrossRef]
- Dahlin, T.; Zhou, B. Multiple-gradient array measurements for multichannel 2D resistivity imaging. Near Surf. Geophys. 2006, 4, 113–123. [Google Scholar] [CrossRef]
- White, D.; Cheuk, C.; Bolton, M. The uplift resistance of pipes and plate anchors buried in sand. Géotechnique 2008, 58, 771–779. [Google Scholar] [CrossRef]
- Cardoso, L.H.; Bacellar, L.d.A.P.; Barbosa, M.S.C.; Lima, H.M.d. Geophysical analysis of natural caves in iron lithotypes in the region of Mariana, Southeastern Quadrilátero Ferrífero, Brazil. REM-Int. Eng. J. 2018, 71, 561–570. [Google Scholar] [CrossRef]
- Magal, E.; Arbel, Y.; Caspi, S.; Glazman, H.; Greenbaum, N.; Yechieli, Y. 2013 Determination of pollution and recovery time of karst springs, an example from a carbonate aquifer in Israel. J. Contam. Hydrol. 2011, 145, 26–36. [Google Scholar] [CrossRef]
- Meyerhoff, S.B.; Maxwell, R.M.; Revil, A.; Martin, J.B.; Karaoulis, M.; Graham, W.D. Characterization of groundwater and surface water mixing in a semiconfined karst aquifer using time-lapse electrical resistivity tomography. Water Resour. Res. 2014, 50, 2566–2585. [Google Scholar] [CrossRef]
- Ayenew, T.; Demlie, M.; Wohnlich, S. Hydrogeological framework and occurrence of groundwater in the Ethiopian aquifers. J. Afr. Earth Sci. 2008, 52, 97–113. [Google Scholar] [CrossRef]
- Bairu, A. Application of vertical electrical sounding and horizontal profiling methods to decipher the existing subsurface stratification at river Segen dam site, Tigray, Northern Ethiopia. Int. J. Phys. Sci. 2013, 8, 922–933. [Google Scholar]
- Huntley, D. Relations between permeability and electrical resistivity in granular aquifers. Groundwater 1986, 24, 466–474. [Google Scholar] [CrossRef]
- Sophocleous, M.A. Combining the soilwater balance and water-level fluctuation methods to estimate natural groundwater recharge: Practical aspects. J. Hydrol. 1991, 124, 229–241. [Google Scholar] [CrossRef]
- Zhu, G.; Su, Y.; Feng, Q. The hydrochemical characteristics and evolution of groundwater and surface water in the Heihe River Basin, northwest China. Hydrogeol. J. 2008, 16, 167–182. [Google Scholar] [CrossRef]
- Chui, T.F.M.; Low, S.Y.; Liong, S.Y. An ecohydrological model for studying groundwater–vegetation interactions in wetlands. J. Hydrol. 2011, 409, 291–304. [Google Scholar] [CrossRef]
- Kelly, B.; Acworth, R.; Greve, A. Better placement of soil moisture point measurements guided by 2D resistivity tomography for improved irrigation scheduling. Soil Res. 2011, 49, 504–512. [Google Scholar] [CrossRef]
- Palacky, G. Resistivity characteristics of geologic targets. Electromagn. Methods Appl. Geophys. 1988, 1, 53–129. [Google Scholar]
- Pryet, A.; Dominguez, C.; Tomai, P.F.; Chaumont, C.; d’Ozouville, N.; Villacís, M.; Violette, S. Quantification of cloud water interception along the windward slope of Santa Cruz Island, Galapagos (Ecuador). Agric. For. Meteorol. 2012, 161, 94–106. [Google Scholar] [CrossRef]
- Acocella, V.; Neri, M. Dike propagation in volcanic edifices: Overview and possible developments. Tectonophysics 2009, 471, 67–77. [Google Scholar] [CrossRef]
- Kumar, V.S.; Dhakate, R.; Amarender, B.; Sankaran, S. Application of ERT and GPR for demarcating the saline water intrusion in coastal aquifers of Southern India. Environ. Earth Sci. 2016, 75, 393. [Google Scholar] [CrossRef]
- Bonatti, E. Vertical tectonism in oceanic fracture zones. Earth Planet. Sci. Lett. 1978, 37, 369–379. [Google Scholar] [CrossRef]
- Yang, L.; Yanchao, Z.; Honghan, C.; Hui, S. Fracture characteristics under the coupling effect of tectonic stress and fluid pressure: A case study of the fractured shale oil reservoir in Liutun subsag, Dongpu Sag, Bohai Bay Basin, Eastern China. Pet. Explor. Dev. 2015, 42, 196–205. [Google Scholar]
- Winter, T.C. Interaction of Ground Water and Surface Water; Diane Publishing: Darby, PA, USA, 2000. [Google Scholar]
- Loco, R.A. Hydrogeology of the Middle Sigatoka Valley, Southwest Viti Levu, Fiji. Master’s Thesis, University of Canterbury, Christchurch, New Zealand, 2011. [Google Scholar]
- Magesh, N.; Botsa, S.M.; Dessai, S.; Mestry, M.; Leitao, T.D.L.; Tiwari, A. Hydrogeochemistry of the deglaciated lacustrine systems in Antarctica: Potential impact of marine aerosols and rock-water interactions. Sci. Total Environ. 2020, 706, 135822. [Google Scholar] [CrossRef]
- Elango, L.; Kannan, R. Rock–water interaction and its control on chemical composition of groundwater. Dev. Environ. Sci. 2007, 5, 229–243. [Google Scholar]
- Singhal, B.B.S.; Gupta, R.P. Applied Hydrogeology of Fractured Rocks; Springer Science & Business Media: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Fernald, A.G.; Guldan, S.J. Surface water–groundwater interactions between irrigation ditches, alluvial aquifers, and streams. Rev. Fish. Sci. 2006, 14, 79–89. [Google Scholar] [CrossRef]
Formation | Geological Characteristics/Contrast | Depth Range (m) |
---|---|---|
Soil and weathered bedrock | Silty loam with highly or completely weathered siltstone | 0–6 |
Fresh siltstone with minor fractures | Predominately gray, fine grained, well-sorted formation with low strength; some weathered material observed between 12 and 14 m indicating minor fracturing and potential groundwater sources | 6–24 |
Weathered volcaniclastic formations | Moderate weathered and fractured formation with midrate strength characteristics by noticeably disclosed volcanic clast with brown to reddish brown matrix suggesting groundwater movement and occurrence | 24–30 |
Fresh volcaniclastic formation with minor fractures | Hard and fresh volcaniclastic zones dominated by the volcaniclastic clast with minor fractures observed between 37 and 45 m; some weathered materials denoted | 30–51 |
Rocks and Sediments Type | Resistivity Range (Ohm.m) |
---|---|
Clay containing brackish to saline water | <3 |
Clay containing brackish to fresh water | 5–8 |
Clay, silty sand, and some gravel saturated with fresh water | 11–25 |
Weathered basalt containing fresh water | 30–60 |
Fresh basalt saturated with saline water | 30–40 |
Fresh basalt saturated with fresh water | 300–700 |
Dry coral sediments | 500–1000 |
Customer ID Lab No | Spring 1 Nubutautau Spring 2020/3851 | Spring 2 Tauboto Spring 2020/3852 | Spring 3 Yavulagi Spring 2020/2853 | Date Analyzed | Method Ref. No |
---|---|---|---|---|---|
Alkalinity (mg/L) | 108 | 97.7 | 71.2 | 14/01/20 | AP 2320B |
Chloride (mg/L) | 90 | 120 | 95 | 20/10/20 | AP 4500-B |
Calcium (ug/L) | 13.5 | 12.2 | 16.4 | 14/10/20 | AP3111B |
Electrical conductivity (uS/cm) | 213 | 147 | 185 | 20/10/20 | AP2510B |
Iron (mg/L) | 3.72 | 1.08 | 1.90 | 15/10/20 | AP3113B |
Magnesium (mg/L) | 5.41 | 7.61 | 6.75 | 14/10/20 | AP3111B |
Manganese (mg/L) | <1 | <1 | 1.17 | 15/10/20 | AP 3113B |
Silica (mg/L) | 28.8 | 43.9 | 46.9 | 04/10/20 | AP 4500-SiD |
Sodium (mg/L) | 13.9 | 2.30 | 9.85 | 14/10/20 | AP 3500-Na B |
Sulphate (mg/L) | 2.45 | 4.29 | 10.4 | 12/11/20 | AP 4500-S E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maharaj, R.; Kumar, S.; Rollings, N.; Antoniou, A. Groundwater Detection Using Resistivity at Nubutautau Village in Viti Levu in Fiji. Water 2023, 15, 4156. https://doi.org/10.3390/w15234156
Maharaj R, Kumar S, Rollings N, Antoniou A. Groundwater Detection Using Resistivity at Nubutautau Village in Viti Levu in Fiji. Water. 2023; 15(23):4156. https://doi.org/10.3390/w15234156
Chicago/Turabian StyleMaharaj, Ronald, Sushil Kumar, Nicholas Rollings, and Andreas Antoniou. 2023. "Groundwater Detection Using Resistivity at Nubutautau Village in Viti Levu in Fiji" Water 15, no. 23: 4156. https://doi.org/10.3390/w15234156
APA StyleMaharaj, R., Kumar, S., Rollings, N., & Antoniou, A. (2023). Groundwater Detection Using Resistivity at Nubutautau Village in Viti Levu in Fiji. Water, 15(23), 4156. https://doi.org/10.3390/w15234156