Water Quality Evaluation of Groundwater and Dam Reservoir Water: Application of the Water Quality Index to Study Sites in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.1.1. Eastern Thermaikos Gulf
2.1.2. Mouriki Basin
2.1.3. Marathonas Basin
2.2. Hydrochemical Analysis
2.2.1. Sample Collection
2.2.2. Chemical Analysis
2.3. Canadian Council of Ministers of Environment Water Quality Index (CCME WQI)
3. Results
3.1. Study Area Georeferenced
3.2. Basic Chemical Analysis
3.3. CCME Classification
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
- Marathonas basin (2 Excellent, 3 Good, and 5 Fair water samples) pollution factors:
- ➢
- seawater intrusion
- ➢
- agricultural activities
- Eastern Thermaikos Gulf basin (8 Excellent, 4 Good, and 3 Marginal water samples) pollution factors:
- ➢
- seawater intrusion
- ➢
- agricultural activities
- ➢
- geothermic fluid by rock alteration
- Mouriki basin (4 Excellent water samples):
- ➢
- Samples of physical and chemical characteristics within drinking water regulation limits
- Mouriki basin seems be less affected with excellent water quality according to CCME WQI.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Senthil Kumar, P.; Yaashikaa, P.R. 1—Introduction—Water. In Water in Textiles and Fashion: Consumption, Footprint, and Life Cycle Assessment; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–20. [Google Scholar] [CrossRef]
- Singh, R.; Majumder, C.B.; Vidyarthi, A.K. Assessing the impacts of industrial wastewater on the inland surface water quality: An application of analytic hierarchy process (AHP) model-based water quality index and GIS techniques. Phys. Chem. Earth Parts A/B/C 2023, 129, 103314. [Google Scholar] [CrossRef]
- Koutroulis, A.G.; Papadimitriou, L.V.; Grillakis, M.G.; Tsanis, I.K.; Warren, R.; Betts, R.A. Global water availability under high-end climate change: A vulnerability based assessment. Glob. Planet. Chang. 2019, 175, 52–63. [Google Scholar] [CrossRef]
- Lukhabi, D.K.; Mensah, P.K.; Asare, N.K.; Pulumuka-Kamanga, T.; Ouma, K.O. Adapted Water Quality Indices: Limitations and Potential for Water Quality Monitoring in Africa. Water 2023, 15, 1736. [Google Scholar] [CrossRef]
- Caretta, M.A.; Mukherji, A.; Arfanuzzaman, M.; Betts, R.A.; Gelfan, A.; Hirabayashi, Y.; Lissner, T.K.; Liu, J.; Lopez Gunn, E.; Morgan, R.; et al. Water. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 551–712. [Google Scholar] [CrossRef]
- Singh, S.; Gururani, D.M.; Kumar, A.; Kumar, Y.; Bohra, M.S.; Mehta, P. Declining Groundwater Level and Its Impact on Irrigation and Agro-production. In Advancement of GI-Science and Sustainable Agriculture; Das, J., Halder, S., Eds.; GIScience and Geo-environmental Modelling; Springer: Cham, Switzerland, 2023; pp. 217–224. [Google Scholar] [CrossRef]
- Kazakis, N.; Kantiranis, N.; Kaprara, M.; Mitrakas, M.; Vargemezis, G.; Voudouris, K.; Chatzipetros, A.; Kalaitzidou, K.; Filippidis, A. Potential toxic elements (ptes) in ground and spring waters, soils and sediments: An interdisciplinary study in Eastern Thermaikos Gulf basin, N. Greece. Bull. Geol. Soc. Greece 2017, 50, 2171–2181. [Google Scholar] [CrossRef]
- Kazakis, N.; Matiatos, I.; Ntona, M.M.; Bannenberg, M.; Kalaitzidou, K.; Kaprara, E.; Mitrakas, M.; Ioannidou, A.; Vargemezis, G.; Voudouris, K. Origin, implications and management strategies for nitrate pollution in surface and ground waters of Eastern Thermaikos Gulf basin based on a δ15N-NO3− and δ18O-NO3− isotope approach. Sci. Total Environ. 2020, 724, 138211. [Google Scholar] [CrossRef]
- EU parliament Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption. Off. J. Eur. Union 2020, 2019, 1–62.
- Ntona, M.M.; Busico, G.; Mastrocicco, M.; Kazakis, N. Modeling groundwater and surface water interaction: An overview of current status and future challenges. Sci. Total Environ. 2022, 846, 157355. [Google Scholar] [CrossRef]
- Chidiac, S.; El Najjar, P.; Ouaini, N.; El Rayess, Y.; El Azzi, D. A comprehensive review of water quality indices (WQIs): History, models, attempts and perspectives. Rev. Environ. Sci. Biotechnol. 2023, 22, 349–395. [Google Scholar] [CrossRef]
- Namugize, J.N.; Jewitt, G.P.W. Sensitivity analysis for water quality monitoring frequency in the application of a water quality index for the uMngeni River and its tributaries, KwaZulu-Natal, South Africa. Water SA 2018, 44, 516–527. [Google Scholar] [CrossRef]
- Hurley, T.; Sadiq, R.; Mazumder, A. Adaptation and evaluation of the Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) for use as an effective tool to characterize drinking source water quality. Water Res. 2012, 46, 3544–3552. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, Y.; Alexakis, D.E.; Skoulikidis, N.T.; Laschou, S.; Papadopoulos, A.; Dimitriou, E. Implementing the CCME Water Quality Index for the Evaluation of the Physicochemical Quality of Greek Rivers. Water 2022, 14, 2738. [Google Scholar] [CrossRef]
- Benkov, I.; Varbanov, M.; Venelinov, T.; Tsakovski, S. Principal Component Analysis and the Water Quality Index—A Powerful Tool for Surface Water Quality Assessment: A Case Study on Struma River Catchment, Bulgaria. Water 2023, 15, 1961. [Google Scholar] [CrossRef]
- Gikas, G.D.; Lergios, D.; Tsihrintzis, V.A. Comparative Assessment of the Application of Four Water Quality Indices (WQIs) in Three Ephemeral Rivers in Greece. Water 2023, 15, 1443. [Google Scholar] [CrossRef]
- Patel, P.S.; Pandya, D.M.; Shah, M. A systematic and comparative study of Water Quality Index (WQI) for groundwater quality analysis and assessment. Environ. Sci. Pollut. Res. 2023, 30, 54303–54323. [Google Scholar] [CrossRef]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.; Perera, C. Development of River Water Quality Indices—A Review. Environ. Monit. Assess. 2016, 188, 58. [Google Scholar] [CrossRef]
- Gikas, G.D.; Sylaios, G.K.; Tsihrintzis, V.A.; Konstantinou, I.K.; Albanis, T.; Boskidis, I. Comparative evaluation of river chemical status based on WFD methodology and CCME water quality index. Sci. Total Environ. 2020, 745, 140849. [Google Scholar] [CrossRef]
- Alexakis, D.E. Applying Factor Analysis and the CCME Water Quality Index for Assessing Groundwater Quality of an Aegean Island (Rhodes, Greece). Geosciences 2022, 12, 384. [Google Scholar] [CrossRef]
- Mellios, N.; Koopman, J.F.L.; Laspidou, C. Virtual Crop Water Export Analysis: The Case of Greece at River Basin District Level. Geosciences 2018, 8, 161. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Tzika, A.M.; Simeonidis, K.; Mitrakas, M. Evaluation of boron uptake by anion exchange resins in tap and geothermal water matrix. Mater. Today Proc. 2018, 14, 27599–27606. [Google Scholar] [CrossRef]
- Kazakis, N.; Krajcar, B.I.; Barešić, J.; Philippou, K.; Pashalidis, I.; Kalaitzidou, K.; Mitrakas, M.; Ioannidou, A. Seaonal variations of tritium, uranium and stable isotopes in groundwater and spring waters in the Eastern Thermaikos Gulf basin, Northern Greece. In Proceedings of the International Symposium on Isotope Hydrology, Vienna, Austria, 20–24 May 2019. [Google Scholar]
- Patrikaki, O.; Kazakis, N.; Kougias, I.; Patsialis, T.; Theodossiou, N.; Voudouris, K. Assessing Flood Hazard at River Basin Scale with an Index-Based Approach: The Case of Mouriki, Greece. Geosciences 2018, 8, 50. [Google Scholar] [CrossRef]
- Zavridou, E.; Markantonis, K.; Argyrokastritis, I.; Voudouris, K.; Kallioras, A. Preliminary Results from Unsaturated Zone Studies in Unconfined Unconsolidated Coastal Aquifers. Proceedings 2018, 2, 642. [Google Scholar] [CrossRef]
- Gaitanis, A.; Kalogeropoulos, K.; Detsis, V.; Chalkias, C. Monitoring 60 Years of Land Cover Change in the Marathon Area, Greece. Land 2015, 4, 337–354. [Google Scholar] [CrossRef]
- Diakakis, N. Flood reconstruction using botanical evidence in Rapentosa catchment, in Marathon, Greece. Bull. Geol. Soc. Greece 2013, 47, 1388–1396. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment (CCME). Canadian Council of Ministers of the Environment (CCME). Canadian Water Quality Guidelines for the Protection of Aquatic Life: CCME Water Quality Index, User’s Manual—2017 Update. In Canadian Environmental Quality Guidelines, 1999; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2017; Available online: https://ccme.ca/en/res/wqimanualen.pdf (accessed on 30 September 2023).
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef]
- Ntona, M.M.; Chalikakis, K.; Busico, G.; Mastrocicco, M.; Kalaitzidou, K.; Kazakis, N. Application of Judgmental Sampling Approach for the Monitoring of Groundwater Quality and Quantity Evolution in Mediterranean Catchments. Water 2023, 15, 4018. [Google Scholar] [CrossRef]
- Papazotos, P.; Koumantakis, I.; Vasileiou, E. Hydrogeochemical assessment and suitability of groundwater in a typical Mediterranean coastal area: A case study of the Marathon basin, NE Attica, Greece. HydroResearch 2019, 2, 45–59. [Google Scholar] [CrossRef]
- Mozzi, G.; Pavelic, P.; Alam, M.F.; Stefan, C.; Villholth, K.G. Hydrologic Assessment of Check Dam Performances in Semi-Arid Areas: A Case Study from Gujarat, India. Front. Water 2021, 3, 628955. [Google Scholar] [CrossRef]
- Psychoyou, M.; Mimides, T.; Rizos, S.; Sgoubopoulou, A. Groundwater hydrochemistry at Balkan coastal plains—The case of Marathon of Attica, Greece. Desalination 2007, 213, 230–237. [Google Scholar] [CrossRef]
- Derlukiewicz, N.; Mempel-Śnieżyk, A. European cities in the face of sustainable development. Ekon. Prawo. 2018, 17, 125. [Google Scholar] [CrossRef]
- Henao Casas, J.D.; Fernández Escalante, E.; Ayuga, F. Alleviating drought and water scarcity in the Mediterranean region through managed aquifer recharge. Hydrogeol. J. 2022, 30, 1685–1699. [Google Scholar] [CrossRef]
- Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R.D.; Jain, R.C.; Bear, J.; Schwarz, J.; Wang, W.; Fernandez, E. Sixty years of global progress in managed aquifer recharge. J. Hydrol. 2018, 27, 1–30. [Google Scholar] [CrossRef]
- Standen, K.; Costa, L.R.D.; Monteiro, J.-P. In-Channel Managed Aquifer Recharge: A Review of Current Development Worldwide and Future Potential in Europe. Water 2020, 12, 3099. [Google Scholar] [CrossRef]
- Fernández-Escalante, A.E.; San Sebastian Sauto, J.; Calero Gil, R. Sites and indicators of MAR as a successful tool to mitigate climate change effects in Spain. Water 2019, 11, 1943. [Google Scholar] [CrossRef]
- Dillon, P.; Pavelic, P.; Page, D.; Beringen, H.; Ward, J. Managed Aquifer Recharge. An Introduction; Waterlines Report Series no. 13; National Water Commisssion: Kingston, Jamaica, 2009. [Google Scholar]
- Niazi, A.; Prasher, S.; Adamowski, J.; Gleeson, T. A System Dynamics Model to Conserve Arid Region Water Resources through Aquifer Storage and Recovery in Conjunction with a Dam. Water 2014, 6, 2300–2321. [Google Scholar] [CrossRef]
- Parimalarenganayaki, S.; Elango, L. Assessment of effect of recharge from a check dam as a method of Managed Aquifer Recharge by hydrogeological investigations. Environ. Earth Sci. 2015, 73, 5349–5361. [Google Scholar] [CrossRef]
- Abdalla, O.A.E.; Al-Rawahi, A.S. Groundwater recharge dams in arid areas as tools for aquifer replenishment and mitigating seawater intrusion: Example of AlKhod, Oman. Environ. Earth Sci. 2013, 69, 1951–1962. [Google Scholar] [CrossRef]
- Dahan, O.; Shani, Y.; Enzel, Y.; Yechieli, Y.; Yakirevich, A. Direct measurements of floodwater infiltration into shallow alluvial aquifers. J. Hydrol. 2007, 344, 157–170. [Google Scholar] [CrossRef]
- Martín-Rosales, W.; Gisbert, J.; Pulido-Bosch, A.; Vallejos, A.; Fernández-Cortés, A. Estimating groundwater recharge induced by engineering systems in a semiarid area (southeastern Spain). Environ. Geol. 2006, 52, 985–995. [Google Scholar] [CrossRef]
- Albergel, J. Reservoirs, Multipurpose Use of Small Reservoirs. In Encyclopedia of Lakes and Reservoirs; Encyclopedia of Earth Sciences Series; Bengtsson, L., Herschy, R.W., Fairbridge, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Pimenta, A.M.; Albertoni, E.F.; Palma-Silva, C. Characterization of water quality in a small hydropower plant reservoir in southern Brazil. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2012, 17, 243–251. [Google Scholar] [CrossRef]
- Djuma, H.; Bruggeman, A.; Camera, C.; Eliades, M.; Kostarelos, K. The Impact of a Check Dam on Groundwater Recharge and Sedimentation in an Ephemeral Stream. Water 2017, 9, 813. [Google Scholar] [CrossRef]
- Trček, B.; Mesarec, B. Impact of the Hydroelectric Dam on Aquifer Recharge Processes in the Krško Field and the Vrbina Area: Evidence from Hydrogen and Oxygen Isotopes. Water 2023, 15, 412. [Google Scholar] [CrossRef]
- Karakatsanis, D.; Patsialis, T.; Kalaitzidou, K.; Kougias, I.; Ntona, M.M.; Theodossiou, N.; Kazakis, N. Optimization of Dam Operation and Interaction with Groundwater: An Overview Focusing on Greece. Water 2023, 15, 3852. [Google Scholar] [CrossRef]
- Kontos, Y.N.; Rompis, I.; Karpouzos, D. Optimal Pollution Control and Pump-and-Fertilize Strategies in a Nitro-Polluted Aquifer, Using Genetic Algorithms and Modflow. Agronomy 2023, 13, 1534. [Google Scholar] [CrossRef]
- Simeonidis, K.; Kalaitzidou, K.; Kaprara, E.; Mitraka, G.; Asimakidou, T.; Balcells, L.; Mitrakas, M. Uptake of Sb(V) by Nano Fe3O4-Decorated Iron Oxy-Hydroxides. Water 2019, 11, 181. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, J.; Qin, B.; Zhu, G.; Zhang, Y.; Jeppesen, E.; Tong, Y. Importance and vulnerability of lakes and reservoirs supporting drinking water in China. Fundam. Res. 2023, 3, 265–273. [Google Scholar] [CrossRef]
- Katsiapi, M.; Moustaka-Gouni, M.; Michaloudi, E.; Kormas, K.A. Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece). Environ. Monit. Assess. 2011, 181, 563–575. [Google Scholar] [CrossRef]
- Lymperopoulou, D.S.; Kormas, K.A.; Moustaka-Gouni, M.; Karagouni, A.D. Diversity of cyanobacterial phylotypes in a Mediterranean drinking water reservoir (Marathonas, Greece). Environ. Monit. Assess. 2011, 173, 155–165. [Google Scholar] [CrossRef]
- Albanakis, C.; Tsanana, E.; Fragkaki, A.G. Modeling and prediction of trihalomethanes in the drinking water treatment plant of Thessaloniki, Greece. J. Water Process Eng. 2021, 43, 102252. [Google Scholar] [CrossRef]
- Dillon, P.; Arshad, M. Managed Aquifer Recharge in Integrated Water Resource Management. In Integrated Groundwater Management; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.D., Ross, A., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Page, D.; Bekele, E.; Vanderzalm, J.; Sidhu, J. Managed aquifer recharge (MAR) in sustainable urban water management. Water 2018, 10, 239. [Google Scholar] [CrossRef]
- Hanoon, M.S.; Ahmed, A.N.; Fai, C.M.; Birima, A.H.; Razzaq, A.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Application of Artificial Intelligence Models for modeling Water Quality in Groundwater: Comprehensive Review, Evaluation and Future Trends. Water Air Soil. Pollut. 2021, 232, 411. [Google Scholar] [CrossRef]
- Hanoon, M.S.; Ammar, A.M.; Ahmed, A.N.; Razzaq, A.; Birima, A.H.; Kumar, P.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Application of Soft Computing in Predicting Groundwater Quality Parameters. Front. Environ. Sci. 2022, 10, 828251. [Google Scholar] [CrossRef]
- Xie, Y.; Cook, P.G.; Simmons, C.T.; Partington, D.; Crosbie, R.; Batelaan, O. Uncertainty of groundwater recharge estimated from a water and energy balance model. J. Hydrol. 2018, 561, 1081–1093. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2012, 3, 322–329. [Google Scholar] [CrossRef]
- Pham, Q.B.; Kumar, M.; Di Nunno, F.; Elbeltagi, A.; Granata, F.; Islam, A.R.; Talukdar, S.; Nguyen, X.C.; Ahmed, A.N.; Anh, D.T. Groundwater level prediction using machine learning algorithms in a drought-prone area. Neural Comput. Appl. 2022, 34, 10751–10773. [Google Scholar] [CrossRef]
- Tao, H.; Hameed, M.M.; Marhoon, H.A.; Zounemat-Kermani, M.; Heddam, S.; Kim, S.; Sulaiman, S.O.; Tan, M.L.; Sa’adi, Z.; Mehr, A.D.; et al. Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing 2022, 489, 271–308. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, P.; Ren, X.; Ning, J.; Li, J.; Liu, C.; Wang, Y.; Wang, G. A new real-time groundwater level forecasting strategy: Coupling hybrid data-driven models with remote sensing data. J. Hydrol. 2023, 10, 129962. [Google Scholar] [CrossRef]
Score | Water Quality Classification |
---|---|
0–44 | Poor |
45–59 | Marginal |
60–79 | Fair |
80–94 | Good |
95–100 | Excellent |
Dam | Height (m) | Crest (m) | Width (m) | Area (km2) | Type | |
---|---|---|---|---|---|---|
D-1 | Thermi | 11 | 71 | 67 | 0.041 | Gravity |
D-2 | Triadi | 12 | 145 | 67 | 0.045 | Gravity |
D-3 | Vasilika | 20 | 177 | 120 | 0.038 | Gravity |
D-4 | K. Scholari | 11 | 128 | 85 | 0.041 | Gravity |
D-5 | Lakkoma | 10 | 125 | 75 | 0.028 | Gravity |
D-6 | Mouriki | 20 | 321 | 114 | 0.043 | Gravity |
D-7 | Rapentosa | 15 | 145 | 28 | 0.03 | Gravity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaitzidou, K.; Ntona, M.M.; Zavridou, E.; Tzeletas, S.; Patsialis, T.; Kallioras, A.; Zouboulis, A.; Virgiliou, C.; Mitrakas, M.; Kazakis, N. Water Quality Evaluation of Groundwater and Dam Reservoir Water: Application of the Water Quality Index to Study Sites in Greece. Water 2023, 15, 4170. https://doi.org/10.3390/w15234170
Kalaitzidou K, Ntona MM, Zavridou E, Tzeletas S, Patsialis T, Kallioras A, Zouboulis A, Virgiliou C, Mitrakas M, Kazakis N. Water Quality Evaluation of Groundwater and Dam Reservoir Water: Application of the Water Quality Index to Study Sites in Greece. Water. 2023; 15(23):4170. https://doi.org/10.3390/w15234170
Chicago/Turabian StyleKalaitzidou, Kyriaki, Maria Margarita Ntona, Eythimia Zavridou, Stefanos Tzeletas, Thomas Patsialis, Andreas Kallioras, Anastasios Zouboulis, Christina Virgiliou, Manassis Mitrakas, and Nerantzis Kazakis. 2023. "Water Quality Evaluation of Groundwater and Dam Reservoir Water: Application of the Water Quality Index to Study Sites in Greece" Water 15, no. 23: 4170. https://doi.org/10.3390/w15234170
APA StyleKalaitzidou, K., Ntona, M. M., Zavridou, E., Tzeletas, S., Patsialis, T., Kallioras, A., Zouboulis, A., Virgiliou, C., Mitrakas, M., & Kazakis, N. (2023). Water Quality Evaluation of Groundwater and Dam Reservoir Water: Application of the Water Quality Index to Study Sites in Greece. Water, 15(23), 4170. https://doi.org/10.3390/w15234170