A Review of Numerical Modelling of Morphodynamics in Braided Rivers: Mechanisms, Insights and Challenges
Abstract
:1. Introduction
2. Braided River Models
2.1. Braided River Model Evolution
2.2. Model Theories and Solutions
2.3. Essential Effects for Braided Pattern Modelling
2.4. Typical Physics-Based Models
3. Challenges and Future Work
3.1. Model Assessment and Accuracy
3.2. Advantages and Challenges
3.3. Future Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashmore, P.E. Morphology and dynamics of braided rivers. In Treatise on Geomorphology; Shroder, J., Wohl, E., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 9, pp. 289–312. [Google Scholar]
- Surian, N. Fluvial processes in braided rivers. In Rivers–Physical, Fluvial and Environmental Processes; Rowiński, P., Radecki-Pawlik, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 403–425. [Google Scholar]
- Nicholas, A.P. Modelling the continuum of river channel patterns. Earth Surf. Process. Landf. 2013, 38, 1187–1196. [Google Scholar] [CrossRef]
- Schuurman, F.; Marra, W.A.; Kleinhans, M.G. Physics-based modeling of large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity. J. Geophys. Res.-Earth Surf. 2013, 118, 2509–2527. [Google Scholar] [CrossRef]
- Schuurman, F.; Ta, W.Q.; Post, S.; Sokolewicz, M.; Busnelli, M.; Kleinhans, M. Response of braiding channel morphodynamics to peak discharge changes in the Upper Yellow River. Earth Surf. Process. Landf. 2018, 43, 1648–1662. [Google Scholar] [CrossRef]
- Yang, H.Y.; Lin, B.L.; Zhou, J.J. Physics-based numerical modelling of large braided rivers dominated by suspended sediment. Hydrol. Process. 2015, 29, 1925–1941. [Google Scholar] [CrossRef]
- Stecca, G.; Fedrizzi, D.; Measures, R.; Hicks, D.M.; Hoyle, J.; Zolezzi, G. Development of a numerical model for braided river morphology and vegetation evolution with application to the Lower Waitaki River (Aotearoa—New Zealand). Adv. Water Resour. 2022, 166, 104236. [Google Scholar] [CrossRef]
- Yang, H.Y. Numerical investigation of avulsions in gravel-bed braided rivers. Hydrol. Process. 2020, 34, 3702–3717. [Google Scholar] [CrossRef]
- Yang, H.Y.; Lin, B.L.; Zhou, J.J. Avulsions in a Simulated Large Lowland Braided River. Water Resour. Manag. 2018, 32, 2301–2314. [Google Scholar] [CrossRef]
- Schuurman, F.; Kleinhans, M.G. Bar dynamics and bifurcation evolution in a modelled braided sand-bed river. Earth Surf. Process. Landf. 2015, 40, 1318–1333. [Google Scholar] [CrossRef]
- Sarker, S. Essence of MIKE 21C (FDM Numerical Scheme): Application on the River Morphology of Bangladesh. Open J. Model. Simul. 2022, 10, 88–117. [Google Scholar] [CrossRef]
- Kleinhans, M.G. Sorting out river channel patterns. Prog. Phys. Geogr. -Earth Environ. 2010, 34, 287–326. [Google Scholar] [CrossRef]
- Lotsari, E.; Thorndycraft, V.; Alho, P. Prospects and challenges of simulating river channel response to future climate change. Prog. Phys. Geogr.-Earth Environ. 2015, 39, 483–513. [Google Scholar] [CrossRef]
- Siviglia, A.; Crosato, A. Numerical modelling of river morphodynamics: Latest developments and remaining challenges. Adv. Water Resour. 2016, 93, 1–3. [Google Scholar] [CrossRef]
- Williams, R.D.; Brasington, J.; Hicks, D.M. Numerical modelling of braided river morphodynamics: Review and future challenges. Geogr. Compass. 2016, 10, 102–127. [Google Scholar] [CrossRef]
- Olsen, N.R.B. 3D numerical modelling of braided channel formation. Geomorphology 2021, 375, 107528. [Google Scholar] [CrossRef]
- Busnelli, M.; Schuurman, F. Hydro-morphological management to improve navigation and ecological functions on the ‘Canal del Dique’Colombia. In River Flow 2020; CRC Press: London, UK, 2020; pp. 2135–2143. [Google Scholar]
- Iwasaki, T.; Shimizu, Y.; Kimura, I. Numerical simulation of bar and bank erosion in a vegetated floodplain: A case study in the Otofuke River. Adv. Water Resour. 2016, 93, 118–134. [Google Scholar] [CrossRef]
- Brasington, J.; Vericat, D.; Rychkov, I. Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resour. Res. 2012, 48, W11519. [Google Scholar] [CrossRef]
- Javernick, L.; Brasington, J.; Caruso, B. Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology 2014, 213, 166–182. [Google Scholar] [CrossRef]
- Kasprak, A.; Wheaton, J.M.; Ashmore, P.E.; Hensleigh, J.W.; Peirce, S. The relationship between particle travel distance and channel morphology: Results from physical models of braided rivers. J. Geophys. Res.-Earth Surf. 2015, 120, 55–74. [Google Scholar] [CrossRef]
- Kidová, A.; Lehotský, M.; Rusnák, M. Geomorphic diversity in the braided-wandering Belá River, Slovak Carpathians, as a response to flood variability and environmental changes. Geomorphology 2016, 272, 137–149. [Google Scholar] [CrossRef]
- Lallias-Tacon, S.; Liebault, F.; Piegay, H. Use of airborne LiDAR and historical aerial photos for characterising the history of braided river floodplain morphology and vegetation responses. Catena 2017, 149, 742–759. [Google Scholar] [CrossRef]
- Connor-Streich, G.; Henshaw, A.J.; Brasington, J.; Bertoldi, W.; Harvey, G.L. Let’s get connected: A new graph theory-based approach and toolbox for understanding braided river morphodynamics. Wiley Interdiscip. Rev. Water 2018, 5, e1296. [Google Scholar] [CrossRef]
- Middleton, L.; Ashmore, P.; Leduc, P.; Sjogren, D. Rates of planimetric change in a proglacial gravel-bed braided river: Field measurement and physical modelling. Earth Surf. Process. Landf. 2019, 44, 752–765. [Google Scholar] [CrossRef]
- Acharya, B.S.; Bhandari, M.; Bandini, F.; Pizarro, A.; Perks, M.; Joshi, D.R.; Wang, S.; Dogwiler, T.; Ray, R.L.; Kharel, G.; et al. Unmanned Aerial Vehicles in Hydrology and Water Management: Applications, Challenges, and Perspectives. Water Resour. Res. 2021, 57, e2021WR029925. [Google Scholar] [CrossRef]
- Guo, W.; Dong, C.M.; Lin, C.Y.; Zhang, T.; Zhao, Z.X.; Li, J. 3D Sedimentary Architecture of Sandy Braided River, Based on Outcrop, Unmanned Aerial Vehicle and Ground Penetrating Radar Data. Minerals 2022, 12, 739. [Google Scholar] [CrossRef]
- Murray, A.B.; Paola, C. A cellular model of braided rivers. Nature 1994, 371, 54–57. [Google Scholar] [CrossRef]
- Jang, C.L.; Shimizu, Y. Numerical simulation of relatively wide, shallow channels with erodible banks. J. Hydraul. Eng. 2005, 131, 565–575. [Google Scholar] [CrossRef]
- Coulthard, T.J.; Hicks, D.M.; Van De Wiel, M.J. Cellular modelling of river catchments and reaches: Advantages, limitations and prospects. Geomorphology 2007, 90, 192–207. [Google Scholar] [CrossRef]
- Doeschl, A.B.; Ashmore, P.E.; Davison, M. Methods for assessing exploratory computational models of braided rivers. In Braided Rivers: Process, Deposits, Ecology and Management; Sambrook-Smith, G.H., Best, J.L., Bristow, C.S., Petts, G.E., Jarvis, I., Eds.; Special publication number 36 of the International Association of Sedimentologists (IAS); Blackwell Publishing: Oxford, UK, 2006; pp. 177–197. [Google Scholar]
- Williams, R.D.; Measures, R.; Hicks, D.M.; Brasington, J. Assessment of a numerical model to reproduce event-scale erosion and deposition distributions in a braided river. Water Resour. Res. 2016, 52, 6621–6642. [Google Scholar] [CrossRef]
- Crosato, A.; Desta, F.B.; Cornelisse, J.; Schuurman, F.; Uijttewaal, W.S.J. Experimental and numerical findings on the long-term evolution of migrating alternate bars in alluvial channels. Water Resour. Res. 2012, 48, 1–14. [Google Scholar] [CrossRef]
- Webb, E.K. Simulation of braided channel topology and topography. Water Resour. Res. 1995, 31, 2603–2611. [Google Scholar] [CrossRef]
- Nelson, J.M.; Bennett, J.P.; Wiele, S.M. Flow and sediment-transport modeling. In Tools in Fluvial Geomorphology; Kondolf, G.M., Piégay, H., Eds.; Wiley: Chichester, UK, 2005; pp. 539–576. [Google Scholar]
- Spasojevic, M.; Holly, F.M. Two-and three-dimensional numerical simulation of mobile-bed hydrodynamics and sedimentation. In Sedimentation Engineering: Processes, Measurements, Modeling, and Practice; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 683–761. [Google Scholar]
- Bürgler, M.; Vetsch, D.F.; Boes, R.; Vanzo, D. Systematic comparison of 1D and 2D hydrodynamic models for the assessment of hydropeaking alterations. River Res. Appl. 2022, 1–18. [Google Scholar] [CrossRef]
- Schuurman, F.; Kleinhans, M.G. Self-formed braid bars in a numerical model. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 5–9 December 2011; p. 0672. [Google Scholar]
- Engelund, F.; Hansen, E. A Monograph on Sediment Transport in Alluvial Channels; Teknik Forlag: Copenhagen, Denmark, 1967. [Google Scholar]
- Meyer-Peter, E.; Müller, R. Formulas for bed-load transport. In Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research, Stockholm, Sweden, 7 June 1948; pp. 39–64. [Google Scholar]
- Harten, A.; Lax, P.D.; Leer, B.v. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. J. Siam Rev. 1983, 25, 35–61. [Google Scholar] [CrossRef]
- Ikeda, S.; Parker, G.; Sawai, K. Bend theory of river meanders, part 1: Linear development. J. Fluid Mech. 1981, 112, 363–377. [Google Scholar] [CrossRef]
- Ashida, K.; Michiue, M. Study on hydraulic resistance and bed-load transport rate in alluvial streams. In Proceedings of the Japan Society of Civil Engineers, Tokyo, Japan, 10 October 1972; pp. 59–69. [Google Scholar]
- van Rijn, L.C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas; Aqua publications: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Engelund, F. Flow and bed topography in channel bends. J. Hydraul. Div. 1974, 100, 1631–1648. [Google Scholar] [CrossRef]
- Sarker, S. A short review on computational hydraulics in the context of water resources engineering. Open J. Model. Simul. 2022, 10, 1–31. [Google Scholar] [CrossRef]
- Bagnold, R.A. An approach to the sediment transport problem from general physics. US Geol. Surv. Prof. Pap. 1966, 422-I, 231–291. [Google Scholar]
- Javernick, L.; Hicks, D.M.; Measures, R.; Caruso, B.; Brasington, J. Numerical Modelling of Braided Rivers with Structure-from-Motion-Derived Terrain Models. River Res. Appl. 2016, 32, 1071–1081. [Google Scholar] [CrossRef]
- Javernick, L.; Redolfi, M.; Bertoldi, W. Evaluation of a numerical model’s ability to predict bed load transport observed in braided river experiments. Adv. Water Resour. 2018, 115, 207–218. [Google Scholar] [CrossRef]
- Duró, G.; Crosato, A.; Tassi, P. Numerical study on river bar response to spatial variations of channel width. Adv. Water Resour. 2016, 93, 21–38. [Google Scholar] [CrossRef]
- van Rijn, L.C. Sediment transport, part I: Bed load transport. J. Hydraul. Eng. 1984, 110, 1431–1456. [Google Scholar] [CrossRef]
- Zhou, J.; Lin, B. Flow and Sediment Modelling; China Hydropower Press: Beijing, China, 2006; pp. 173–278. (In Chinese) [Google Scholar]
- Yang, H.Y.; Lin, B.L.; Sun, J.; Huang, G.X. Simulating Laboratory Braided Rivers with Bed-Load Sediment Transport. Water 2017, 9, 686. [Google Scholar] [CrossRef] [Green Version]
- Parker, G. Surface-based bedload transport relation for gravel rivers. J. Hydraul. Res. 1990, 28, 417–436. [Google Scholar] [CrossRef]
- Harrison, L.R.; Dunne, T.; Fisher, G.B. Hydraulic and geomorphic processes in an overbank flood along a meandering, gravel-bed river: Implications for chute formation. Earth Surf. Process. Landf. 2015, 40, 1239–1253. [Google Scholar] [CrossRef]
- Williams, R.D.; Brasington, J.; Hicks, M.; Rennie, C.D.; Vericat, D. Hydraulic validation of two-dimensional simulations of braided river flow with spatially continuous a Dcp data. Water Resour. Res. 2013, 49, 5183–5205. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, G.; Shao, X.J. Numerical simulation of channel pattern changes Part II: Application in a conceptual channel. Int. J. Sediment Res. 2010, 25, 380–390. [Google Scholar] [CrossRef]
- Takebayashi, H.; Okabe, T. Numerical modelling of braided streams in unsteady flow. Proc. Inst. Civ. Eng.-Water Manag. 2009, 162, 189–198. [Google Scholar] [CrossRef]
- Wang, J.; Ni, H.; He, Y. Finite-difference TVD scheme for computation of dam-break problems. J. Hydraul. Eng. 2000, 126, 253–262. [Google Scholar] [CrossRef]
- Ming, H.T.; Chu, C.R. Two-dimensional shallow water flows simulation using TVD-MacCormack scheme. J. Hydraul. Res. 2000, 38, 123–131. [Google Scholar] [CrossRef]
- Liang, D.F.; Lin, B.L.; Falconer, R.A. Simulation of rapidly varying flow using an efficient TVD-MacCormack scheme. Int. J. Numer. Methods Fluids. 2007, 53, 811–826. [Google Scholar] [CrossRef]
- Morianou, G.G.; Kourgialas, N.N.; Karatzas, G.P.; Nikolaidis, N.P. River flow and sediment transport simulation based on a curvilinear and rectilinear grid modelling approach—A comparison study. J. Water Sci. Technol. Water Supply 2017, 17, 1325–1334. [Google Scholar] [CrossRef]
- Morianou, G.G.; Kourgialas, N.N.; Karatzas, G.P.; Nikolaidis, N.P. Assessing hydro-morphological changes in Mediterranean stream using curvilinear grid modeling approach—Climate change impacts. Earth Sci. Inform. 2018, 11, 205–216. [Google Scholar] [CrossRef]
- Wu, W. Computational River Dynamics; Taylor & Francis Group: London, UK, 2007; p. 499. [Google Scholar]
- Lien, H.; Hsieh, T.; Yang, J.; Yeh, K. Bend-flow simulation using 2D depth-averaged model. J. Hydraul. Eng. 1999, 125, 1097–1108. [Google Scholar] [CrossRef]
- Sun, J.; Lin, B.L.; Kuang, H.W. Numerical modelling of channel migration with application to laboratory rivers. Int. J. Sediment Res. 2015, 30, 13–27. [Google Scholar] [CrossRef]
- Stecca, G.; Measures, R.; Hicks, D.M. A framework for the analysis of noncohesive bank erosion algorithms in morphodynamic modeling. Water Resour. Res. 2017, 53, 6663–6686. [Google Scholar] [CrossRef]
- Mosselman, E. Modelling sediment transport and morphodynamics of gravel-bed rivers. In Gravel-Bed Rivers: Processes, Tools, Environments; Church, M., Biron, P.M., Roy, A.G., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 101–115. [Google Scholar]
- Guan, M.F.; Wright, N.G.; Sleigh, P.A. 2D Process-Based Morphodynamic Model for Flooding by Noncohesive Dyke Breach. J. Hydraul. Eng. 2014, 140, 04014022. [Google Scholar] [CrossRef]
- Armanini, A. Granular flows driven by gravity. J. Hydraul. Res. 2013, 51, 111–120. [Google Scholar] [CrossRef]
- Paudel, S.; Singh, U.; Crosato, A.; Franca, M.J. Effects of initial and boundary conditions on gravel-bed river morphology. Adv. Water Resour. 2022, 166, 104256. [Google Scholar] [CrossRef]
- Sambrook Smith, G.H.; Nicholas, A.P.; Best, J.L.; Bull, J.M.; Dixon, S.J.; Goodbred, S.; Sarker, M.H.; Vardy, M.E.; Bristow, C. The sedimentology of river confluences. Sedimentology 2019, 66, 391–407. [Google Scholar] [CrossRef]
- Egozi, R.; Ashmore, P. Experimental Analysis of Braided Channel Pattern Response to Increased Discharge. J. Geophys. Res.-Earth Surf. 2009, 114, F02012-1–F02012-15. [Google Scholar] [CrossRef]
- Singh, U.; Crosato, A.; Giri, S.; Hicks, M. Sediment Heterogeneity and Mobility in the Morphodynamic Modelling of Gravel-Bed Braided Rivers. Adv. Water Resour. 2017, 104, 127–144. [Google Scholar] [CrossRef]
- Davy, P.; Croissant, T.; Lague, D. A precipiton method to calculate river hydrodynamics, with applications to flood prediction, landscape evolution models, and braiding instabilities. J. Geophys. Res.-Earth Surf. 2017, 122, 1491–1512. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Altinakar, M.; Wang, S. Depth-average analysis of hysteresis between flow and sediment transport under unsteady conditions. Int. J. Sediment Res. 2006, 21, 101. [Google Scholar]
- Egozi, R.; Ashmore, P. Defining and measuring braiding intensity. Earth Surf. Process. Landf. 2008, 33, 2121–2138. [Google Scholar] [CrossRef]
- Sapozhnikov, V.B.; Foufoula-Georgiou, E. Self-affinity in braided rivers. Water Resour. Res. 1996, 32, 1429–1439. [Google Scholar] [CrossRef]
- Entwistle, N.; Heritage, G.; Milan, D. Recent remote sensing applications for hydro and morphodynamic monitoring and modelling. Earth Surf. Process. Landf. 2018, 43, 2283–2291. [Google Scholar] [CrossRef]
- Dixon, S.; Nicholas, A.; Sambrook Smith, G. Morphodynamic model validation for tropical river junctions. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Oreskes, N.; Shrader-Frechette, K.; Belitz, K. Verification, validation, and confirmation of numerical models in the Earth sciences. Science 1994, 263, 641–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Models | Sediment Transport Equations (qs) | Numerical Solution Techniques | Sediment Composition | Bed Slope and Gravity (to qs) | Secondary Flow | Researchers |
---|---|---|---|---|---|---|
HSTAR | Engelund and Hansen (1967) [39]; Meyer-Peter and Müller (1948) [40] | Godunov-type finite volume scheme [41] | uniform (for sand) | Ikeda (1981) [42] | included in the Navier–Stokes equation | [3] |
Individual model | Ashida and Michiue (1972) [43] | finite difference scheme | uniform | included in qbn with equation of van Rijn (1993) [44] | included in near bed flow velocity [45] | [18,46] |
Delft 3D | Meyer-Peter and Müller (1948) [40] | alternating direction implicit (ADI scheme, cyclic method of Stelling and Leendertse) | uniform | Bagnold (1966) [47]& Ikeda (1981) [42] | included in qbn | [48,49] |
Meyer-Peter and Müller (1948) [40] | [50] | |||||
Engelund and Hansen (1967) [39]; Meyer-Peter and Mueller (1948) [40]; van Rijn (1984) [51] | [4,5,10] | |||||
Individual | 2D advection diffusion equation [52]; van Rijn (1993) [44] | ADI scheme, total variational diminishing (TVD) scheme | non- uniform | included in qbn with formula of van Rijn (1993) [44] | included in qbn [45] | [6,53] |
FaSTMECH | Parker (1990) [54] | ADI scheme | uniform | none | included in a streamline-based vertical structure submodel | [55] |
SSIIM | Engelund and Hansen (1967) [39] | finite volume method | uniform | included in qbn with formula of van Rijn (1993) [44] | included in qbn | [16] |
GIAMT2D-veg | Meyer-Peter and Müller (1948) [40] | finite volume method | uniform | none | included in qbn | [7] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Yang, H.; Zhou, H.; Lv, Q. A Review of Numerical Modelling of Morphodynamics in Braided Rivers: Mechanisms, Insights and Challenges. Water 2023, 15, 595. https://doi.org/10.3390/w15030595
Hu Y, Yang H, Zhou H, Lv Q. A Review of Numerical Modelling of Morphodynamics in Braided Rivers: Mechanisms, Insights and Challenges. Water. 2023; 15(3):595. https://doi.org/10.3390/w15030595
Chicago/Turabian StyleHu, Youfei, Haiyan Yang, Haolan Zhou, and Qianwen Lv. 2023. "A Review of Numerical Modelling of Morphodynamics in Braided Rivers: Mechanisms, Insights and Challenges" Water 15, no. 3: 595. https://doi.org/10.3390/w15030595
APA StyleHu, Y., Yang, H., Zhou, H., & Lv, Q. (2023). A Review of Numerical Modelling of Morphodynamics in Braided Rivers: Mechanisms, Insights and Challenges. Water, 15(3), 595. https://doi.org/10.3390/w15030595