Applications of Advanced Technologies in the Development of Urban Flood Models
Abstract
:1. Introduction
2. Methods
3. Descriptions of the Main Urban Flood Models
3.1. Simplified Flood Models
3.2. Physical Flood Models
3.3. Data-Driven Flood Models
4. Development of Urban Flood Models Using Advanced Technologies
4.1. Model Construction
4.2. Data for Model Construction and Application
4.2.1. Remote Sensing Data
- 1.
- Underlying Surface Information
- 2.
- Meteorological information
- 3.
- Flood information
4.2.2. Crowdsourcing Geographic Data
4.2.3. Internet of Things Data
4.3. Spatial Data Management and Analysis
4.3.1. Spatial Data Platform
4.3.2. Spatial Data Analysis
4.3.3. Uncertainty in Spatial Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, G.-Z.; Hou, J.-M.; Zhou, N.; Yang, S.-X.; Tong, Y.; Su, F.; Huang, L.; Bi, X. High-resolution urban flood forecasting by using a coupled atmospheric and hydrodynamic flood models. Front. Earth Sci. 2020, 8, 545612. [Google Scholar] [CrossRef]
- EM-DAT: The International Disaster Database. 2018. Available online: http://www.emdat.be (accessed on 18 December 2022).
- Carbone, D.; Hanson, J. Floods: 10 of the deadliest in Australian history. Australian Geographic. 8 March 2012. Available online: https://www.australiangeographic.com.au/topics/history-culture/2012/03/australias-worst-floods/ (accessed on 18 December 2022).
- Task Force on Urban Flooding Problem and Solution Investigation (TFUFPSI). China’s urban flooding program and solution. China Floods Droughts Prot. 2014, 24, 65. (In Chinese) [Google Scholar]
- Qiu, J. Urbanization contributed to Beijing storms. Nature 2012, 10, 11086. [Google Scholar] [CrossRef]
- Ye, M.-H.; Chen, K. Urban catastrophe risk: Meteorological characteristics, loss status and optimization of management countermeasures: Taking Zhengzhou “7.20” heavy rainstorm and Typhoon “Fireworks” as an example. Shanghai Insur. 2021, 08, 18–22. [Google Scholar]
- Stefanidis, S.; Alexandridis, V.; Theodoridou, T. Flood exposure of residential areas and infrastructure in Greece. Hydrology 2022, 9, 145. [Google Scholar] [CrossRef]
- Koks, E.E.; van Ginkel, K.C.H.; van Marle, M.J.E.; Lemnitzer, A. Brief communication: Critical infrastructure impacts of the 2021 mid-July Western European flood event. Nat. Hazards Earth Syst. Sci. 2022, 22, 3831–3838. [Google Scholar] [CrossRef]
- Contreras, M.T.; Gironás, J.; Escauriaza, C. Forecasting flood hazards in real time: A surrogate model for hydrometeorological events in an Andean Watershed. Nat. Hazards Earth Syst. Sci. 2020, 20, 3261–3277. [Google Scholar] [CrossRef]
- Agarwal, S.; Kumar, S. Urban flood modeling using SWMM for historical and future extreme rainfall events under climate change scenario. Indian J. Ecol. 2020, 47(11), 48–53. [Google Scholar]
- Rossman, L.A.; Huber, W.C. Hydrology. In Storm Water Management Model Reference Manual; EPA/600/R-15/162A; United States Environmental Protection Agency: Cincinnati, OH, USA, 2016; Volume 1. [Google Scholar]
- Rossman, L.A.; Dickinson, R.E.; Schade, T.; Chan, C.C.; Burgess, E.; Sullivan, D.; Lai, F.H. SWMM 5—The next generation of EPA’s storm water management model. J. Water Manag. Model. 2004, 12, 339–358. [Google Scholar] [CrossRef]
- Anni, A.H.; Cohen, S.; Praskievicz, S. Sensitivity of urban flood simulations to stormwater infrastructure and soil infiltration. J. Hydrol. 2020, 588, 125028. [Google Scholar] [CrossRef]
- Wu, W.-L.; Lu, L.-J.; Huang, X.-F.; Shangguan, H.-D.; Wei, Z.-Q. An automatic calibration framework based on the InfoWorks ICM model: The effect of multiple objectives during multiple water pollutant modeling. Environ. Sci. Pollut. Res. 2021, 28, 31814–31830. [Google Scholar] [CrossRef] [PubMed]
- InfoWorks ICM, Version 3.0; Innovyze: Wallingford, UK, 2012.
- HEC-RAS River Analysis System, Version 5.0. 2D Modeling User’s Manual. Hydrologic Engineering Center: Davis, CA, USA, 2016.
- Xu, Z.-X.; Cheng, T.; Hong, S.-Y.; Wang, L.-X. Review on applications of remote sensing in urban flood modeling. Chin. Sci. Bull. 2018, 63, 2156–2166. [Google Scholar] [CrossRef]
- Qi, L.; Li, J.; Wang, Y.; Gao, X.-B. Urban observation: Integration of remote sensing and social media data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4252–4264. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Modell. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Abdulkareem, J.H.; Pradhan, B.; Sulaiman, W.N.A.; Jamil, N.R. Review of studies on hydrological modelling in Malaysia. Model. Earth Syst. Environ. 2018, 4, 1577–1605. [Google Scholar] [CrossRef]
- Qi, W.-C.; Ma, C.; Xu, H.-S.; Chen, Z.-F.; Zhao, K.; Han, H. A review on applications of urban flood models in flood mitigation strategies. Nat. Hazards 2021, 108, 31–62. [Google Scholar] [CrossRef]
- Fan, Y.-Y.; Ao, T.-Q.; Yu, H.-J.; Huang, G.-R.; Li, X.-D. A Coupled 1D-2D hydrodynamic model for urban flood inundation. Adv. Meteorol. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Salvadore, E.; Bronders, J.; Batelaan, O. Hydrological modelling of urbanized catchments: A review and future directions. J. Hydrol. 2015, 529, 62–81. [Google Scholar] [CrossRef]
- Li, X.-L.; Wang, E.-J.; Zhao, J.; Cheng, M.-G.; Fan, Z.-Q. Waterlogging modeling and simulating for urban crisis management wargaming system. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28 July 2014; pp. 6375–6381. [Google Scholar]
- Zhao, L.-L.; Liu, C.-M.; Sobkowiak, L.; Wu, X.-X.; Liu, J.-F. A review of underlying surface parameterization methods in hydrologic models. J. Geogr. Sci. 2019, 29, 1039–1060. [Google Scholar] [CrossRef]
- Zou, Y.-J. Discussion on urban surface runoff model. Sci. Surv. Mapp. 2013, 38, 5. [Google Scholar]
- Ren, B.-Z.; Deng, R.-J. Analyses of properties and calculation methods of urban surface rainwater conflux. China Water Wastewater 2006, 22, 39–42. [Google Scholar] [CrossRef]
- Todini, E. On the convergence properties of the different pipe network algorithms. In Proceedings of the Water Distribution Systems Analysis Symposium, Cincinnati, OH, USA, 27–30 August 2006; pp. 1–16. [Google Scholar]
- Song, L.-X.; Xu, Z.-X. Coupled hydrologic-hydrodynamic model for urban rainstorm water logging simulation: Recent advances. J. Beijing Norm. Univ. 2019, 55, 581. [Google Scholar] [CrossRef]
- Yue, M.-L. Study on Risk Simulation and Early Warning of Urban Rainstorms—A Case Study of Zhengzhou City. Master’s Thesis, North China University of Water Resources and Electric Power, Zhengzhou, China, 2019. [Google Scholar]
- Jiang, Y.; Zevenbergen, C.; Ma, Y.-C. Urban pluvial flooding and stormwater management: A contemporary review of China’s challenges and “sponge cities” strategy. Environ. Sci. Policy 2018, 80, 132–143. [Google Scholar] [CrossRef]
- Pender, G. Briefing: Introducing the flood risk management research consortium. In Proceedings of the Institution of Civil Engineers-Water Management; Thomas Telford Ltd.: London, UK, 2006; Volume 159, pp. 3–8. [Google Scholar]
- Jamali, B.; Löwe, R.; Bach, P.M.; Urich, C.; Arnbjerg-Nielsen, K.; Deletic, A. A rapid urban flood inundation and damage assessment model. J. Hydrol. 2018, 564, 1085–1098. [Google Scholar] [CrossRef]
- Niazi, M.; Nietch, C.; Maghrebi, M.; Jackson, N.; Bennett, B.R.; Tryby, M.; Massoudieh, A. Storm water management model: Performance review and gap analysis. J. Sustain. Water Built Environ. 2017, 3, 04017002. [Google Scholar] [CrossRef] [PubMed]
- DHI. Collection System. User Guide; Danish Hydraulic Institute: Horsholm, Denmark, 2011. [Google Scholar]
- Bisht, D.S.; Chatterjee, C.; Kalakoti, S.; Upadhyay, P.; Sahoo, M.; Panda, A. Modeling urban floods and drainage using SWMM and MIKE URBAN: A case study. Nat. Hazards 2016, 84, 749–776. [Google Scholar] [CrossRef]
- Sidek, L.M.; Jaafar, A.S.; Majid, W.H.A.W.A.; Basri, H.; Marufuzzaman, M.; Fared, M.M.; Moon, W.C. High-resolution hydrological-hydraulic modeling of urban floods using infoworks ICM. Sustainability 2021, 13, 10259. [Google Scholar] [CrossRef]
- Verma, A.K.; Jha, M.K.; Mahana, R.K. Evaluation of HEC-HMS and WEPP for simulating watershed runoff using remote sensing and geographical information system. Paddy Water Environ. 2010, 8, 131–144. [Google Scholar] [CrossRef]
- Guidolin, M.; Chen, A.S.; Ghimire, B.; Keedwell, E.C.; Djordjević, S.; Savić, D.A. A weighted cellular automata 2D inundation model for rapid flood analysis. Environ. Modell. Softw. 2016, 84, 378–394. [Google Scholar] [CrossRef]
- Feng, C.-H.; Zhang, N.; Habiyakare, T.; Yan, Y.-N.; Zhang, H. Prospects of eco-hydrological model for sponge city construction. Ecosyst. Health Sustain. 2021, 7, 1994885. [Google Scholar] [CrossRef]
- Jamali, B.; Bach, P.M.; Cunningham, L.; Deletic, A. A cellular automata fast flood evaluation (CA-Ff´e) model. Water Resour. Res. 2019, 55, 4936–4953. [Google Scholar] [CrossRef]
- Feng, C.-H. Eco-Hydrological Effects of Urban Landscape Spatial Pattern Change and Simulation. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2022. [Google Scholar]
- Agudelo-Otálora, L.M.; Moscoso-Barrera, W.D.; Paipa-Galeano, L.A.; Mesa-Sciarrotta, C. Comparison of physical models and artificial intelligence for prediction of flood levels. Tecnol. Cienc. Agua 2018, 9, 209–235. [Google Scholar] [CrossRef]
- Mignot, E.; Li, X.-F.; Dewals, B. Experimental modelling of urban flooding: A review. J. Hydrol. 2019, 568, 334–342. [Google Scholar] [CrossRef]
- Khac-Tien Nguyen, P.; Hock-Chye Chua, L. The data-driven approach as an operational real-time flood forecasting model. Hydrol. Process 2012, 26, 2878–2893. [Google Scholar] [CrossRef]
- Zhu, Z.-D.; Oberg, N.; Morales, V.M.; Quijano, J.C.; Landry, B.J.; Garcia, M.H. Integrated urban hydrologic and hydraulic modelling in Chicago, Illinois. Environ. Modell. Softw. 2016, 77, 63–70. [Google Scholar] [CrossRef]
- Berkhahn, S.; Fuchs, L.; Neuweiler, I. An ensemble neural network model for real-time prediction of urban floods. J. Hydrol. 2019, 575, 743–754. [Google Scholar] [CrossRef]
- Lin, Q.; Leandro, J.; Wu, W.; Bhola, P.; Disse, M. Prediction of maximum flood inundation extents with resilient backpropagation neural network: Case study of Kulmbach. Front. Earth Sci. 2020, 8, 1–8. [Google Scholar] [CrossRef]
- Löwe, R.; Böhm, J.; Jensen, D.G.; Leandro, J.; Rasmussen, S.H. U-FLOOD—Topographic deep learning for predicting urban pluvial flood water depth. J. Hydrol. 2021, 603, 126898. [Google Scholar] [CrossRef]
- Zounemat-Kermani, M.; Matta, E.; Cominola, A.; Xia, X.-L.; Zhang, Q.; Liang, Q.-H.; Hinkelmann, R. Neurocomputing in surface water hydrology and hydraulics: A review of two decades retrospective, current status and future prospects. J. Hydrol. 2020, 588, 125085. [Google Scholar] [CrossRef]
- Hunter, N.M.; Bates, P.D.; Horritt, M.S.; Wilson, M.D. Simple spatially-distributed models for predicting flood inundation: A review. Geomorphology 2007, 90, 208–225. [Google Scholar] [CrossRef]
- Chang, D.-L.; Yang, S.-H.; Hsieh, S.-L.; Wang, H.-J.; Yeh, K.-C. Artificial intelligence methodologies applied to prompt pluvial flood estimation and prediction. Water 2020, 12, 3552. [Google Scholar] [CrossRef]
- Zanchetta, A.; Coulibaly, P. Recent advances in real-time pluvial flash flood forecasting. Water 2020, 12, 570. [Google Scholar] [CrossRef]
- Wei, M.; She, L.; You, X.-Y. Establishment of urban waterlogging pre-warning system based on coupling RBF-NARX neural networks. Water Sci. Technol. 2020, 82, 1921–1931. [Google Scholar] [CrossRef] [PubMed]
- Chapi, K.; Singh, V.; Shirzadi, A.; Shahabi, H.; Bui, D.; Pham, B.; Khosravi, K. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Modell. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Khosravi, K.; Panahi, M.; Golkarian, A.; Keesstra, S.D.; Saco, P.M.; Bui, D.T.; Lee, S. Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. J. Hydrol. 2020, 591, 125552. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Xiang, C.; Ma, Y. AI application on LID stormwater management and urban planning in Guam, USA, and Southern China, PRC. In Proceedings of the International Low Impact Development Conference 2020, American Society of Civil Engineers. Reston, VA, USA, 20–24 July 2020; pp. 188–200. [Google Scholar]
- Ke, Q.; Tian, X.; Bricker, J.; Tian, Z.; Guan, G.-H.; Cai, H.; Huang, X.; Yang, H.; Liu, J. Urban pluvial flooding prediction by machine learning approaches—A case study of Shenzhen City, China. Adv. Water Resour. 2020, 145, 103719. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Y.-P.; Yang, Z.; Wang, G.; Zhu, Q. Integration of a parsimonious hydrological model with recurrent neural networks for improved streamflow forecasting. Water 2018, 10, 1655. [Google Scholar] [CrossRef]
- Hou, J.; Zhou, N.; Chen, G.; Huang, M.; Bai, G. Rapid forecasting of urban flood inundation using multiple machine learning models. Nat. Hazards 2021, 108, 2335–2356. [Google Scholar] [CrossRef]
- Ye, X.-Y.; Wang, S.-H.; Lu, Z.-P.; Song, Y.; Yu, S.-Y. Towards an AI-driven framework for multi-scale urban flood resilience planning and design. Comput.Urban Sci. 2021, 1, 11. [Google Scholar] [CrossRef]
- Goyal, H.R.; Ghanshala, K.K.; Sharma, S. Post flood management system based on smart IoT devices using AI approach. Mater. Today Proc. 2021, 46, 10411–10417. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D. Integration of knowledge and data in machine learning. arXiv 2022, arXiv:2202.10337. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Bermúdez, M.; Cea, L.; Puertas, J. A rapid flood inundation model for hazard mapping based on least squares support vector machine regression. J. Flood Risk Manage. 2019, 12, e12522. [Google Scholar] [CrossRef]
- Felsberger, L.; Koutsourelakis, P.S. Physics-constrained, data-driven discovery of coarse-grained dynamics. arXiv 2018, arXiv:1802.03824. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D. Physics-constrained deep learning of geomechanical logs. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5932–5943. [Google Scholar] [CrossRef]
- Guo, J.; Wu, X.-H.; Wei, G. A new economic loss assessment system for urban severe rainfall and flooding disasters based on big data fusion. Environ. Res. 2020, 188, 109822. [Google Scholar] [CrossRef] [PubMed]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modeling the impacts of land use–land cover changes on soil erosion and sediment yield in the Andassa Watershed, Upper Blue Nile Basin, Ethiopia. Environ. Earth Sci. 2019, 78, 679. [Google Scholar] [CrossRef]
- Farooq, M.; Shafique, M.; Khattak, M.S. Flood hazard assessment and mapping of river swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM). Nat. Hazards 2019, 97, 477–492. [Google Scholar] [CrossRef]
- Ejikeme, J.; Igbokwe, J.; Igbokwe, E.; Aweh, D. Evaluation of horizontal and vertical accuracies of SRTM and ASTER GDEMs for topographic and hydrological modeling in Onitsha, South East Nigeria. Int. J. Innov. Res. Sci. Eng. Technol. 2017, 4, 634–643. [Google Scholar] [CrossRef]
- Anthony, E.J. Shore Processes and Their Palaeoenvironmental Applications; Elsevier: Amsterdam, The Netherlands, 2008; ISBN 978-0-444-52733-2. [Google Scholar]
- Piégay, H.; Arnaud, F.; Belletti, B.; Bertrand, M.; Bizzi, S.; Carbonneau, P.; Dufour, S.; Liébault, F.; Ruiz-Villanueva, V.; Slater, L. Remotely sensed rivers in the Anthropocene: State of the art and prospects. Earth Surf. Process. Landf. 2020, 45, 157–188. [Google Scholar] [CrossRef]
- Maitre, D.C.L.; Kotzee, I.M.; O’Farrell, P.J. Impacts of land-cover change on the water flow regulation ecosystem service: Invasive alien plants, fire and their policy implications. Land Use Policy 2014, 36, 171–181. [Google Scholar] [CrossRef]
- Zhang, N.; Luo, Y.-J.; Chen, X.-Y.; Li, Q.; Jing, Y.-C.; Wang, X.; Feng, C.-H. Understanding the effects of composition and configuration of land covers on surface runoff in a highly urbanized area. Ecol. Eng. 2018, 125, 11–25. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, Y.; Zhang, D.; Chen, X. Environmental groundwater depth for groundwater-dependent terrestrial ecosystems in arid/semiarid regions: A review. Int. J. Environ. Res. Public Health 2019, 16, 763. [Google Scholar] [CrossRef]
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Su, W.; Li, J.; Sun, Z. Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas. Adv. Space Res. 2009, 43, 1101–1110. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; Chen, T.; Song, Y. Urban impervious surface extraction based on the GF-2 satellite imagery. Geomat. World 2017, 24, 103–107. [Google Scholar]
- Qi, M.; Huang, H.-B.; Liu, L.; Chen, X. Spatial heterogeneity of controlling factors’ impact on urban pluvial flooding in Cincinnati, US. Appl. Geogr. 2020, 125, 102362. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Chen, L.-Q.; Liao, Z.-H.; Wang, Y.-C.; Wang, B.-Y.; Yang, X.-Y. A Modified multi-source parallel model for estimating urban surface evapotranspiration based on ASTER thermal infrared data. Remote Sens. 2017, 9, 1029. [Google Scholar] [CrossRef]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Zhou, P.; Ding, J.-L.; Wang, F.; Ubul, G.; Zhang, Z.-G. Retrieval methods of soil water content in vegetation covering areas based on multi-source remote sensing data. J. Remote Sens. 2010, 5, 15. [Google Scholar] [CrossRef]
- Wang, H.; Sun, X.-B.; Yang, L.-K.; Zhao, M.-R.; Lui, P.; Du, W.-B. Aerosol retrieval algorithm based on adaptive land–atmospheric decoupling for polarized remote sensing over land surfaces. J. Quant. Spectrosc. Radiat. Transf. 2018, 219, 74–84. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Ma, M.-H.; Wang, H.-X.; Jia, P.-F.; Tang, G.-Q.; Wang, D.-C.; Ma, Z.-Q.; Yan, H.-M. Application of the GPM-IMERG products in flash flood warning: A case study in Yunnan, China. Remote Sens. 2020, 12, 1954. [Google Scholar] [CrossRef]
- Kidd, C.; Levizzani, V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 1109–1116. [Google Scholar] [CrossRef]
- Varma, A.K. Measurement of precipitation from satellite radiometers (visible, infrared, and microwave): Physical basis, methods, and limitations. In Remote Sensing of Aerosols, Clouds, and Precipitation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 223–248. [Google Scholar]
- Kummerow, C.; Giglio, L. A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description. J. Appl. Meteorol. Clim. 1994, 33, 3–18. [Google Scholar] [CrossRef]
- Cristiano, E.; ten Veldhuis, M.-C.; van de Giesen, N. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas—A review. Hydrol. Earth Syst. Sci. 2017, 21, 3859–3878. [Google Scholar] [CrossRef]
- Kazamias, A.-P.; Sapountzis, M.; Lagouvardos, K. Evaluation of GPM-IMERG rainfall estimates at multiple temporal and spatial scales over Greece. Atmos. Res. 2022, 269, 106014. [Google Scholar] [CrossRef]
- Tegos, A.; Ziogas, A.; Bellos, V.; Tzimas, A. Forensic hydrology: A complete reconstruction of an extreme flood event in data-scarce area. Hydrology 2022, 9, 93. [Google Scholar] [CrossRef]
- Giannaros, C.; Dafis, S.; Stefanidis, S.; Giannaros, T.M.; Koletsis, I.; Oikonomou, C. Hydrometeorological analysis of a flash flood event in an ungauged mediterranean watershed under an operational forecasting and monitoring context. Meteorol. Appl. 2022, 29, e2079. [Google Scholar] [CrossRef]
- Salles, L.; Satgé, F.; Roig, H.; Almeida, T.; Olivetti, D.; Ferreira, W. Seasonal effect on spatial and temporal consistency of the new GPM-Based IMERG-v5 and GSMaP-v7 satellite precipitation estimates in Brazil’s Central Plateau Region. Water 2019, 11, 668. [Google Scholar] [CrossRef]
- He, X.-C.; Gao, W.-J.; Wang, R. Impact of urban morphology on the microclimate around elementary schools: A case study from Japan. Build. Environ. 2021, 206, 108383. [Google Scholar] [CrossRef]
- Tao, L.; Ryu, D.; Western, A.; Boyd, D. A new drought index for soil moisture monitoring based on MPDI-NDVI trapezoid space using MODIS data. Remote Sens. 2020, 13, 122. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J.; Baldridge, A.M. Investigating the effects of soil moisture on thermal infrared land surface temperature and emissivity using satellite retrievals and laboratory measurements. Remote Sens. Environ. 2010, 114, 1480–1493. [Google Scholar] [CrossRef]
- Kornelsen, K.C.; Coulibaly, P. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. J. Hydrol. 2013, 476, 460–489. [Google Scholar] [CrossRef]
- Yadav, V.P.; Prasad, R.; Bala, R.; Srivastava, P.K. Synergy of vegetation and soil microwave scattering model for leaf area index retrieval using C-band sentinel-1A satellite data. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Shulin, C.; Yuanbo, L.; Zuomin, W. Satellite retrieval of soil moisture: An overview. Anvances Earth Sci. 2012, 1192–1203. [Google Scholar] [CrossRef]
- McGinnis, D.; Rango, A. Earth resources satellite systems for flood monitoring. Geophys. Res. Lett. 1975, 2, 132–135. [Google Scholar] [CrossRef]
- Giustarini, L.; Matgen, P.; Hostache, R.; Montanari, M.; Plaza, D.; Pauwels, V.R.N.; Pfister, L.; Hoffmann, L.; Savenije, H.H.G. Assimilating SAR-derived water level data into a hydraulic model: A case study. Hydrol. Earth Syst. Sci. 2011, 15, 2349–2365. [Google Scholar] [CrossRef]
- Brakenridge, R.; Anderson, E. Modis-based flood detection, mapping and measurement: The potential for operational hydrological applications. In Nato Science Series: IV: Earth and Environmental Sciences; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–12. [Google Scholar] [CrossRef]
- Gao, W.; Shen, Q.; Zhou, Y.-H.; Li, X. Analysis of flood inundation in ungauged basins based on multi-source remote sensing data. Environ. Monit. Assess 2018, 190, 129. [Google Scholar] [CrossRef]
- Brakenridge, G.R.; Nghiem, S.V.; Anderson, E.; Mic, R. Orbital microwave measurement of river discharge and ice status. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Rees, W.G. Physical Principles of Remote Sensing; Cambridge University Press: Cambridge, UK, 2013; ISBN 978-1-107-00473-3. [Google Scholar]
- Mason, D.C.; Giustarini, L.; Garcia-Pintado, J.; Cloke, H.L. Detection of flooded urban areas in high resolution synthetic aperture radar images using double scattering. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 150–159. [Google Scholar] [CrossRef]
- Lin, Y.N.; Yun, S.-H.; Bhardwaj, A.; Hill, E.M. Urban flood detection with sentinel-1 multi-temporal Synthetic Aperture Radar (SAR) observations in a Bayesian framework: A case study for Hurricane Matthew. Remote Sens. 2019, 11, 1778. [Google Scholar] [CrossRef]
- Bhatt, C.; Thakur, P.K.; Singh, D.; Chauhan, P.; Pandey, A.; Roy, A. Application of active space-borne microwave remote sensing in flood hazard management. In Geospatial Technologies for Land and Water Resources Management; Springer: Berlin/Heidelberg, Germany, 2022; pp. 457–482. [Google Scholar]
- Zhu, Z.J.; Jiang, A.Z.; Lai, J.; Xiang, Y.; Baird, B.; McBean, E. Towards efficient use of an unmanned aerial vehicle for urban flood monitoring. J. Water Manag. Model. 2017, 26, C433. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Liu, J.; Gong, J. Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier—A case of Yuyao, China. Water 2015, 7, 1437–1455. [Google Scholar] [CrossRef]
- Şerban, G.; Rus, I.; Vele, D.; Breţcan, P.; Alexe, M.; Petrea, D. Flood-prone area delimitation using UAV technology, in the areas hard-to-reach for classic aircrafts: Case study in the North-East of Apuseni Mountains, Transylvania. Nat. Hazards 2016, 82, 1817–1832. [Google Scholar] [CrossRef]
- Fohringer, J.; Dransch, D.; Kreibich, H.; Schröter, K. Social media as an information source for rapid flood inundation mapping. Nat. Hazards Earth Syst. Sci. 2015, 15, 2725–2738. [Google Scholar] [CrossRef]
- Sui, D.; Elwood, S.; Goodchild, M. Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-94-007-4587-5. [Google Scholar]
- Filonenko, A.; Wahyono; Hernández, D.C.; Seo, D.; Jo, K.-H. Real-time flood detection for video surveillance. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 004082–004085. [Google Scholar]
- Li, J.; He, Z.; Plaza, J.; Li, S.-T.; Chen, J.-F.; Wu, H.; Wang, Y.; Liu, Y. Social media: New perspectives to improve remote sensing for emergency response. Proc. IEEE 2017, 105, 1900–1912. [Google Scholar] [CrossRef]
- Wu, Z.-N.; Shen, Y.-X.; Wang, H.-L.; Wu, M.-M. Quantitative assessment of urban flood disaster vulnerability based on text data: Case study in Zhengzhou. Water Supply 2020, 20, 408–415. [Google Scholar] [CrossRef]
- Ma, H.-D. Internet of things: Objectives and scientific challenges. J. Comput. Sci. Technol. 2011, 26, 919–924. [Google Scholar] [CrossRef]
- Poser, K.; Dransch, D. Volunteered geographic information for disaster management with application to rapid flood damage estimation. Geomatica 2010, 64, 89–98. [Google Scholar] [CrossRef]
- Dhaya, R.; Kanthavel, R. IoT based urban flooding high definition surveillance using concurrent multipath wireless system. Earth Sci. Inform. 2022, 15, 1407–1416. [Google Scholar] [CrossRef]
- Furht, B.; Villanustre, F. Introduction to big data. In Big Data Technologies and Applications; Furht, B., Villanustre, F., Eds.; Springer: Cham, Switzerland, 2016; pp. 3–11. ISBN 978-3-319-44550-2. [Google Scholar]
- Gericke, O.J.; du Plessis, J.A. Catchment parameter analysis in flood hydrology using GIS applications. J. South Afr. Inst. Civ. Eng. 2012, 54, 15–26. [Google Scholar]
- Magesh, N.S.; Chandrasekar, N.; Kaliraj, S. A GIS based automated extraction tool for the analysis of basin morphometry. Bonfring Int. J. Ind. Eng. Manag. Sci. 2012, 2, 4. [Google Scholar]
- Anselin, L.; Getis, A. Spatial statistical analysis and geographic information systems. Ann. Reg. Sci. 1992, 26, 19–33. [Google Scholar] [CrossRef]
- Jing, X.-Y.; Liu, Y.-F.; Wang, Y.-B.; Shen, Y.-Y.; Zhang, S.-F.; Tao, G.-H. Construction of the urban waterlogging monitoring and forecasting system of Harbin City. J. Catastrophology 2009, 24, 54–57. [Google Scholar]
- Wang, Q.-C.; Shou, S.-W.; Zhang, S.-H.; Huo, D.-S.; Zhou, Y.-D. A study on the early warning system for rainstorm Waterloggingin Langfang City of Hebei Province. J. Arid. Meteorol. 2013, 31, 609–615. [Google Scholar]
- Chang, M.-J.; Chang, H.-K.; Chen, Y.-C.; Lin, G.-F.; Chen, P.-A.; Lai, J.-S. A Support vector machine forecasting model for typhoon flood inundation map-ping and early flood warning systems. Water 2018, 10, 734. [Google Scholar] [CrossRef] [Green Version]
- Van Ackere, S.; Verbeurgt, J.; De Sloover, L.; Gautama, S.; De Wulf, A.; De Maeyer, P. A review of the internet of floods: Near real-time detection of a flood event and its impact. Water 2019, 11, 2275. [Google Scholar] [CrossRef]
- Rong, Y.; Zhang, T.; Zheng, Y.; Hu, C.; Peng, L.; Feng, P. Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry. J. Hydrol. 2020, 584, 124308. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, S.I.; Ojeda-Bustamante, W.; Ontiveros-Capurata, R.E.; de Marcial-Pablo, M.J. Rapid urban flood damage assessment using high resolution remote sensing data and an object-based approach. Geomat. Nat. Haz. Risk 2020, 11, 906–927. [Google Scholar] [CrossRef]
- Dungan, J.L.; Perry, J.N.; Dale, M.R.T.; Legendre, P.; Citron-Pousty, S.; Fortin, M.-J.; Jakomulska, A.; Miriti, M.; Rosenberg, M.S. A balanced view of scale in spatial statistical analysis. Ecography 2002, 25, 626–640. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure.; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995.
- Zhang, N.; Zhang, H. Scale variance analysis coupled with Moran’s I scalogram to identify hierarchy and characteristic scale. Int. J. Geogr. Inf. Sci. 2011, 25, 1525–1543. [Google Scholar] [CrossRef]
- Zhang, N. Scale issues in ecology: Concepts of scale and scale analysis. Acta Ecol. Sin. 2006, 2340–2355. [Google Scholar]
- Blöschl, G.; Sivapalan, M. Scale issues in hydrological modelling: A review. Hydrol. Process. 1995, 9, 251–290. [Google Scholar] [CrossRef]
- Zhang, N. Scale issues in ecology: Upscaling. Acta Ecol. Sin. 2007, 27(10), 4252–4266. [Google Scholar]
Model | SWMM * | InfoWorks ICM * | MIKE FLOOD | HEC-HMS/RAS * | UHCA * |
---|---|---|---|---|---|
Basic unit | catchment | catchment | catchment | catchment | grid cell |
Dimension | 1D | 2D | 2D | 2D | 2D |
GIS module | × | √ | √ | × | × |
Pipe module | √ | × | √ | × | √ or × |
LID * module | √ | × | imperfect | × | √ or × |
Calculation speed | ***** | *** | ** | * | **** |
Accuracy | ** | **** | **** | ** | ***** |
Open source | √ | × | × | × | √ or × |
Remote Sensing Data Type (Temporal and Spatial Resolution) | Flood Information | Characteristic | Satellite/Sensor |
---|---|---|---|
Optical data (0.5–26 days, <500 m) | Flood range Flood depth Flood duration | Vulnerable to clouds and weather | MODIS * Landsat TM * |
Passive microwave data (twice a day, 10–70 km) | Flood range Flood duration | Less affected by weather; low spatial resolution; high temporal resolution | AMSR-E * TRMM/TMI * SSM/I * |
Active microwave data (14–28 days, 1–10 m) | Flood range Flood depth | Unaffected by weather high spatial resolution; low temporal resolution | TerraSAR-X * COSMO-SkyMed * ALOS *-2 Sentinel-1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Zhang, N.; Zhang, H. Applications of Advanced Technologies in the Development of Urban Flood Models. Water 2023, 15, 622. https://doi.org/10.3390/w15040622
Yan Y, Zhang N, Zhang H. Applications of Advanced Technologies in the Development of Urban Flood Models. Water. 2023; 15(4):622. https://doi.org/10.3390/w15040622
Chicago/Turabian StyleYan, Yuna, Na Zhang, and Han Zhang. 2023. "Applications of Advanced Technologies in the Development of Urban Flood Models" Water 15, no. 4: 622. https://doi.org/10.3390/w15040622
APA StyleYan, Y., Zhang, N., & Zhang, H. (2023). Applications of Advanced Technologies in the Development of Urban Flood Models. Water, 15(4), 622. https://doi.org/10.3390/w15040622