Hydrochemical Characteristics and Risk Assessment of Tongzi River, Guizhou Province, Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Assessment Method
2.3.1. Irrigation Water Quality
2.3.2. Health Risk Assessment
2.4. Data Analysis
3. Results and Discussion
3.1. Hydrochemical Compositions of Tongzi River
3.2. Sources of River Solutes
3.2.1. Correlation Matrix and PCA Analysis of Major Ions
3.2.2. Mineral Dissolution
3.2.3. Anthropogenic Inputs
3.3. Irrigation and Guideline-Based Water Quality
3.4. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gnanachandrasamy, G.; Dushiyanthan, C.; Jeyavel Rajakumar, T.; Zhou, Y. Assessment of hydrogeochemical characteristics of groundwater in the lower Vellar river basin: Using Geographical Information System (GIS) and Water Quality Index (WQI). Environ. Dev. Sustain. 2020, 22, 759–789. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.; Sun, J.; She, J.; Yin, M.; Fang, F.; Xiao, T.; Song, G.; Liu, J. Geochemical transfer of cadmium in river sediments near a lead-zinc smelter. Ecotoxicological Environ. Saf. 2020, 196, 110529. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Han, G.; Zhang, S.; Liang, B.; Qu, R.; Liu, M.; Liu, J. Potentially toxic elements in cascade dams-influenced river originated from Tibetan Plateau. Environ. Res. 2022, 208, 112716. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Han, G.; Zhang, Q. Effects of agricultural abandonment on soil aggregation, soil organic carbon storage and stabilization: Results from observation in a small karst catchment, Southwest China. Agric. Ecosyst. Environ. 2020, 288, 106719. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.-r.; Hu, W.-f.; Gao, J.; Yang, J.-y. Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation. J. Hazard. Mater. 2021, 405, 124200. [Google Scholar] [CrossRef]
- Yang, K.; Han, G.; Song, C.; Zhang, P. Stable H-O Isotopic Composition and Water Quality Assessment of Surface Water and Groundwater: A Case Study in the Dabie Mountains, Central China. Int. J. Environ. Res. Public Health 2019, 16, 4076. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Li, R.; Ferrer, A.S.N.; Xiong, S.; Zou, P.; Peng, H. Hydrochemical characteristics and quality assessment of shallow groundwater in Yangtze River Delta of eastern China. Environ. Sci. Pollut. Res. 2022, 29, 57215–57231. [Google Scholar] [CrossRef]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef] [Green Version]
- Schullehner, J.; Hansen, B.; Thygesen, M.; Pedersen, C.B.; Sigsgaard, T. Nitrate in drinking water and colorectal cancer risk: A nationwide population-based cohort study. Int. J. Cancer 2018, 143, 73–79. [Google Scholar] [CrossRef]
- Pennino, M.J.; Leibowitz, S.G.; Compton, J.E.; Hill, R.A.; Sabo, R.D. Patterns and predictions of drinking water nitrate violations across the conterminous United States. Sci. Total Environ. 2020, 722, 137661. [Google Scholar] [CrossRef]
- Tsering, T.; Abdel Wahed, M.S.M.; Iftekhar, S.; Sillanpää, M. Major ion chemistry of the Teesta River in Sikkim Himalaya, India: Chemical weathering and assessment of water quality. J. Hydrol. Reg. Stud. 2019, 24, 100612. [Google Scholar] [CrossRef]
- Zhang, B.; Song, X.; Zhang, Y.; Han, D.; Tang, C.; Yu, Y.; Ma, Y. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res. 2012, 46, 2737–2748. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Liu, G.; Xia, H.; Jiang, F.; Meng, Y. Influence of saline intrusion on the wetland ecosystem revealed by isotopic and hydrochemical indicators in the Yellow River Delta, China. Ecol. Indic. 2021, 133, 108422. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, P.; Xue, L.; Dong, Z.; Li, D. Solute geochemistry and groundwater quality for drinking and irrigation purposes: A case study in Xinle City, North China. Geochemistry 2020, 80, 125609. [Google Scholar] [CrossRef]
- Elumalai, V.; Nethononda, V.G.; Manivannan, V.; Rajmohan, N.; Li, P.; Elango, L. Groundwater quality assessment and application of multivariate statistical analysis in Luvuvhu catchment, Limpopo, South Africa. J. Afr. Earth Sci. 2020, 171, 103967. [Google Scholar] [CrossRef]
- Wong, Y.J.; Shimizu, Y.; He, K.; Nik Sulaiman, N.M. Comparison among different ASEAN water quality indices for the assessment of the spatial variation of surface water quality in the Selangor river basin, Malaysia. Environ. Monit. Assess. 2020, 192, 644. [Google Scholar] [CrossRef]
- Wong, Y.J.; Shimizu, Y.; Kamiya, A.; Maneechot, L.; Bharambe, K.P.; Fong, C.S.; Nik Sulaiman, N.M. Application of artificial intelligence methods for monsoonal river classification in Selangor river basin, Malaysia. Environ. Monit. Assess. 2021, 193, 438. [Google Scholar] [CrossRef]
- Gao, Z.; Han, C.; Xu, Y.; Zhao, Z.; Luo, Z.; Liu, J. Assessment of the water quality of groundwater in Bohai Rim and the controlling factors—A case study of northern Shandong Peninsula, north China. Environ. Pollut. 2021, 285, 117482. [Google Scholar] [CrossRef]
- Xia, C.; Liu, G.; Meng, Y.; Jiang, F. Reveal the threat of water quality risks in Yellow River Delta based on evidences from isotopic and hydrochemical analyses. Mar. Pollut. Bull. 2022, 177, 113532. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, C.-Q. Chemical weathering in the upper reaches of Xijiang River draining the Yunnan–Guizhou Plateau, Southwest China. Chem. Geol. 2007, 239, 83–95. [Google Scholar] [CrossRef]
- Li, X.; Han, G.; Liu, M.; Liu, J.; Zhang, Q.; Qu, R. Potassium and its isotope behaviour during chemical weathering in a tropical catchment affected by evaporite dissolution. Geochim. Et Cosmochim. Acta 2022, 316, 105–121. [Google Scholar] [CrossRef]
- Wei, M.; Duan, P.; Gao, P.; Guo, S.; Hu, Y.; Yao, L.; Li, M. Exploration and application of hydrochemical characteristics method for quantification of pollution sources in the Danjiangkou Reservoir area. J. Hydrol. 2020, 590, 125291. [Google Scholar] [CrossRef]
- Apollaro, C.; Tripodi, V.; Vespasiano, G.; De Rosa, R.; Dotsika, E.; Fuoco, I.; Critelli, S.; Muto, F. Chemical, isotopic and geotectonic relations of the warm and cold waters of the Galatro and Antonimina thermal areas, southern Calabria, Italy. Mar. Pet. Geol. 2019, 109, 469–483. [Google Scholar] [CrossRef]
- Zhang, S.; Han, G.; Zeng, J.; Malem, F. Source tracing and chemical weathering implications of strontium in agricultural basin in Thailand during flood season: A combined hydrochemical approach and strontium isotope. Environ. Res. 2022, 212, 113330. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Liu, C.-Q. Strontium isotope and major ion chemistry of the rainwaters from Guiyang, Guizhou Province, China. Sci. Total Environ. 2006, 364, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Yang, P.; Groves, C.; Chen, F.; Xie, G.; Zhan, Z. Natural and anthropogenic factors affecting geochemistry of the Jialing and Yangtze Rivers in urban Chongqing, SW China. Appl. Geochem. 2018, 98, 448–458. [Google Scholar] [CrossRef]
- Ghaemi, Z.; Noshadi, M. Surface water quality analysis using multivariate statistical techniques: A case study of Fars Province rivers, Iran. Environ. Monit. Assess. 2022, 194, 178. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, G.; Liu, H.; Lam, P.K.S. Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. Sci. Total Environ. 2017, 583, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.; Wu, J.; Wang, J.; Jing, M. Distribution characteristics, sources identification and risk assessment of n-alkanes and heavy metals in surface sediments, Tajikistan, Central Asia. Sci. Total Environ. 2020, 709, 136278. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Q.; Gao, S.; Zhang, X.; Wang, Z.; Wu, P.; Zeng, J. Coupled controls of the infiltration of rivers, urban activities and carbonate on trace elements in a karst groundwater system from Guiyang, Southwest China. Ecotoxicol. Environ. Saf. 2023, 249, 114424. [Google Scholar] [CrossRef]
- Han, R.; Xu, Z. Riverine Hydrochemical Characteristics of a Typical Karst Urban Watershed: Major Ion Compositions, Sources, Assessment, and Historical Evolution. ACS Earth Space Chem. 2022, 6, 1495–1505. [Google Scholar] [CrossRef]
- Zeng, J.; Yue, F.-J.; Wang, Z.-J.; Wu, Q.; Qin, C.-Q.; Li, S.-L. Quantifying depression trapping effect on rainwater chemical composition during the rainy season in karst agricultural area, southwestern China. Atmos. Environ. 2019, 218, 116998. [Google Scholar] [CrossRef]
- Han, G.; Tang, Y.; Liu, M.; Van Zwieten, L.; Yang, X.; Yu, C.; Wang, H.; Song, Z. Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China. Agric. Ecosyst. Environ. 2020, 301, 107027. [Google Scholar] [CrossRef]
- Yue, F.-J.; Waldron, S.; Li, S.-L.; Wang, Z.-J.; Zeng, J.; Xu, S.; Zhang, Z.-C.; Oliver, D.M. Land use interacts with changes in catchment hydrology to generate chronic nitrate pollution in karst waters and strong seasonality in excess nitrate export. Sci. Total Environ. 2019, 696, 134062. [Google Scholar] [CrossRef]
- Karunanidhi, D.; Subramani, T.; Roy, P.D.; Li, H. Impact of groundwater contamination on human health. Environ. Geochem. Health 2021, 43, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Fuoco, I.; Marini, L.; De Rosa, R.; Figoli, A.; Gabriele, B.; Apollaro, C. Use of reaction path modelling to investigate the evolution of water chemistry in shallow to deep crystalline aquifers with a special focus on fluoride. Sci. Total Environ. 2022, 830, 154566. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wang, S.; Bai, X.; Zhang, q.; Tao, j.; Zhang, Y.; Liang, M.; Zhou, G.; Lao, Y. Response og runoff of climate and human activities in Tongzi River Basin. Res. Soil Water Conserv. 2020, 27, 76–82. [Google Scholar]
- Singh, V.; Singh, U. Assessment of groundwater quality of parts of Gwalior (India) for agricultural purposes. Indian J. Sci. Technol. 2008, 1, 1–5. [Google Scholar] [CrossRef]
- Santacruz de León, G.; Ramos Leal, J.A.; Moran Ramírez, J.; López Álvarez, B.; Santacruz de León, E.E. Quality indices of groundwater for agricultural use in the Soconusco, Chiapas, Mexico. Earth Sci. Res. J. 2017, 21, 117–127. [Google Scholar] [CrossRef]
- Xia, F.; Niu, X.; Qu, L.; Dahlgren, R.A.; Zhang, M. Integrated source-risk and uncertainty assessment for metals contamination in sediments of an urban river system in eastern China. Catena 2021, 203, 105277. [Google Scholar] [CrossRef]
- Adimalla, N.; Li, P. Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 81–103. [Google Scholar] [CrossRef]
- Adimalla, N.; Qian, H.; Nandan, M.J. Groundwater chemistry integrating the pollution index of groundwater and evaluation of potential human health risk: A case study from hard rock terrain of south India. Ecotoxicol. Environ. Saf. 2020, 206, 111217. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; An, Y.; Wu, Q.; Lv, J.; Gao, S.; Li, F. Response of Spatial Distribution of Nitrogen and Phosphorus to Human Activitues in Mountainous Rivers—A Case Study of Tongzi River, a first-grade Tributary fo Chishui River. Res. Soil Water Conserv. 2021, 28, 179–185. [Google Scholar]
- Chen, J.; Wu, H.; Qian, H. Groundwater Nitrate Contamination and Associated Health Risk for the Rural Communities in an Agricultural Area of Ningxia, Northwest China. Expo. Health 2016, 8, 349–359. [Google Scholar] [CrossRef]
- Qasemi, M.; Afsharnia, M.; Zarei, A.; Farhang, M.; Allahdadi, M. Non-carcinogenic risk assessment to human health due to intake of fluoride in the groundwater in rural areas of Gonabad and Bajestan, Iran: A case study. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1222–1233. [Google Scholar] [CrossRef]
- Liu, J.; Peng, Y.; Li, C.; Gao, Z.; Chen, S. Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health. Environ. Pollut. 2021, 268, 115947. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Wu, Q.; Wang, Z.; Gao, S.; Wang, T. Sulfur isotope and stoichiometry–based source identification of major ions and risk assessment in Chishui River Basin, Southwest China. Water 2021, 13, 1231. [Google Scholar] [CrossRef]
- Das, A.; Krishnaswami, S.; Sarin, M.; Pande, K. Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps, India: Rates of basalt weathering and their controls. Geochim. Et Cosmochim. Acta 2005, 69, 2067–2084. [Google Scholar] [CrossRef]
- Huh, Y.; Tsoi, M.; Zaitsev, A.; Edmond, J. The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton. Geochim. Et Cosmochim. Acta 1998, 62, 1657–1676. [Google Scholar] [CrossRef]
- Chetelat, B.; Liu, C.-Q.; Zhao, Z.; Wang, Q.; Li, S.; Li, J.; Wang, B. Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering. Geochim. Et Cosmochim. Acta 2008, 72, 4254–4277. [Google Scholar] [CrossRef]
- Ding, T.; Gao, J.; Tian, S.; Shi, G.; Chen, F.; Wang, C.; Luo, X.; Han, D. Chemical and isotopic characteristics of the water and suspended particulate materials in the Yangtze River and their geological and environmental implications. Acta Geol. Sin. Engl. Ed. 2014, 88, 276–360. [Google Scholar] [CrossRef]
- Fuoco, I.; De Rosa, R.; Barca, D.; Figoli, A.; Gabriele, B.; Apollaro, C. Arsenic polluted waters: Application of geochemical modelling as a tool to understand the release and fate of the pollutant in crystalline aquifers. J. Environ. Manag. 2022, 301, 113796. [Google Scholar] [CrossRef] [PubMed]
- Zongxing, L.; Qi, F.; Wei, L.; Tingting, W.; Aifang, C.; Yan, G.; Xiaoyan, G.; Yanhui, P.; Jianguo, L.; Rui, G. Study on the contribution of cryosphere to runoff in the cold alpine basin: A case study of Hulugou River Basin in the Qilian Mountains. Glob. Planet. Chang. 2014, 122, 345–361. [Google Scholar] [CrossRef]
- Yidana, S.M.; Ophori, D.; Banoeng-Yakubo, B. A multivariate statistical analysis of surface water chemistry data—The Ankobra Basin, Ghana. J. Environ. Manag. 2008, 86, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Ustaoğlu, F.; Tepe, Y.; Taş, B. Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecol. Indic. 2020, 113, 105815. [Google Scholar] [CrossRef]
- Burke, A.; Present, T.M.; Paris, G.; Rae, E.C.M.; Sandilands, B.H.; Gaillardet, J.; Peucker-Ehrenbrink, B.; Fischer, W.W.; McClelland, J.W.; Spencer, R.G.M.; et al. Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth Planet. Sci. Lett. 2018, 496, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Han, G. Rainwater Chemistry Reveals Air Pollution in a Karst Forest: Temporal Variations, Source Apportionment, and Implications for the Forest. Atmosphere 2020, 11, 1315. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.; Cai, W.; Wang, Z.; Li, C. Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger. Renew. Energy 2020, 149, 384–399. [Google Scholar] [CrossRef]
- Guo, F.; Jiang, G.; Yuan, D.; Polk, J.S. Evolution of major environmental geological problems in karst areas of Southwestern China. Environ. Earth Sci. 2013, 69, 2427–2435. [Google Scholar] [CrossRef]
- Liu, Q.; Gu, Z.; Lu, Y.; Xiao, S.; Li, G. Weathering processes of the dolomite in Shibing (Guizhou) and formation of collapse and stone peaks. Environ. Earth Sci. 2015, 74, 1823–1831. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Zhang, S.; Xiao, X.; Li, Y.; Gao, X.; Wang, D.; Qu, R. Rainwater chemical evolution driven by extreme rainfall in megacity: Implication for the urban air pollution source identification. J. Clean. Prod. 2022, 372, 133732. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Zhang, S.; Qu, R. Nitrate dynamics and source identification of rainwater in Beijing during rainy season: Insight from dual isotopes and Bayesian model. Sci. Total Environ. 2023, 856, 159234. [Google Scholar] [CrossRef] [PubMed]
- Grabb, K.C.; Ding, S.; Ning, X.; Liu, S.M.; Qian, B. Characterizing the impact of Three Gorges Dam on the Changjiang (Yangtze River): A story of nitrogen biogeochemical cycling through the lens of nitrogen stable isotopes. Environ. Res. 2021, 195, 110759. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, S.; Su, J.; Yue, F.; Zhong, J.; Chen, S. Oxidation of pyrite and reducing nitrogen fertilizer enhanced the carbon cycle by driving terrestrial chemical weathering. Sci. Total Environ. 2021, 768, 144343. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lee, X.-Q.; Yuan, H.-L.; Zhou, H.; Cheng, H.-G.; Cheng, J.-Z.; Zhou, Z.-H.; Xing, Y.; Fang, B.; Zhang, L.-K.; et al. Distinct patterns of chemical weathering in the drainage basins of the Huanghe and Xijiang River, China: Evidence from chemical and Sr-isotopic compositions. J. Asian Earth Sci. 2012, 59, 219–230. [Google Scholar] [CrossRef]
- Hui, T.; Jizhong, D.; Shimin, M.; Zhuang, K.; Yan, G. Application of water quality index and multivariate statistical analysis in the hydrogeochemical assessment of shallow groundwater in Hailun, northeast China. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 651–667. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Sun, H.; Chen, B.; Yang, M.; Zeng, Q.; Zeng, C.; Huang, J.; Luo, H.; Lin, D. Temporal variations in riverine hydrochemistry and estimation of the carbon sink produced by coupled carbonate weathering with aquatic photosynthesis on land: An example from the Xijiang River, a large subtropical karst-dominated river in China. Environ. Sci. Pollut. Res. 2020, 27, 13142–13154. [Google Scholar] [CrossRef]
- Han, Q.; Wang, B.; Liu, C.-Q.; Wang, F.; Peng, X.; Liu, X.-L. Carbon biogeochemical cycle is enhanced by damming in a karst river. Sci. Total Environ. 2018, 616–617, 1181–1189. [Google Scholar] [CrossRef]
- Lü, J.; An, Y.; Wu, Q.; Zhou, S.; Wu, Y. Chemical characteristics and CO2 consumption of the Qingshuijiang River Basin, Guizhou Province, Southwestern China. Geochem. J. 2018, 52, 441–456. [Google Scholar] [CrossRef]
- Shen, B.; Wu, J.; Zhan, S.; Jin, M.; Saparov, A.S.; Abuduwaili, J. Spatial variations and controls on the hydrochemistry of surface waters across the Ili-Balkhash Basin, arid Central Asia. J. Hydrol. 2021, 600, 126565. [Google Scholar] [CrossRef]
- Devic, G.; Djordjevic, D.; Sakan, S. Natural and anthropogenic factors affecting the groundwater quality in Serbia. Sci. Total Environ. 2014, 468–469, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Peng, Y.; Li, C.; Gao, Z.; Chen, S. An investigation into the hydrochemistry, quality and risk to human health of groundwater in the central region of Shandong Province, North China. J. Clean. Prod. 2021, 282, 125416. [Google Scholar] [CrossRef]
- Li, P.; Song, X.; Wang, J.; Zhou, X.; Li, J.; Lin, F.; Hu, Z.; Zhang, X.; Cui, H.; Wang, W.; et al. Reduced sensitivity to neutral feedback versus negative feedback in subjects with mild depression: Evidence from event-related potentials study. Brain Cogn. 2015, 100, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gao, Z.; Zhang, Y.; Sun, Z.; Sun, T.; Fan, H.; Wu, B.; Li, M.; Qian, L. Hydrochemical evaluation of groundwater quality and human health risk assessment of nitrate in the largest peninsula of China based on high-density sampling: A case study of Weifang. J. Clean. Prod. 2021, 322, 129164. [Google Scholar] [CrossRef]
- Dun, Y.; Ling, J.; Wang, R.; Wei, J.; Zhou, Q.; Cao, Y.; Zhang, Y.; Xuan, Y. Hydrochemical Evolution and Nitrogen Behaviors in Coastal Groundwater Suffered From Seawater Intrusion and Anthropogenic Inputs. Front. Mar. Sci. 2022, 9, 945330. [Google Scholar] [CrossRef]
- Xiao, J.; Jin, Z.D.; Wang, J.; Zhang, F. Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau. Quat. Int. 2015, 380–381, 237–246. [Google Scholar] [CrossRef]
- Widory, D.; Petelet-Giraud, E.; Négrel, P.; Ladouche, B. Tracking the Sources of Nitrate in Groundwater Using Coupled Nitrogen and Boron Isotopes: A Synthesis. Environ. Sci. Technol. 2005, 39, 539–548. [Google Scholar] [CrossRef]
- Fan, B.-L.; Zhao, Z.-Q.; Tao, F.-X.; Liu, B.-J.; Tao, Z.-H.; Gao, S.; Zhang, L.-H. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: A comparison among the upstream, midstream and downstream. J. Asian Earth Sci. 2014, 96, 17–26. [Google Scholar] [CrossRef]
- Nijesh, P.; Akpataku, K.V.; Patel, A.; Rai, P.; Rai, S.P. Spatial variability of hydrochemical characteristics and appraisal of water quality in stressed phreatic aquifer of Upper Ganga Plain, Uttar Pradesh, India. Environ. Earth Sci. 2021, 80, 185. [Google Scholar] [CrossRef]
- Liu, J.; Han, G. Controlling factors of riverine CO2 partial pressure and CO2 outgassing in a large karst river under base flow condition. J. Hydrol. 2021, 593, 125638. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, P.; Qian, H.; Yang, F. Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District, Central China: Assessment based on multivariate statistical approach and human health risk. Sci. Total Environ. 2020, 741, 140460. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Weitzberg, E.; Cole, J.A.; Benjamin, N. Nitrate, bacteria and human health. Nat. Rev. Microbiol. 2004, 2, 593–602. [Google Scholar] [CrossRef] [PubMed]
Parameters | Unit | Infants | Children | Adults | Reference |
---|---|---|---|---|---|
EF | d·a−1 | 365 | 365 | 365 | [44] |
IR | L·d−1 | 0.8 | 1.5 | 2 | [45] |
AT | d | 365 × ED | 365 × ED | 365×ED | [46] |
ED | a | 1 | 12 | 30 | [46] |
BW | kg | 10 | 20 | 70 | [45] |
Min | Max | Mean | SD | Chinese Guideline | WHO Guideline | |
---|---|---|---|---|---|---|
T (°C) | 20.0 | 29.0 | 23.6 | 2.9 | ||
EC (μS/cm) | 330 | 622 | 436 | 61 | ||
pH | 8.54 | 9.36 | 9.13 | 0.17 | 6.5–8.5 | 6.5–8.5 |
DO (mg/L) | 1.24 | 13.01 | 8.91 | 2.37 | ||
Na+(mmol/L) | 0.06 | 0.58 | 0.20 | 0.11 | ||
K+ (mmol/L) | 0.02 | 0.16 | 0.05 | 0.02 | ||
Mg2+(mmol/L) | 0.31 | 1.09 | 0.56 | 0.22 | ||
Ca2+(mmol/L) | 1.16 | 2.44 | 1.58 | 0.30 | ||
F− (mmol/L) | 0.004 | 0.011 | 0.007 | 0.002 | 0.05 | 0.08 |
Cl− (mmol/L) | 0.03 | 0.51 | 0.14 | 0.10 | 7.05 | 7.05 |
NO3− (mmol/L) | 0.08 | 0.47 | 0.20 | 0.07 | 1.428 | 3.570 |
SO42− (mmol/L) | 0.37 | 1.18 | 0.76 | 0.20 | 2.60 | 2.60 |
HCO3− (mmol/L) | 2.01 | 3.66 | 2.69 | 0.43 | ||
NH4+ (mg/L) | 0.01 | 2.65 | 0.25 | 0.46 | 0.036 | 0.107 |
SAR | 0.06 | 0.49 | 0.20 | 0.09 | ||
Na% | 2.56 | 16.57 | 8.33 | 0.03 | ||
RSC | 0.16 | 1.26 | 0.53 | 0.26 |
Variable | PC1 | PC2 | PC3 | Communalities |
---|---|---|---|---|
EC | −0.16 | −0.87 | −0.06 | 0.78 |
pH | 0.85 | 0.35 | 0.38 | 0.98 |
Na+ | 0.66 | 0.63 | −0.19 | 0.87 |
K+ | 0.57 | 0.75 | −0.11 | 0.89 |
Mg2+ | 0.03 | −0.44 | 0.84 | 0.90 |
Ca2+ | 0.80 | 0.47 | 0.03 | 0.86 |
Cl− | 0.72 | 0.59 | 0.01 | 0.86 |
NO3− | 0.65 | 0.38 | 0.05 | 0.56 |
SO42− | 0.92 | 0.04 | −0.04 | 0.84 |
HCO3− | 0.28 | 0.23 | 0.85 | 0.86 |
F− | 0.55 | −0.04 | −0.68 | 0.76 |
eigenvalues | 6.04 | 2.11 | 1.03 | |
variance (%) | 54.86 | 19.19 | 9.33 | |
cumulative (%) | 54.86 | 74.05 | 83.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lü, J.; An, Y. Hydrochemical Characteristics and Risk Assessment of Tongzi River, Guizhou Province, Southwest China. Water 2023, 15, 802. https://doi.org/10.3390/w15040802
Lü J, An Y. Hydrochemical Characteristics and Risk Assessment of Tongzi River, Guizhou Province, Southwest China. Water. 2023; 15(4):802. https://doi.org/10.3390/w15040802
Chicago/Turabian StyleLü, Jiemei, and Yanling An. 2023. "Hydrochemical Characteristics and Risk Assessment of Tongzi River, Guizhou Province, Southwest China" Water 15, no. 4: 802. https://doi.org/10.3390/w15040802
APA StyleLü, J., & An, Y. (2023). Hydrochemical Characteristics and Risk Assessment of Tongzi River, Guizhou Province, Southwest China. Water, 15(4), 802. https://doi.org/10.3390/w15040802