Controlling Nitrogen Removal Processes in Improved Vertical Flow Constructed Wetland with Hydroponic Materials: Effect of Influent COD/N Ratios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrata and Plant
2.2. Influent Preparation
2.3. CWH Configurations and Operation
2.4. Sample Preparation and Analytical Techniques
2.5. Data Analysis
3. Results and Discussion
3.1. Removal of TN and COD in CWH
3.2. Nitrogen Removal in CWH
3.2.1. Nitrification in CWH
3.2.2. Denitrification in CWH
3.2.3. Nitrification and Denitrification in CWH
3.3. Effect of COD/N Ratio on N removal
3.4. Effect of Substrata on N removal
3.5. Role of Plant on N removal
3.6. Observed Total Phosphorous (TP) Removal in CWH
3.7. Design of CWH for N removal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Mineral Wool | Cocopeat | Pumice | |
---|---|---|---|
pH in water | 7.7 | 6 | 7 |
Organic matter (%) | 3 | 90–100 | <1 |
Surface area (m2/g) | 0.5 ± 0.5 | 1.8 ± 0.7 | 2.4 ± 0. |
Porosity (%) | 97 | 97 | 72 |
COD/N Ratio of Influent | 5/1 | 15/1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Days | 113 | 120 | 127 | 134 | 141 | 155 | 162 | 171 | 177 | 183 |
CWH-M | 95 | 96 | 97 | 96 | 96 | 98 | 99 | 97 | 99 | 99 |
CWH-C | 93 | 98 | 87 | 96 | 99 | 100 | 100 | 98 | 99 | 100 |
CWH-P | 94 | 87 | 88 | 89 | 91 | 96 | 93 | 96 | 95 | 92 |
COD/N Ratio of Influent | 5/1 | 15/1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Days | 113 | 120 | 127 | 134 | 141 | 155 | 162 | 171 | 177 | 183 |
CWH-M | 9 | 5 | 15 | 10 | 16 | 40 | 38 | 29 | 40 | 39 |
CWH-C | 10 | 9 | 34 | 12 | 16 | 33 | 26 | 25 | 23 | 21 |
CWH-P | 56 | 39 | 44 | 54 | 50 | 95 | 80 | 90 | 91 | 91 |
p-Value | ||
---|---|---|
Nitrification | Denitrification | |
CWH-M | 0.15 | 0.00 |
CWH-C | 0.19 | 0.02 |
CWH-P | 0.13 | 0.00 |
References
- Carey, R.O.; Migliaccio, K.W. Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: A review. Environ. Manag. 2009, 44, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lu, L.; Zheng, X.; Ngo, H.H.; Liang, S.; Guo, W.; Zhang, X. Enhanced nitrogen removal in constructed wetlands: Effects of dissolved oxygen and step-feeding. Bioresour. Technol. 2014, 169, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Noori, R.; Farahani, F.; Jun, C.; Aradpour, S.; Bateni, S.M.; Ghazban, F.; Hosseinzadeh, M.; Maghrebi, M.; Naseh, M.R.V.; Abolfathi, S. A non-threshold model to estimate carcinogenic risk of nitrate-nitrite in drinking water. J. Clean. Prod. 2022, 363, 132432. [Google Scholar] [CrossRef]
- Farooqi, I.; Basheer, F.; Chaudhari, R.J. Constructed wetland system (CWS) for wastewater treatment. In Proceedings of the Taal 2007: The 12th World Lake Conference, Jaipur, India, 28 October–2 November 2007; pp. 1004–1009. [Google Scholar]
- Borzooei, S.; Amerlinck, Y.; Panepinto, D.; Abolfathi, S.; Nopens, I.; Scibilia, G.; Meucci, L.; Zanetti, M.C. Energy optimization of a wastewater treatment plant based on energy audit data: Small investment with high return. Environ. Sci. Pollut. Res. 2020, 27, 17972–17985. [Google Scholar] [CrossRef] [PubMed]
- Dan, A.; Zhang, X.; Dai, Y.; Chen, C.; Yang, Y. Occurrence and removal of quinolone, tetracycline, and macrolide antibiotics from urban wastewater in constructed wetlands. J. Clean. Prod. 2020, 252, 119677. [Google Scholar]
- Li, J.; Zhou, Q.; Campos, L.C. Removal of selected emerging PPCP compounds using greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland. Water Res. 2017, 126, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Lee, C.-G.; Fletcher, T.D.; Sun, G. Nitrogen removal in constructed wetland systems. Eng. Life Sci. 2009, 9, 11–22. [Google Scholar] [CrossRef]
- Bauder, T.A.; Waskom, R.M.; Sutherland, P.L.; Davis, J.G. Irrigation Water Quality Criteria. Fact Sheet No. 0.506; Crop Series; Colorado State University Extension: Fort Collins, CO, USA, 2011. [Google Scholar]
- Shahinasi, E.; Kashuta, V. Irrigation water quality and its effects upon soil. In Proceedings of the BALWOIS 2008, Ohrid, Republic of Macedonia, 27–31 May 2008. [Google Scholar]
- Vymazal, J. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecol. Eng. 2002, 18, 633–646. [Google Scholar] [CrossRef]
- European Commission. GPP Criteria Waste Water Infrastructure; Report for the European Commission DG-Regional and Urban Policy, Unit G1, B-1049 Brussels; Technical Background Report; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- Gurbuz, F.; Codd, G.A. Microcystin removal by a naturally-occurring substance: Pumice. Bull. Environ. Contam. Toxicol. 2008, 81, 323–327. [Google Scholar] [CrossRef]
- Sithamparanathan, E.; Kujawa-Roeleveld, K.; Soedarso, J.A.; Sutton, N.B.; Grolle, K.; Bruning, H.; Rijnaarts, H.H. Sorption of micropollutants to hydroponic substrata: Effects of physico-chemical properties. Environ. Adv. 2021, 4, 100049. [Google Scholar] [CrossRef]
- Dehestaniathar, S.; Nesari, S.; Borzooei, S.; Abolfathi, S. Application of natural biodegradable fiber as biofilm medium and carbon source in DEnitrifying AMmonium OXidation (DEAMOX) process for nitrogen removal from wastewater. J. Taiwan Inst. Chem. Eng. 2021, 119, 108–114. [Google Scholar] [CrossRef]
- Fan, J.; Wang, W.; Zhang, B.; Guo, Y.; Ngo, H.H.; Guo, W.; Zhang, J.; Wu, H. Nitrogen removal in intermittently aerated vertical flow constructed wetlands: Impact of influent COD/N ratios. Bioresour. Technol. 2013, 143, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Liu, S.; Liu, Q.; Zhang, M.; Liu, Y.; Wen, Y.; Chen, Z.; Zhang, Y.; Yang, Q. Improved performance of simultaneous nitrification and denitrification via nitrite in an oxygen-limited SBR by alternating the DO. Bioresour. Technol. 2019, 275, 153–162. [Google Scholar] [CrossRef]
- Polińska, W.; Kotowska, U.; Kiejza, D.; Karpińska, J. Insights into the Use of Phytoremediation Processes for the Removal of Organic Micropollutants from Water and Wastewater; A Review. Water 2021, 13, 2065. [Google Scholar] [CrossRef]
- Zhu, H.; Yan, B.; Xu, Y.; Guan, J.; Liu, S. Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecol. Eng. 2014, 63, 58–63. [Google Scholar] [CrossRef]
- Li, H.; Liu, F.; Luo, P.; Chen, X.; Chen, J.; Huang, Z.; Peng, J.; Xiao, R.; Wu, J. Stimulation of optimized influent C:N ratios on nitrogen removal in surface flow constructed wetlands: Performance and microbial mechanisms. Sci. Total Environ. 2019, 694, 133575. [Google Scholar] [CrossRef]
- Fu, G.; Huangshen, L.; Guo, Z.; Zhou, Q.; Wu, Z. Effect of plant-based carbon sources on denitrifying microorganisms in a vertical flow constructed wetland. Bioresour. Technol. 2017, 224, 214–221. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, Y.; Zheng, N.; Yang, D.; Zhou, Q. Effects of plant biomass on nitrate removal and transformation of carbon sources in subsurface-flow constructed wetlands. Bioresour. Technol. 2010, 101, 7286–7292. [Google Scholar] [CrossRef]
- Henny, R.; Norman, D.; Chen, J. Progress in ornamental aroid breeding research. Ann. Mo. Bot. Gard. 2004, 91, 464–472. [Google Scholar]
- Ali, Z.; Khan, D.; Ahmed, N. Physiological parameters of salt tolerance in three cultivars of Sorghum bicolor (L.) Moench. at seedling stage under single salt (NaCl) salinity. Int. J. Biol. Biotech 2013, 10, 125–142. [Google Scholar]
- Lu, S.; Hu, H.; Sun, Y.; Yang, J. Effect of carbon source on the denitrification in constructed wetlands. J. Environ. Sci. 2009, 21, 1036–1043. [Google Scholar] [CrossRef] [PubMed]
- Norton, J.M.; Stark, J.M. Regulation and measurement of nitrification in terrestrial systems. Methods Enzymol. 2011, 486, 343–368. [Google Scholar] [PubMed] [Green Version]
- Patel, H.; Vashi, R. Characterization and Treatment of Textile Wastewater; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Green, M.; Friedler, E.; Safrai, I. Enhancing nitrification in vertical flow constructed wetland utilizing a passive air pum. Water Res. 1998, 32, 3513–3520. [Google Scholar] [CrossRef]
- Xu, D.; Li, Y.; Howard, A.; Guan, Y. Effect of earthworm Eisenia fetida and wetland plants on nitrification and denitrification potentials in vertical flow constructed wetland. Chemosphere 2013, 92, 201–206. [Google Scholar] [CrossRef]
- Lu, J.; Guo, Z.; Kang, Y.; Fan, J.; Zhang, J. Recent advances in the enhanced nitrogen removal by oxygen-increasing technology in constructed wetlands. Ecotoxicol. Environ. Saf. 2020, 205, 111330. [Google Scholar] [CrossRef]
- Tan, X.; Yang, Y.; Liu, Y.; Li, X.; Fan, X.; Zhou, Z.; Liu, C.; Yin, W. Enhanced simultaneous organics and nutrients removal in tidal flow constructed wetland using activated alumina as substrate treating domestic wastewater. Bioresour. Technol. 2019, 280, 441–446. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, H.; Lyu, Y.; Wang, Y. Nitrogen removal by a metal-resistant bacterium, Pseudomonas putida ZN1, capable of heterotrophic nitrification–aerobic denitrification. J. Chem. Technol. Biotechnol. 2019, 94, 1165–1175. [Google Scholar] [CrossRef]
- Li, M.; Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Kong, Q. Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: Effect of C/N ratios. Bioresour. Technol. 2017, 240, 157–164. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Liu, B.; Zhang, W.G.; Ouyang, Y.; An, S.Q. Performance of pilot-scale vertical-flow constructed wetlands in responding to variation in influent C/N ratios of simulated urban sewage. Bioresour. Technol. 2010, 101, 1693–1700. [Google Scholar] [CrossRef]
- Robertson, L.; van Kleef, B.; Kuenen, J. A microcomputer-based method for semi-continuous monitoring of biological activities. J. Microbiol. Methods 1986, 5, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Gizas, G.; Savvas, D. Particle size and hydraulic properties of pumice affect growth and yield of greenhouse crops in soilless culture. HortScience 2007, 42, 1274–1280. [Google Scholar] [CrossRef] [Green Version]
- Becker, S.J.; Lao, M.T.; Segura, M.L. Effect and empirical models of nitrogen uptake under different nitrogen sources in Dieffenbachia amoena. HortScience 2008, 43, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Shao, Y.; Liu, G.; Qi, L.; Wang, H.; Xu, X.; Liu, S. Wastewater COD characterization: RBCOD and SBCOD characterization analysis methods. Sci. Rep. 2021, 11, 691. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, D.; Mohammadian, A.; Pearson, J.; Abolfathi, S. Numerical modelling of hydraulic efficiency and pollution transport in waste stabilization ponds. Ecol. Eng. 2022, 182, 106702. [Google Scholar] [CrossRef]
COD/N = 5/1 | COD/N = 15/1 | |||
---|---|---|---|---|
CWH | TN Concentration (mg/L) | TN Removal (%) | TN Concentration (mg/L) | TN Removal (%) |
Influent | 47 ± 6 | 51 ± 1 | ||
Effluent: | ||||
CWH-M | 45 ± 1 | 3 ± 1 | 34 ± 1 | 33 ± 3 |
CWH-MS | 22 ± 2 | 51 ± 4 | 15 ± 2 | 71 ± 5 |
CWH-C | 43 ± 6 | 7 ± 13 | 39 ± 4 | 24 ± 8 |
CWH-CS | 23 ± 7 | 53 ± 19 | 30 ± 2 | 40 ± 4 |
CWH-P | 29 ± 4 | 35 ± 8 | 8 ± 2 | 84 ± 4 |
CWH-PS | 6 ± 1 | 86 ± 2 | 3 ± 1 | 93 ± 2 |
Effluent requirement for discharge into surface water 1 Maximum permissible concentration for irrigation water 2 | 20 10 | 20 10 |
COD/N = 5/1 | COD/N = 15/1 | |||||||
---|---|---|---|---|---|---|---|---|
CWH | [NH4+-N] (mg/L) | [NO3−-N] (mg/L) | Estimated Nitrification/Nitrified NH4+-N (mg/L) | Estimated Denitrification/Denitrified NO3−-N (mg/L) | [NH4+-N] (mg/L) | [NO3−-N] (mg/L) | Estimated Nitrification/Nitrified NH4+-N (mg/L) | Estimated Denitrification/Denitrified NO3−-N (mg/L) |
Influent | 46.7 ± 4.2 | - | - | - | 48.7 ± 0.8 | - | - | - |
CWH-M | 1.9 ± 0.5 | 39.5 ± 3.9 | 45 ± 4 | 5 ± 2 a | 0.8 ± 0.4 | 29.3 ± 2.0 | 48 ± 1 | 19 ± 2 a1 |
CWH-C | 2.4 ± 1.8 | 37.1 ± 7.8 | 44 ± 6 | 7 ± 3 b | 0.4 ± 0.3 | 35.4 ± 1.6 | 48 ± 1 | 13 ± 2 b1 |
CWH-P | 4.7 ± 1.1 | 20.5 ± 3.1 | 42 ± 4 | 21 ± 4 c | 2.8 ± 0.8 | 3.1 ± 2.3 | 46 ± 1 | 43 ± 3 c1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sithamparanathan, E.; Sutton, N.B.; Rijnaarts, H.H.M.; Kujawa-Roeleveld, K. Controlling Nitrogen Removal Processes in Improved Vertical Flow Constructed Wetland with Hydroponic Materials: Effect of Influent COD/N Ratios. Water 2023, 15, 1074. https://doi.org/10.3390/w15061074
Sithamparanathan E, Sutton NB, Rijnaarts HHM, Kujawa-Roeleveld K. Controlling Nitrogen Removal Processes in Improved Vertical Flow Constructed Wetland with Hydroponic Materials: Effect of Influent COD/N Ratios. Water. 2023; 15(6):1074. https://doi.org/10.3390/w15061074
Chicago/Turabian StyleSithamparanathan, Elackiya, Nora B. Sutton, Huub H. M. Rijnaarts, and Katarzyna Kujawa-Roeleveld. 2023. "Controlling Nitrogen Removal Processes in Improved Vertical Flow Constructed Wetland with Hydroponic Materials: Effect of Influent COD/N Ratios" Water 15, no. 6: 1074. https://doi.org/10.3390/w15061074
APA StyleSithamparanathan, E., Sutton, N. B., Rijnaarts, H. H. M., & Kujawa-Roeleveld, K. (2023). Controlling Nitrogen Removal Processes in Improved Vertical Flow Constructed Wetland with Hydroponic Materials: Effect of Influent COD/N Ratios. Water, 15(6), 1074. https://doi.org/10.3390/w15061074