Characteristics of Soil Calcium Content Distribution in Karst Dry-Hot Valley and Its Influencing Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Soil Sampling and Determination
2.3. Soil Calcium Content Determination
2.4. Data Processing
3. Results
3.1. Soil Calcium Content Statistics
3.2. Soil Calcium Content at Different Altitudes
3.3. Soil Calcium Content of Different Vegetation Types
3.4. Relationship between Soil Calcium Content and Environmental Factors and Soil Properties
4. Discussion
4.1. Uniqueness of Calcium Content of Soils in Karst Dry-Hot Valleys
4.2. Complexity of the Effect of Altitude on Soil Calcium Distribution
4.3. Specificity of the Effect of Vegetation on Soil Calcium Distribution
4.4. Limitations
4.5. Application Value
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Number | Latitude (°N) | Longitude (°E) | Elevation (m) | Vegetation Types |
---|---|---|---|---|
1 | 25°38′0.698″ N | 105°38′34.744″ E | 1103.92 | S |
2 | 25°38′0.698″ N | 105°39′4.243″ E | 1153.77 | S |
3 | 25°38′16.130″ N | 105°38′19.995″ E | 1062.27 | G |
4 | 25°38′16.130″ N | 105°38′34.744″ E | 1087.73 | C |
5 | 25°38′16.130″ N | 105°38′49.493″ E | 965.41 | C |
6 | 25°38′16.130″ N | 105°39′4.243″ E | 1041.86 | S |
7 | 25°38′31.562″ N | 105°38′5.246″ E | 1029.62 | S |
8 | 25°38′31.562″ N | 105°38′19.995″ E | 1009.46 | G |
9 | 25°38′31.562″ N | 105°38′34.744″ E | 1014.45 | G |
10 | 25°38′31.562″ N | 105°38′49.493″ E | 1017.79 | C |
11 | 25°38′31.562″ N | 105°39′4.243″ E | 922.52 | S |
12 | 25°38′31.562″ N | 105°39′18.992″ E | 910.51 | C |
13 | 25°38′46.994″ N | 105°38′5.246″ E | 967.17 | S |
14 | 25°38′46.994″ N | 105°38′19.995″ E | 951.72 | F |
15 | 25°38′46.994″ N | 105°38′34.744″ E | 955.55 | F |
16 | 25°38′46.994″ N | 105°38′49.493″ E | 907.59 | G |
17 | 25°38′46.994″ N | 105°39′4.243″ E | 930.00 | G |
18 | 25°38′46.994″ N | 105°39′18.992″ E | 935.57 | S |
19 | 25°39′2.426″ N | 105°38′5.246″ E | 922.55 | S |
20 | 25°39′2.426″ N | 105°38′19.995″ E | 887.91 | S |
21 | 25°39′2.426″ N | 105°38′34.744″ E | 893.83 | G |
22 | 25°39′2.426″ N | 105°38′49.493″ E | 888.82 | S |
23 | 25°39′2.426″ N | 105°39′4.243″ E | 921.15 | G |
24 | 25°39′2.426″ N | 105°39′18.992″ E | 912.69 | S |
25 | 25°39′2.426″ N | 105°39′33.741″ E | 910.43 | S |
26 | 25°39′17.858″ N | 105°38′5.246″ E | 837.64 | F |
27 | 25°39′17.858″ N | 105°38′19.995″ E | 834.95 | G |
28 | 25°39′17.858″ N | 105°38′34.744″ E | 789.18 | G |
29 | 25°39′17.858″ N | 105°38′49.493″ E | 754.05 | F |
30 | 25°39′17.858″ N | 105°39′4.243″ E | 903.63 | G |
31 | 25°39′17.858″ N | 105°39′18.992″ E | 869.52 | C |
32 | 25°39′17.858″ N | 105°39′33.741″ E | 820.41 | C |
33 | 25°39′33.290″ N | 105°38′34.744″ E | 775.35 | S |
34 | 25°39′33.290″ N | 105°38′49.493″ E | 718.15 | F |
35 | 25°39′33.290″ N | 105°39′4.243″ E | 688.53 | G |
36 | 25°39′33.290″ N | 105°39′18.992″ E | 689.05 | C |
37 | 25°39′33.290″ N | 105°39′33.741″ E | 749.82 | S |
38 | 25°39′48.722″ N | 105°38′49.493″ E | 705.53 | C |
39 | 25°39′48.722″ N | 105°39′4.243″ E | 628.87 | G |
40 | 25°39′48.722″ N | 105°39′18.992″ E | 638.24 | G |
41 | 25°39′48.722″ N | 105°39′33.741″ E | 655.93 | G |
42 | 25°40′4.154″ N | 105°39′4.243″ E | 615.7 | S |
43 | 25°40′4.154″ N | 105°39′18.992″ E | 532.66 | G |
44 | 25°40′19.586″ N | 105°39′18.992″ E | 542.58 | S |
45 | 25°40′19.586″ N | 105°39′33.741″ E | 513.91 | S |
References
- Xu, B.; Hou, Z.-Q.; Griffin, W.L.; Lu, Y.; Belousova, E.; Xu, J.-F.; O’Reilly, S.Y. Recycled volatiles determine fertility of porphyry deposits in collisional settings. Am. Miner. 2021, 106, 656–661. [Google Scholar] [CrossRef]
- Xu, B.; Hou, Z.-Q.; Griffin, W.L.; Yu, J.-X.; Long, T.; Zhao, Y.; Wang, T.; Fu, B.; Belousova, E.; O’Reilly, S.Y. Apatite halogens and Sr-O and zircon Hf-O isotopes: Recycled volatiles in Jurassic porphyry ore systems in southern Tibet. Chem. Geol. 2022, 605, 120924. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson Education: Columbus, OH, USA, 2017; pp. 25–45. [Google Scholar]
- Xiao, P.; Xiao, B.; Adnan, M. Effects of Ca2+ on migration of dissolved organic matter in limestone soils of the southwest China karst area. Land Degrad. Dev. 2021, 32, 5069–5082. [Google Scholar] [CrossRef]
- Tang, T. Surface sediment characteristics and tower karst dissolution, Guilin, southern China. Geomorphology 2003, 49, 231–254. [Google Scholar] [CrossRef]
- National Soil Census Office. Soil Acidity, Calcium Carbonate and Base Exchange Capacity. The Soil of China; China Agriculture Press: Beijing, China, 1998; Volume 17, pp. 860–864.
- Meng, W.; Ren, Q.; Tu, N.; Leng, T.; Dai, Q. Characteristics of the Adaptations of Epilithic Mosses to High-Calcium Habitats in the Karst Region of Southwest China. Bot. Rev. 2022, 88, 204–219. [Google Scholar] [CrossRef]
- He, X.J.; Wang, L.; Ke, B.; Yue, Y.M.; Wang, K.L.; Cao, J.H.; Xiong, K.N. Progress on ecological conservation and restoration for China Karst. Acta Ecol. Sin. 2019, 39, 6577–6585. [Google Scholar]
- Cheng, C.; Li, Y.; Long, M.; Gao, M.; Zhang, Y.; Lin, J.; Li, X. Moss biocrusts buffer the negative effects of karst rocky desertification on soil properties and soil microbial richness. Plant Soil 2020, 475, 153–168. [Google Scholar] [CrossRef]
- Shao, H.F.; Xu, Z.C. Relationship between the calcium content in soil and the calcium content of flue-cured tobacco in Enshi tobacco-growing area. Afr. J. Agric. Res. 2011, 6, 2788–2793. [Google Scholar] [CrossRef]
- Hui, Y.; Jianhong, L.; Jiarui, C.; Jianhua, C. Soil Calcium Speciation at Different Geomorphological Positions in the Yaji Karst Experimental Site in Guilin, China. J. Resour. Ecol. 2015, 6, 224–229. [Google Scholar] [CrossRef]
- Wei, X.; Deng, X.; Xiang, W.; Lei, P.; Ouyang, S.; Wen, H.; Chen, L. Calcium content and high calcium adaptation of plants in karst areas of southwestern Hunan, China. Biogeosciences 2018, 15, 2991–3002. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.Z.; Guo, W.X.; Weindorf, D.C.; Sun, F.J.; Deb, S.; Cao, G.F.; Neupane, J.; Lin, Z.; Raihan, A. Field-scale spatial variability of soil calcium in a semi-arid region: Implications for soil erosion and site-specific management. Pedosphere 2021, 31, 705–714. [Google Scholar] [CrossRef]
- McLaughlin, J.W. Forest Soil Calcium Dynamics and Water Quality: Implications for Forest Management Planning. Soil Sci. Soc. Am. J. 2014, 78, 1003–1020. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Wang, W. National-scale distribution and its influence factors of calcium concentrations in Chinese soils from the China Global Baselines project. J. Geochem. Explor. 2021, 233, 106907. [Google Scholar] [CrossRef]
- Yang, J.D.; Zhang, Z.M.; Shen, Z.H.; Ou, X.Q.; Geng, Y.P.; Yang, M.Y. Review of research on the vegetation and environment of dry-hot valleys in Yunnan. Biodivers. Sci. 2016, 24, 462–474. [Google Scholar] [CrossRef]
- Yang, J.; El-Kassaby, Y.; Guan, W. Multiple Ecological Drivers Determining Vegetation Attributes across Scales in a Mountainous Dry Valley, Southwest China. Forests 2020, 11, 1140. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Q.; Fan, M. Exploring the Relationship between the Arid Valley Boundary’s Displacement and Climate Change during 1999–2013 in the Upper Reaches of the Min River, China. ISPRS Int. J. Geo-Inf. 2017, 6, 146. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.B., Jr. Soil test methods: Past, present, and future use of soil extractants. Commun. Soil Sci. Plant Anal. 1998, 29, 1543–1552. [Google Scholar] [CrossRef]
- Lu, R.Q. Chemical Analyzing Method on Soil Agriculture; China Agriculture Science and Technology Press: Beijing, China, 2000; Volume 2–23, pp. 12–282. [Google Scholar]
- Li, Z.Y.; Wei, X.H.; Li, B.S.; Guan, G.C.; Xu, X.Z.; Lei, L. Spatial distribution of soil calcium on natural slope of Karst Peak-cluster in Northern Guangdong Province. Bull. Soil Water Conserv. 2016, 36, 62–68. [Google Scholar] [CrossRef]
- Han, G.; Eisenhauer, A.; Zeng, J.; Liu, M. Calcium Biogeochemical Cycle in a Typical Karst Forest: Evidence from Calcium Isotope Compositions. Forests 2021, 12, 666. [Google Scholar] [CrossRef]
- Peng, X.; Dai, Q.; Ding, G.; Li, C. Role of underground leakage in soil, water and nutrient loss from a rock-mantled slope in the karst rocky desertification area. J. Hydrol. 2019, 578, 124086. [Google Scholar] [CrossRef]
- Hattanji, T.; Matsukura, Y. Factors Controlling Weathering Rates of Carbonate Rocks in Soil: An Approach from a Field Weathering Experiment. J. Geogr. 2017, 126, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Shen, Y. Rain-induced weathering dissolution of limestone and implications for the soil sinking-rock outcrops emergence mechanism at the karst surface: A case study in southwestern China. Carbonates Evaporites 2022, 37, 69. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Z.; Hu, J.; Han, J.; Yang, J.; Ying, L. Protection and utilization of plant biodiversity resources in dry valleys of Southwest China. Biodivers. Sci. 2016, 24, 475–488. [Google Scholar]
- Liu, J.; Long, J.; Li, J.; Li, H. Differentiation characteristics of calcium bio-absorption capacity of dominant tree species with altitude in typical karst mountain area. Ecol. Environ. Sci. 2021, 30, 1589–1598. [Google Scholar] [CrossRef]
- Soomro, A.G.; Babar, M.M.; Ashraf, A.; Memon, A. The Relationship between Precipitation and Elevation of the Watershed in the Khirthar National Range. Mehran Univ. Res. J. Eng. Technol. 2019, 38, 1067–1076. [Google Scholar] [CrossRef] [Green Version]
- Phan, T.N.; Kappas, M.; Tran, T.P. Land Surface Temperature Variation Due to Changes in Elevation in Northwest Vietnam. Climate 2018, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.Y.; Zhao, W.W.; Qiu, Y.; Feng, Q.; Zhong, L.N. Scale effect analysis of the influence of land-use types and environmental factors on soil nutrients: A case study in loess areas of Northern Shaanxi, China. Fresenius Environ. Bull. 2014, 23, 787–794. [Google Scholar]
- Chen, X.; Opoku-Kwanowaa, Y.; Li, J.; Wu, J. Application of Organic Wastes to Primary Saline-alkali Soil in Northeast China: Effects on Soil Available Nutrients and Salt Ions. Commun. Soil Sci. Plant Anal. 2020, 51, 1238–1252. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Verrecchia, É.P. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef] [Green Version]
- Huynh, C.V.; Nguyen, P.T.; Pham, T.G.; Nguyen, H.T.; Nguyen, M.T.H.; Tran, P.T. Evaluation of Soil Organic Matter Content under Topographic Influences in Agroforestry Ecosystems: A Study in Central Vietnam. Eurasian Soil Sci. 2022, 55, 1041–1051. [Google Scholar] [CrossRef]
- Li, C.; Xiao, C.; Li, M.; Xu, L.; He, N. A global synthesis of patterns in soil organic matter and temperature sensitivity along the altitudinal gradient. Front. Environ. Sci. 2022, 10, 959292. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, J.; Peng, H.; Weng, L.; Chen, Y.; Li, Y. Effects of iron, calcium, and organic matter on phosphorus behavior in fluvo-aquic soil: Farmland investigation and aging experiments. J. Soils Sediments 2019, 19, 3994–4004. [Google Scholar] [CrossRef]
- Wan, D.; Ma, M.; Peng, N.; Luo, X.; Chen, W.; Cai, P.; Wu, L.; Pan, H.; Chen, J.; Yu, G.; et al. Effects of long-term fertilization on calcium-associated soil organic carbon: Implications for C sequestration in agricultural soils. Sci. Total. Environ. 2021, 772, 145037. [Google Scholar] [CrossRef]
- Nachtigall, G.R.; Carraro, H.R.; Alleoni, L.R.F. Potassium, Calcium, and Magnesium Distribution in an Oxisol under Long-Term Potassium-Fertilized Apple Orchard. Commun. Soil Sci. Plant Anal. 2007, 38, 1439–1449. [Google Scholar] [CrossRef]
- Bednarek, W.; Dresler, S.; Tkaczyk, P.; Hanaka, A. Influence of liquid manure and NPK on selected sorption properties of soil. J. Elem. 2012, 17, 547–557. [Google Scholar] [CrossRef]
- Holmden, C.; Bélanger, N. Ca isotope cycling in a forested ecosystem. Geochim. Cosmochim. Acta 2010, 74, 995–1015. [Google Scholar] [CrossRef] [Green Version]
- Page, B.D.; Bullen, T.D.; Mitchell, M.J. Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation. Biogeochemistry 2008, 88, 1–13. [Google Scholar] [CrossRef]
- Yan, Y.; Dai, Q.; Wang, X.; Jin, L.; Mei, L. Response of shallow karst fissure soil quality to secondary succession in a degraded karst area of southwestern China. Geoderma 2019, 348, 76–85. [Google Scholar] [CrossRef]
- Wu, C.; Deng, L.; Huang, C.; Chen, Y.; Peng, C. Effects of vegetation restoration on soil nutrients, plant diversity, and its spatiotemporal heterogeneity in a desert–oasis ecotone. Land Degrad. Dev. 2020, 32, 670–683. [Google Scholar] [CrossRef]
- Xie, L.P.; Wang, S.J.; Xiao, D.A. Ca covariant relation in plant–soil system in a small karst catchment. Earth Environ. 2007, 35, 26–32. [Google Scholar]
- Liu, C.; Huang, Y.; Wu, F.; Liu, W.; Ning, Y.; Huang, Z.; Tang, S.; Liang, Y. Plant adaptability in karst regions. J. Plant Res. 2021, 134, 889–906. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.J.; Zhang, W.; Liang, Y.M.; Liu, S.J.; Wang, K.L. Increased associated effects of topography and litter and soil nutrients on soil enzyme activities and microbial biomass along vegetation successions in karst ecosystem, southwestern China. Environ. Sci. Pollut. Res. 2018, 25, 16979–16990. [Google Scholar] [CrossRef] [PubMed]
- Uren, N.C. Calcium oxalate in soils, its origins and fate—A review. Soil Res. 2018, 56, 443. [Google Scholar] [CrossRef]
- Baba, M.; Abe, S.; Kasai, M.; Sugiura, T.; Kobayashi, H. Contribution of understory vegetation to minimizing nitrate leaching in a Japanese cedar plantation. J. For. Res. 2011, 16, 446–455. [Google Scholar] [CrossRef]
- Luo, W.; Jiang, Z.; Yang, Q.; Li, Y.; Liang, J. The features of soil erosion and soil leakage in karst peak-cluster areas of Southwest China. J. Groundw. Sci. Eng. 2018, 6, 18–30. [Google Scholar]
- Peng, J.; Xu, Y.Q.; Zhang, R.; Xiong, K.N.; Lan, A.J. Soil erosion monitoring and its implication in a limestone land suffering from rocky desertification in the Huajiang Canyon, Guizhou, Southwest China. Environ. Earth Sci. 2012, 69, 831–841. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, Q.; Gu, Z.; Lu, Y.; Sheng, Z. The dissolution mechanism and karst development of carbonate rocks in karst rocky desertification area of Zhenfeng–Guanling–Huajiang County, Guizhou, China. Carbonates Evaporites 2017, 34, 45–51. [Google Scholar] [CrossRef]
Soil Depth (cm) | Soil Bulk Density (g·cm−3) | Soil Organic Matter (g·kg−1) | Total Soil Porosity (%) | Soil pH | Soil Grain Composition (%) | ||
---|---|---|---|---|---|---|---|
Clay | Powder | Sand | |||||
5 cm | 1.23 ± 0.05 | 54.86 ± 3.26 | 53.40 ± 0.86 | 7.81 ± 0.02 | 13.07 | 81.22 | 5.70 |
15 cm | 1.22 ± 0.04 | 49.50 ± 1.13 | 53.68 ± 0.64 | 7.82 ± 0.04 | 13.08 | 81.98 | 4.94 |
25 cm | 1.22 ± 0.05 | 49.67 ± 1.23 | 53.68 ± 0.56 | 7.82 ± 0.05 | 13.08 | 81.96 | 4.96 |
Average | 1.22 ± 0.03 | 51.34 ± 2.49 | 53.69 ± 0.13 | 7.82 ± 0.04 | 13.08 | 81.72 | 5.20 |
Soil Depth (cm) | TCa (g·kg−1) | ECa (g·kg−1) | ECa/TCa (%) |
---|---|---|---|
0–10 | 13.51 ± 4.99 a | 6.78 ± 1.94 b | 50.19 |
10–20 | 13.07 ± 4.79 a | 6.48 ± 1.90 b | 49.58 |
20–30 | 12.41 ± 4.81 a | 6.35 ± 1.96 b | 51.17 |
0–30 | 13.00 ± 3.28 | 6.54 ± 1.52 | 50.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Shi, C.; Yang, S.; Liu, Y.; Zhao, S.; Zhang, C. Characteristics of Soil Calcium Content Distribution in Karst Dry-Hot Valley and Its Influencing Factors. Water 2023, 15, 1119. https://doi.org/10.3390/w15061119
Luo Y, Shi C, Yang S, Liu Y, Zhao S, Zhang C. Characteristics of Soil Calcium Content Distribution in Karst Dry-Hot Valley and Its Influencing Factors. Water. 2023; 15(6):1119. https://doi.org/10.3390/w15061119
Chicago/Turabian StyleLuo, Ya, Chunmao Shi, Shengtian Yang, Yang Liu, Shuang Zhao, and Chunchang Zhang. 2023. "Characteristics of Soil Calcium Content Distribution in Karst Dry-Hot Valley and Its Influencing Factors" Water 15, no. 6: 1119. https://doi.org/10.3390/w15061119
APA StyleLuo, Y., Shi, C., Yang, S., Liu, Y., Zhao, S., & Zhang, C. (2023). Characteristics of Soil Calcium Content Distribution in Karst Dry-Hot Valley and Its Influencing Factors. Water, 15(6), 1119. https://doi.org/10.3390/w15061119