Quantifying the Coupled Effect between Soil Moisture and Climate in the Desert Steppe Environment of Inner Mongolia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Observation Data
2.3. Climate Index Data
2.4. Cross Wavelet and Wavelet Coherence
3. Results
3.1. Temporal Variations of Soil Moisture
3.2. The Relationship between Soil Moisture and Its Influencing Factors
3.3. The Relationship between Soil Moisture and Various Climate Indexes
4. Discussions
4.1. Variations of Soil Moisture at Different Slope Positions and Depths
4.2. Relationship between Soil Moisture and Climatic Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Xing, W.; Yang, T.; Shao, Q.; Peng, S.; Yu, Z.; Yong, B. Characterizing the Changing Behaviours of Precipitation Concentration in the Yangtze River Basin, China. Hydrol. Process. 2012, 27, 3375–3393. [Google Scholar] [CrossRef]
- Teuling, A.J.; Lehner, I.; Kirchner, J.W.; Seneviratne, S.I. Catchments as Simple Dynamical Systems: Experience from a Swiss Prealpine Catchment. Water Resour. Res. 2010, 46, W10502. [Google Scholar] [CrossRef] [Green Version]
- Heathman, G.C.; Cosh, M.H.; Merwade, V.; Han, E. Multi-Scale Temporal Stability Analysis of Surface and Subsurface Soil Moisture within the Upper Cedar Creek Watershed, Indiana. Catena 2012, 95, 91–103. [Google Scholar] [CrossRef]
- Feng, X.; Vico, G.; Porporato, A. On the Effects of Seasonality on Soil Water Balance and Plant Growth. Water Resour. Res. 2012, 48, W05543. [Google Scholar] [CrossRef]
- Clark, D.B.; Gedney, N. Representing the Effects of Subgrid Variability of Soil Moisture on Runoff Generation in a Land Surface Model. J. Geophys. Res. Atmos. 2008, 113, D10111. [Google Scholar] [CrossRef]
- Corradini, C. Soil Moisture in the Development of Hydrological Processes and Its Determination at Different Spatial Scales. J. Hydrol. 2014, 516, 1–5. [Google Scholar] [CrossRef]
- Blume, T.; Zehe, E.; Bronstert, A. Use of Soil Moisture Dynamics and Patterns at Different Spatio-Temporal Scales for the Investigation of Subsurface Flow Processes. Hydrol. Earth Syst. Sci. 2009, 13, 1215–1233. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating Soil Moisture-Climate Interactions in a Changing Climate: A Review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Zhang, P.; Shao, M. Temporal Stability of Surface Soil Moisture in a Desert Area of Northwestern China. J. Hydrol. 2013, 505, 91–101. [Google Scholar] [CrossRef]
- Yaowen, C.; Lixing, Z.; Jing, D.; Xueqin, W.; Xiaoxi, L.; Yunhu, X.; Wenbang, G.; Chunxing, H.; Ruiqiang, Z. Effects of Soil Moisture on Surface Radiation Balance and Water-Heat Flux in Desert Steppe Environment of Inner Mongolia. Pol. J. Environ. Stud. 2021, 30, 1881–1891. [Google Scholar] [CrossRef]
- Tuttle, S.; Salvucci, G. Empirical Evidence of Contrasting Soil Moisture-Precipitation Feedbacks across the United States. Science 2016, 352, 825–828. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.N.; Chen, H.S. Possible linkage between spring soil moisture anomalies over South China and summer rainfall in China. Trans. Atmos. Sci. 2010, 33, 536–546. [Google Scholar] [CrossRef]
- Ma, Y.S.; Meng, X.H.; Han, B.; Yu, Y.; Lv, S.H.; Luan, L.; Li, G.W. Observations of soil moisture influence on surface energy dynamics and planetary boundary layer characteristics over the Loess Plateau. Plateau Meteorol. 2019, 38, 705–715. [Google Scholar]
- Dirmeyer, P.A.; Shukla, J. Observational and Modeling Studies of the Influence of Soil Moisture Anomalies on Atmospheric Circulation (Review). Predict. Interannu. Clim. Var. 1993, 6, 1–23. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I.; Entekhabi, D.; Bras, R.L. Nonlinear Dynamics of Soil Moisture at Climate Scales: 1. Stochastic Analysis. Water Resour. Res. 1991, 27, 1899–1906. [Google Scholar] [CrossRef]
- Entekhabi, D.; Rodriguez-Iturbe, I.; Bras, R.L. Variability in Large-Scale Water Balance with Land Surface-Atmosphere Interaction. J. Clim. 1992, 5, 798–813. [Google Scholar] [CrossRef]
- Fischer, E.M.; Seneviratne, S.I.; Vidale, P.L.; Lüthi, D.; Schär, C. Soil Moisture–Atmosphere Interactions during the 2003 European Summer Heat Wave. J. Clim. 2007, 20, 5081–5099. [Google Scholar] [CrossRef]
- Dirmeyer, P.A. Using a Global Soil Wetness Dataset to Improve Seasonal Climate Simulation. J. Clim. 2000, 13, 2900–2922. [Google Scholar] [CrossRef]
- Ma, Z.G.; Fu, C.B.; Xie, L.; Chen, W.H.; Tao, S.W. Some problems in the study on the relationship between soil moisture and climatic change. Adv. Earth Sci. 2001, 16, 563. [Google Scholar]
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [Green Version]
- Chow, K.C.; Chan, J.C.L.; Shi, X.; Liu, Y.; Ding, Y. Time-Lagged Effects of Spring Tibetan Plateau Soil Moisture on the Monsoon over China in Early Summer. Int. J. Climatol. 2008, 28, 55–67. [Google Scholar] [CrossRef]
- Ma, Z.G.; Wei, H.L.; Fu, C.B. Relationship between regional soil moisture variation and climatic variability over East China. Acta Meteorol. Sin. 2000, 58, 278–287. [Google Scholar]
- Sun, C.H.; Li, W.J.; Zhang, Z.Q.; He, J.H. Distribution and variation features of soil humidity anomaly in huaihe river basin and its relationship with climatic anomaly. J. Appl. Meteorol. Sci. 2005, 16, 129–138. [Google Scholar]
- Wang, R.; Li, W.P.; Liu, X.; Wang, L.N. Simulation of the impacts of spring soil moisture over the Tibetan Plateau on summer precipitation in China. Plateau Meteorol. 2009, 28, 1233–1241. [Google Scholar]
- Shang, G.W.; Wu, Q.G. Significant influence of Eurasian soil moisture anomaly on Northern Hemisphere atmospheric circulation. J. Meteorol. Sci. 2015, 35, 33–43. [Google Scholar]
- Zhang, R.; Zuo, Z. Impact of Spring Soil Moisture on Surface Energy Balance and Summer Monsoon Circulation over East Asia and Precipitation in East China. J. Clim. 2011, 24, 3309–3322. [Google Scholar] [CrossRef]
- Wang, W.Q. Numerical experiments of the soil temperature and moisture anomalies’ effects on the short term climate. Chin. J. Atmos. Sci. 1991, 15, 116–123. [Google Scholar]
- Seneviratne, S.I.; Koster, R.D.; Guo, Z.; Dirmeyer, P.A.; Kowalczyk, E.; Lawrence, D.; Liu, P.; Mocko, D.; Lu, C.-H.; Oleson, K.W.; et al. Soil Moisture Memory in AGCM Simulations: Analysis of Global Land–Atmosphere Coupling Experiment (GLACE) Data. J. Hydrometeorol. 2006, 7, 1090–1112. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.M.; Guo, W.D.; Zhang, Y.C. Numerical Study of Impacts of Soil Moisture on the Diurnal and Seasonal Cycles of Sensible/Latent Heat Fluxes over Semi-arid Region. Adv. Atmos. Sci. 2009, 26, 319–326. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.W.; Li, S.Y.; Cao, Q. Diagnosis of moisture-precipitation coupling strength in China using WRF. J. Lanzhou Univ. Nat. Sci. 2018, 54, 160–166. [Google Scholar] [CrossRef]
- Koster, R.D.; Sud, Y.C.; Guo, Z.; Dirmeyer, P.A.; Bonan, G.; Oleson, K.W.; Chan, E.; Verseghy, D.; Cox, P.; Davies, H.; et al. GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeorol. 2006, 7, 590–610. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Labat, D. Recent Advances in Wavelet Analyses: Part 1. A Review of Concepts. J. Hydrol. 2005, 314, 275–288. [Google Scholar] [CrossRef]
- Schaefli, B.; Maraun, D.; Holschneider, M. What Drives High Flow Events in the Swiss Alps? Recent Developments in Wavelet Spectral Analysis and Their Application to Hydrology. Adv. Water Resour. 2007, 30, 2511–2525. [Google Scholar] [CrossRef] [Green Version]
- Holman, I.P.; Rivas-Casado, M.; Bloomfield, J.P.; Gurdak, J.J. Identifying Non-Stationary Groundwater Level Responses to North Atlantic Ocean-Atmosphere Teleconnection Patterns Using Wavelet Coherence. Hydrogeol. J. 2011, 19, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Mokhov, I.I.; Smirnov, D.A.; Nakonechny, P.I.; Kozlenko, S.S.; Seleznev, E.P.; Kurths, J. Alternating Mutual Influence of El-Niño/Southern Oscillation and Indian Monsoon. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Niu, J. Precipitation in the Pearl River Basin, South China: Scaling, Regional Patterns, and Influence of Large-Scale Climate Anomalies. Stoch. Environ. Res. Risk Assess. 2013, 27, 1253–1268. [Google Scholar] [CrossRef]
- Niu, J.; Chen, J.; Sivakumar, B. Teleconnection Analysis of Runoff and Soil Moisture over the Pearl River Basin in Southern China. Hydrol. Earth Syst. Sci. 2014, 18, 1475–1492. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.W.J.; Wallace, J.M. Regional Climate Impacts of the Northern Hemisphere Annular Mode. Science 2001, 293, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.M.; Yang, X.Q. Relationships between pacific decadal oscillation (PDO) and climate variabilities in China. Acta Meteorol. Sin. 2003, 61, 641–654. [Google Scholar]
- Park, T.W.; Ho, C.H.; Yang, S.; Jeong, J.H. Influences of Arctic Oscillation and Madden-Julian Oscillation on Cold Surges and Heavy Snowfalls over Korea: A Case Study for the Winter of 2009–2010. J. Geophys. Res. Atmos. 2010, 115, 1–13. [Google Scholar] [CrossRef]
- Zuo, J.; Li, W.; Sun, C.; Xu, L.; Ren, H.-L. Impact of the North Atlantic Sea Surface Temperature Tripole on the East Asian Summer Monsoon. Adv. Atmos. Sci. 2013, 30, 1173–1186. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, L.; Liang, L.T. Response of temperature mutation in Inner Mongolia to its influencing factors. Res. Soil Water Conserv. 2021, 28, 184–193. [Google Scholar] [CrossRef]
- Li, R.Q.; Song, G.Y.; Yin, C. Characteristics of summer climate change and its response to EI Nino in Inner Mongolia during the past 60 years. Arid Zone Res. 2021, 38, 1601–1613. [Google Scholar] [CrossRef]
- Liu, Q.; Hao, Y.; Stebler, E.; Tanaka, N.; Zou, C.B. Impact of Plant Functional Types on Coherence Between Precipitation and Soil Moisture: A Wavelet Analysis. Geophys. Res. Lett. 2017, 44, 12197–12207. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.; Kushnir, Y.; Battisti, D.; Chang, P.; Czaja, A.; Dickson, R.; Hurrell, J.; McCartney, M.; Saravanan, R.; Visbeck, M. North Atlantic Climate Variability: Phenomena, Impacts and Mechanisms. Int. J. Climatol. 2001, 21, 1863–1898. [Google Scholar] [CrossRef]
- Fang, T.T.; Yan, Y.Z.; Liu, Q.F.; Zhu, L.; Han, F.; Zhang, Q. Precipitation effectiveness in desert steppe in Inner Mongolia: Based on monitoring of storm precipitation in Sonid Right Banner. Arid Zone Res. 2019, 36, 691–697. [Google Scholar] [CrossRef]
- Guo, X.; Fu, Q.; Hang, Y.; Lu, H.; Gao, F.; Si, J. Spatial Variability of Soil Moisture in Relation to Land Use Types and Topographic Features on Hillslopes in the Black Soil (Mollisols) Area of Northeast China. Sustainability 2020, 12, 3552. [Google Scholar] [CrossRef]
- Qiu, Y.; Fu, B.; Wang, J.; Chen, L. Soil Moisture Variation in Relation to Topography and Land Use in a Hillslope Catchment of the Loess Plateau, China. J. Hydrol. 2001, 240, 243–263. [Google Scholar] [CrossRef]
- Zhao, X.; Zhai, S.; Li, J.B.; Sun, S.C. Effects of different slope conditions on soil moisture of Amygdalus Pedunculate Woodland in Mu Us sandy land. Bull. Soil Water Conserv. 2020, 40, 45–52. [Google Scholar] [CrossRef]
- Su, Z.L.; Zhang, G.H.; Yu, Y. Variation of soil moisture with slope aspect and position in a small agricultural watershed in the typical black soil region. Sci. Soil Water Conserv. 2013, 11, 39–44. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Ala, M.; Yin, J.W.; Jiang, S.Y. Spatial and temporal variations in sand dune soil moisture content and groundwater depth. Arid Zone Res. 2020, 37, 1427–1436. [Google Scholar] [CrossRef]
- Lou, S.L.; Liu, M.X.; Yi, J.; Zhang, H.L.; Li, X.F.; Yang, Y.; Wang, Q.Y.; Huang, J.W. Influence of vegetation coverage and topographic position on soil hydrological function in the hillslope of the three gorges area. Acta Ecol. Sin. 2019, 39, 4844–4854. [Google Scholar]
- Zhuo, G.; Luo, B.; Basang, Q.Z. Distribution characteristics of soil temperature and moisture in the middle region of Nagqu over the Tibetan Plateau. J. Glaciol. Geocryol. 2021, 43, 1704–1717. [Google Scholar]
- Zhang, R.Q.; Gao, T.M.; Wang, J.; Yue, Z.W. Soil moisture characteristics of root zone on Xilamuren grassland. Pratacult. Sci. 2016, 33, 878–885. [Google Scholar]
- Wang, G.N.; Yang, X.M.; Wang, X.J.; Chen, X.L. Variations in soil moisture at different time scales of BJ site on the central Tibetan Plateau. Chin. J. Soil Sci. 2012, 43, 286–293. [Google Scholar] [CrossRef]
- Yajuan, Z.; Bo, W.; Qi, L. Progress in Study on Response of Arid Zones to Precipitation Change. Chin. For. Sci. Technol. 2012, 11, 89. [Google Scholar]
- Bai, Y.S.; Liu, M.X.; Yi, J.; Zhang, H.L.; Lou, S.L.; Huang, J.W.; Wan, J.H. Response of Soil Moisture to Precipitation in Different Slope Areas in Typical Hill Slope of the Three Gorges Mountain Area. Resour. Environ. Yangtze Basin 2020, 29, 2261–2273. [Google Scholar]
- Chang, Y.; Zhang, R.; Hai, C.; Zhang, L. Seasonal Variation in Soil Temperature and Moisture of a Desert Steppe Environment: A Case Study from Xilamuren, Inner Mongolia. Environ. Earth Sci. 2021, 80, 290. [Google Scholar] [CrossRef]
- Fan, T.; Zhang, C.H.; Zhang, D.G.; Su, Y. Response of soil moisture of desert steppes to precipitation patterns in Damao Banner, Inner Mongolia. Bull. Soil Water Conserv. 2020, 40, 72–77+84. [Google Scholar] [CrossRef]
- Chang, Y.W.; Zhang, R.Q.; Jiang, H.T.; Zhang, L.X.; Hai, C.X. Soil water and temperature during spring ablation periodand its response to meteorological factors in the southern margin of the desert steppe in Inner Mongolia. Grassl. Turf 2021, 41, 111–119. [Google Scholar] [CrossRef]
- Lee, E.; Kim, S. Wavelet Analysis of Soil Moisture Measurements for Hillslope Hydrological Processes. J. Hydrol. 2019, 575, 82–93. [Google Scholar] [CrossRef]
- Chen, J. Response of Soil Moisture to Precipitation in Desert Steppe. Master’s Thesis, Ningxia University, Ningxia, China, 2019. [Google Scholar]
- Chen, C.; Zhou, G.S. Characteristics of Air Temperature and Ground Temperature in Alxa Left Banner from 1961 to 2010. J. Nat. Resour. 2014, 29, 91–103. [Google Scholar]
- Wang, J.L.; Pan, Z.H.; Han, G.L.; Cheng, L.; Dong, Z.Q.; Zhang, J.T.; Pan, Y.Y.; Huang, L.; Zhao, H.; Fan, D.L.; et al. Variation in ground temperature at a depth of 0 cm and the relationship with air temperature in China from 1961 to 2010. Resour. Sci. 2016, 38, 1733–1741. [Google Scholar]
- Wang, B.; Wu, R.; Fu, X. Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Torrence, C.; Webster, P.J. Interdecadal Changes in the ENSO–Monsoon System. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Chen, L.J.; Cui, T. Effects of ENSO phase-switching on rainy-season precipitation in North China. Chin. J. Atmos. Sci. 2017, 41, 857–868. [Google Scholar]
Observation Instrument | Data | Longitude and Latitude | Altitude (m) | Accuracy | Measurement Range |
---|---|---|---|---|---|
AZ-DT soil moisture monitoring station | Soil moisture at BS | 41°20′55″ N 111°12′22″ E | 1600 | 1 × 10−7% | 0–100% |
Soil moisture at US | 41°21′10″ N 111°12′34″ E | 1610 | 1 × 10−7% | 0–100% | |
UGT meteorological observation | Air temperature | 41°21′13″ N 111°12′27″ E | 1600 | 0.01 °C | −30–50 °C |
Soil temperature | 0.01 °C | −30–50 °C | |||
Rainfall | 0.1 mm | >0 mm |
Abbreviation | Climate Index | Explanation |
---|---|---|
NinoZ | Tropical Pacific SST Index | Nino1+2, Nino3, Nino4, and Nino3.4 are defined as the average sea temperature anomalies of Nino1+2 (90° W–80° W, 10° S–0°), Nino3 (150° W–90° W, 5° S–5° N), Nino4 (160° E–150° W, 5° S–5° N), and Nino3.4 (170° W–120° W, 5° S–5° N), respectively, in the key areas monitored by the El Nino/La Nina event. The climatic average is the average from 1981 to 2010. The NinoZ is defined as the weighted average of the Nino1+2, Nino3, and Nino4 according to the area of the corresponding three sea areas. NinoEP and NinoCP are Pacific eastern and central Nino indexes, respectively, defined as NinoEP = Nino3 − α × Nino4, NinoCP = Nino4 − α × Nino3, when Nino3 × Nino4 > 0, α = 0.4, when Nino3 × Nino4 ≤ 0, α = 0. |
NinoEP | Eastern Tropical Pacific SST Index | |
NinoCP | Central Tropical Pacific SST Index | |
Nino4 | Western Tropical Pacific SST Index | |
PDO | Pacific Decadal Oscillation | It is defined as the time coefficient of the first mode after EOF decomposition in the North Pacific (20° N–70° N, 110° E–100° W). |
IOBW | Indian Ocean basin-wide warming | The average sea temperature anomaly in the tropical Indian Ocean (20° S–20° N, 40° E–110° E). |
NAO | North Atlantic Oscillation index | Refers to the inverse relationship between the Azores High and the Icelandic Low. |
AO | Arctic Oscillation index | Refers to the cyclical changes in ground atmospheric pressure between the 55° north latitude area. |
Direction | Phase Angle | Sign | Implication |
---|---|---|---|
The right direction (RD) | 0° (360°) | → | The set signal and are in the same phase, and are significantly positively correlated (p < 0.05). |
The lower right direction (LR) | 45° | ↘ | The setting signal precedes by 1/8 cycle. |
The down direction (DD) | 90° | ↓ | The setting signal precedes by 1/4 cycle. |
The lower left direction (LL) | 135° | ↙ | The setting signal precedes by 3/8 cycle. |
The left direction (LD) | 180° | ← | The setting signal precedes by 1/2 cycle, that is, and are in reverse phase, and are significantly negatively correlated (p < 0.05). |
The upper left direction (UL) | 225° | ↖ | The setting signal precedes by 5/8 cycle. |
The up direction (UD) | 270° | ↑ | The setting signal precedes by 3/4 cycle. |
The upper right direction (UR) | 315° | ↗ | The setting signal precedes by 7/8 cycle. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Yi, W.; Chen, J.; Liu, X.; Meng, W.; Fan, Z.; Zhang, R.; Hai, C. Quantifying the Coupled Effect between Soil Moisture and Climate in the Desert Steppe Environment of Inner Mongolia, China. Water 2023, 15, 1150. https://doi.org/10.3390/w15061150
Chang Y, Yi W, Chen J, Liu X, Meng W, Fan Z, Zhang R, Hai C. Quantifying the Coupled Effect between Soil Moisture and Climate in the Desert Steppe Environment of Inner Mongolia, China. Water. 2023; 15(6):1150. https://doi.org/10.3390/w15061150
Chicago/Turabian StyleChang, Yaowen, Wenying Yi, Jianpeng Chen, Xia Liu, Wenting Meng, Zhaofei Fan, Ruiqiang Zhang, and Chunxing Hai. 2023. "Quantifying the Coupled Effect between Soil Moisture and Climate in the Desert Steppe Environment of Inner Mongolia, China" Water 15, no. 6: 1150. https://doi.org/10.3390/w15061150
APA StyleChang, Y., Yi, W., Chen, J., Liu, X., Meng, W., Fan, Z., Zhang, R., & Hai, C. (2023). Quantifying the Coupled Effect between Soil Moisture and Climate in the Desert Steppe Environment of Inner Mongolia, China. Water, 15(6), 1150. https://doi.org/10.3390/w15061150