Long-Term Change of Lake Water Storage and Its Response to Climate Change for Typical Lakes in Arid Xinjiang, China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Materials
3.1.1. Lake Area Data
3.1.2. Altimetry Water Level Datasets (Hydroweb)
3.1.3. GRACE Satellite Gravimetry Data
3.1.4. Meteorological Data
3.2. Methods
3.2.1. Monitoring Lake Area Changes
3.2.2. Constructing Water Level Changes of Lakes
3.2.3. Estimation of Annual Water Storage Changes
3.2.4. Mann–Kendall
4. Results and Analysis
4.1. Annual Variations of Lake Water Level
4.2. Annual Lake Area Changes
4.3. Annual Variations and Trends of Lake Water Storage
4.4. Mass Changes in Xinjiang Observed in GRACE Satellite Data
4.5. Dynamics Changes of Lakes and Responses to Climate Change
4.6. Driving Mechanism of Lake Changes in Xinjiang
4.7. Implication
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Yang, K.; Yao, F.; Wang, J.; Luo, J.; Shen, Z.; Wang, C.; Song, C. Recent dynamics of alpine lakes on the endorheic Changtang Plateau from multi-mission satellite data. J. Hydrol. 2017, 552, 633–645. [Google Scholar] [CrossRef]
- Meyers, P.; Ishiwatari, R. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 1993, 20, 867–900. [Google Scholar] [CrossRef]
- Wong, C.; Jiang, B.; Bohn, T.; Lee, K.; Lettenmaier, D.; Ma, D.; Ouyang, Z. Lake and wetland ecosystem services measuring water storage and local climate regulation. Water Resour. Res. 2017, 53, 3197–3223. [Google Scholar] [CrossRef]
- Jeppesen, E.; Peder Jensen, J.; SØndergaard, M.; Lauridsen, T.; Landkildehus, F. Trophic structure, species richness and biodiversity in Danish lakes: Changes along a phosphorus gradient. Freshw. Biol. 2000, 45, 201–218. [Google Scholar] [CrossRef]
- Cao, J.; Wang, S. Main Environmental Problems of Inland Lakes in Northwest China. Sci. Technol. Rev. 2001, 19, 21–23. [Google Scholar]
- Wang, W.; Jiao, A.; Shan, Q.; Wang, Z.; Kong, Z.; Ling, H.; Deng, X. Expansion of typical lakes in Xinjiang under the combined effects of climate change and human activities. Front. Environ. Sci. 2022, 10, 1015543. [Google Scholar] [CrossRef]
- Herlihy, A.; Sobota, J.; McDonnell, T.; Sullivan, T.; Lehmann, S.; Tarquinio, E. An a priori process for selecting candidate reference lakes for a national survey. Freshw. Sci. 2013, 32, 385–396. [Google Scholar] [CrossRef]
- Alizadeh-Choobari, O.; Ahmadi-Givi, F.; Mirzaei, N.; Owlad, E. Climate change and anthropogenic impacts on the rapid shrinkage of Lake Urmia. Int. J. Climatol. 2016, 36, 4276–4286. [Google Scholar] [CrossRef]
- Song, C.; Sheng, Y.; Ke, L.; Nie, Y.; Wang, J. Glacial lake evolution in the southeastern Tibetan Plateau and the cause of rapid expansion of proglacial lakes linked to glacial-hydrogeomorphic processes. J. Hydrol. 2016, 540, 504–514. [Google Scholar] [CrossRef]
- Chaudhari, S.; Felfelani, F.; Shin, S.; Pokhrel, Y. Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. J. Hydrol. 2018, 560, 342–353. [Google Scholar] [CrossRef]
- Dilinuer, A.; Aikebaer. Study on Dynamic Change of Main Lakes Water Area in Xinjiang. J. China Hydrol. 2010, 30, 91–95. [Google Scholar]
- Liu, Y.; Li, L.; Chen, X.; Zhang, R.; Yang, J. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g. Glob. Planet. Chang. 2018, 169, 145–155. [Google Scholar] [CrossRef]
- Tandong, Y.; Fahu, C.; Peng, C.; Yaoming, M.; Baiqing, X.; Liping, Z.; Fan, Z.; Weicai, W.; Likun, A.; Xiaoxin, Y. From Tibetan plateau to third pole and pan-third pole. Bull. Chin. Acad. Sci. 2017, 32, 924–931. [Google Scholar]
- Yang, J.; Ma, L.; Li, C.; Liu, Y.; Ding, J.; Yang, S. Temporal-spatial variations and influencing factors of Lakes in inland arid areas from 2000 to 2017: A case study in Xinjiang. Geomat. Nat. Hazards Risk 2019, 10, 519–543. [Google Scholar]
- Chen, Y.; Li, B.; Fan, Y.; Sun, C.; Fang, G. Hydrological and water cycle processes of inland river basins in the arid region of Northwest China. J. Arid Land 2019, 11, 161–179. [Google Scholar] [CrossRef]
- Shen, Y.; Guo, Y.; Zhang, Y.; Pei, H.; Brenning, A. Review of historical and projected future climatic and hydrological changes in mountainous semiarid Xinjiang (northwestern China), central Asia. Catena 2020, 187, 104343. [Google Scholar] [CrossRef]
- Huai, B.; Li, Z.; Sun, M.; Wang, W.; Jin, S.; Li, K. Change in glacier area and thickness in the Tomur Peak, western Chinese Tien Shan over the past four decades. J. Earth Syst. Sci. 2015, 124, 353–363. [Google Scholar]
- Liu, C.; Chen, Y.; Fang, G.; Zhou, H.; Huang, W.; Liu, Y.; Wang, X.; Li, Z. Hydrological Connectivity Improves the Water-Related Environment in a Typical Arid Inland River Basin in Xinjiang, China. Remote Sens. 2022, 14, 4977. [Google Scholar] [CrossRef]
- Fu, C.; Wu, H.; Zhu, Z.; Song, C.; Xue, B.; Wu, H.; Ji, Z.; Dong, L. Exploring the potential factors on the striking water level variation of the two largest semi-arid-region lakes in northeastern Asia. Catena 2021, 198, 105037. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y. Effects of climate fluctuations on runoff in the headwater region of the Kaidu River in northwestern China. Front. Earth Sci. 2014, 8, 309–318. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L.; Richards, K. Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 26–37. [Google Scholar] [CrossRef]
- Zhan, P.; Liu, K.; Song, C. A Comparative Study on the Changes of Typical Lakes in Different Climate Zones of the Tibetan Plateau at Multi-timescales based on Remote Sensing Observations. Remote Sens. Technol. Appl. 2021, 36, 90–102. [Google Scholar]
- Bai, J.; Chen, X.; Li, J.; Yang, L.; Fang, H. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Env. Monit Assess 2011, 178, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; He, L.; Wu, J. Analysis on Recent Change of Water Area of the Main Lakes in Xinjiang Based on MODIS Data. Arid Zone Res. 2012, 29, 561–566. [Google Scholar]
- Zhang, Y.; An, C.; Zheng, L.; Liu, L.; Zhang, W.; Lu, C.; Zhang, Y. Assessment of lake area in response to climate change at varying elevations: A case study of Mt. Tianshan, Central Asia. Sci. Total Environ. 2023, 869, 161665. [Google Scholar] [CrossRef]
- Wang, W.; Samat, A.; Ma, L.; Ge, Y.; Abuduwaili, J. Spatio-temporal variations and trend analysis of lake area in Xinjiang in 1986—2019. Acta Ecol. Sin. 2022, 42, 1300–1314. [Google Scholar]
- Jing, Y.; Zhang, F.; Wang, X. Monitoring dynamics and driving forces of lake changes in different seasons in Xinjiang using multi-source remote sensing. Eur. J. Remote Sens. 2018, 51, 150–165. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Ye, Z.; Li, Y.; Zhang, Q. Recent Lake Area Changes in Central Asia. Sci. Rep. 2019, 9, 16277. [Google Scholar] [CrossRef]
- Qiao, B.; Zhu, L.; Yang, R. Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote Sens. Environ. 2019, 222, 232–243. [Google Scholar] [CrossRef]
- Zhan, P.; Song, C.; Wang, J.; Li, W.; Ke, L.; Liu, K.; Chen, T. Recent Abnormal Hydrologic Behavior of Tibetan Lakes Observed by Multi-Mission Altimeters. Remote Sens. 2020, 12, 2986. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, Z.; Jia, Q.; Mamat, A.; Guan, H. Multi-Source Remote Sensing Data for Lake Change Detection in Xinjiang, China. Atmosphere 2022, 13, 713. [Google Scholar] [CrossRef]
- Chen, T.; Song, C.; Luo, S.; Ke, L.; Liu, K.; Zhu, J. Monitoring global reservoirs using ICESat-2: Assessment on spatial coverage and application potential. J. Hydrol. 2022, 604, 127257. [Google Scholar] [CrossRef]
- Luo, S.; Song, C.; Ke, L.; Zhan, P.; Fan, C.; Liu, K.; Chen, T.; Wang, J.; Zhu, J. Satellite Laser Altimetry Reveals a Net Water Mass Gain in Global Lakes With Spatial Heterogeneity in the Early 21st Century. Geophys. Res. Lett. 2022, 49, e2021GL09667. [Google Scholar] [CrossRef]
- Zhan, P.; Song, C.; Luo, S.; Liu, K.; Ke, L.; Chen, T. Lake Level Reconstructed From DEM-Based Virtual Station: Comparison of Multisource DEMs With Laser Altimetry and UAV-LiDAR Measurements. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6502005. [Google Scholar] [CrossRef]
- Crétaux, J.; Arsen, A.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.; Nino, F.; Abarca Del Rio, R.; Cazenave, A.; et al. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI—An innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef]
- Pekel, J.; Cottam, A.; Gorelick, N.; Belward, A. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Jamro, S.; Naseer, T.; Zaidi, A.; Vignudelli, S. A Comparative Analysis of Altimetry Derived Water Levels with in-situ Gauge Data on River Indus. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 6915–6918. [Google Scholar]
- Kong, Y.; Pang, Z. Evaluating the sensitivity of glacier rivers to climate change based on hydrograph separation of discharge. J. Hydrol. 2012, 434–435, 121–129. [Google Scholar] [CrossRef]
- Xu, Z. Exploring Typical Lake Water Surface Temperature Changes across Xinjiang during 2000–2017. Master’s Thesis, Xinjiang University, Xinjiang, China, 2020. [Google Scholar]
- Li, X.; Jia, P.; Niu, C.; Xing, Y.; Li, H.; Liu, H.; Tang, W.; Zhao, Y. Species diversity of freshwater fish and assessment on watershed health in the Irtysh River and Ulungur River basins in Xinjiang, China. Biodivers. Sci. 2020, 28, 422–434. [Google Scholar] [CrossRef]
- He, C.; Chen, F.; Wang, Y.; Long, A.; He, X. Flood frequency analysis of Manas River Basin in China under non-stationary condition. J. Flood Risk Manag. 2021, 14, e12745. [Google Scholar] [CrossRef]
- Hurixbek, Z.; Wu, Z.; Kazya, B. Lake changes in spatial evolution and driving force for the water area change of the Manas Lake in Xinjiang in the past forty years. Remote Sens. Land Resour. 2018, 30, 217–223. [Google Scholar]
- Tang, X.; Xie, G.; Deng, J.; Shao, K.; Hu, Y.; He, J.; Zhang, J.; Gao, G. Effects of climate change and anthropogenic activities on lake environmental dynamics: A case study in Lake Bosten Catchment, NW China. J. Environ. Manag. 2022, 319, 115764. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Gao, B. Attribution Analysis of Runoff Change in the Upper Reaches of the Kaidu River Basin Based on a Modified Budyko Framework. Atmosphere 2022, 13, 1385. [Google Scholar] [CrossRef]
- Wang, S. Encyclopaedia of Xinjiang Rivers and Lakes; China Water & Power Press: Beijing, China, 2010; pp. 335–350. [Google Scholar]
- Xiang, C.; Wang, Y.; Wang, J.; Ma, Q. Environmental changes recorded by multiproxy of lake sediments in the high-altitude and arid area:A case of Lake Aksayqin. Arid Land Geogr. 2022, 45, 435–444. [Google Scholar]
- Zheng, L.; Xia, Z.; Xu, J.; Chen, Y.; Yang, H.; Li, D. Exploring annual lake dynamics in Xinjiang (China): Spatiotemporal features and driving climate factors from 2000 to 2019. Clim. Chang. 2021, 166, 36. [Google Scholar] [CrossRef]
- Google Earth Engine. Available online: https://earthengine.google.com (accessed on 5 April 2023).
- HydroLAKES. Available online: https://www.hydrosheds.org/products/hydrolakes (accessed on 5 April 2023).
- Hydroweb. Available online: https://hydroweb.theia-land.fr (accessed on 5 April 2023).
- Tapley, B.; Bettadpur, S.; Ries, J.; Thompson, P.; Watkins, M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Save, H.; Bettadpur, S.; Tapley, B. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Scanlon, B.; Zhang, Z.; Save, H.; Wiese, D.; Landerer, F.; Long, D.; Longuevergne, L.; Chen, J. Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour. Res. 2016, 52, 9412–9429. [Google Scholar] [CrossRef]
- GRACE - Gravity Recovery and Climate Experiment. Available online: http://www2.csr.utexas.edu/grace (accessed on 5 April 2023).
- Zhang, L.; Sun, W. Progress and prospect of GRACE Mascon product and its application. Rev. Geophys. Planet. Phys. 2022, 53, 35–52. [Google Scholar]
- Zhang, Y.; Wei, W.; Jiang, F.; Liu, M.; Wang, W.; Bai, L.; Li, K. Brief communication “Assessment of change in temperature and precipitation over Xinjiang, China”. Nat. Hazards Earth Syst. Sci. 2012, 12, 1327–1331. [Google Scholar] [CrossRef]
- Resource and Environment Science and Data Center, Chinese Academy of Sciences. Available online: https://www.resdc.cn (accessed on 5 April 2023).
- cds.climate.copernicus.eu. Available online: https://cds.climate.copernicus.eu (accessed on 5 April 2023).
- Zheng, L.; Li, D.; Xu, J.; Xia, Z.; Hao, H.; Chen, Z. A twenty-years remote sensing study reveals changes to alpine pastures under asymmetric climate warming. ISPRS J. Photogramm. Remote Sens. 2022, 190, 69–78. [Google Scholar] [CrossRef]
- Fan, M.; Xu, J.; Li, D.; Chen, Y. Response of Precipitation in Tianshan to Global Climate Change Based on the Berkeley Earth and ERA5 Reanalysis Products. Remote Sens. 2022, 14, 519. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Chen, Y.; Zhang, B.; Shi, X. Recent fall Eurasian cooling linked to North Pacific sea surface temperatures and a strengthening Siberian high. Nat. Commun. 2020, 11, 5202. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Huang, B.; Ke, L. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens. Environ. 2013, 135, 25–35. [Google Scholar] [CrossRef]
- Cheng, J.; Song, C.; Liu, K.; Ke, L.; Chen, T.; Fan, C. Regional assessment of the potential risks of rapid lake expansion impacting on the Tibetan human living environment. Environ. Earth Sci. 2021, 80, 166. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L.; Richards, K. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. J. Hydrol. 2014, 514, 131–144. [Google Scholar] [CrossRef]
- Abileah, R.; Vignudelli, S.; Scozzari, A. A completely remote sensing approach to monitoring reservoirs water volume. Int. Water Technol. J. 2011, 1, 63–77. [Google Scholar]
- Gibbons, J.; Chakraborti, S. Nonparametric Statistical Inference, 4th ed.; Marcel Dekker, Inc.: New York, NY, USA, 2003; pp. 4–10. [Google Scholar]
- Xu, J. Mathematical Methods in Contemporary Geography, 3rd ed.; Higher Education Press: Beijing, China, 2017; pp. 133–138. [Google Scholar]
- Hamed, K.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Wang, J. Determining the most accurate program for the Mann-Kendall method in detecting climate mutation. Theor. Appl. Climatol. 2020, 142, 847–854. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, J.; Zhang, G.; Ji, Y.; Zeng, Y.; Fan, W.; Aikelamu, A. Climate- and human-driven variations in lake area and number in North Xinjiang, China. Int. J. Remote Sens. 2021, 42, 469–485. [Google Scholar] [CrossRef]
- Jiang, X.; Fan, C.; Liu, K.; Chen, T.; Cao, Z.; Song, C. Centenary covariations of water salinity and storage of the largest lake of Northwest China reconstructed by machine learning. J. Hydrol. 2022, 612, 128095. [Google Scholar] [CrossRef]
- Su, Y.; Guo, B.; Zhou, Z.; Zhong, Y.; Min, L. Spatio-Temporal Variations in Groundwater Revealed by GRACE and Its Driving Factors in the Huang-Huai-Hai Plain, China. Sensors 2020, 20, 922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yi, S.; Wang, Q.; Chang, L.; Tang, H.; Sun, W. Evaluation of GRACE mascon solutions for small spatial scales and localized mass sources. Geophys. J. Int. 2019, 218, 1307–1321. [Google Scholar] [CrossRef]
- Li, J.; Bai, J.; Wang, Y. Time Series Area of the Ayakkum Lake and Its Response to Climate Change. Arid Zone Res. 2018, 35, 85–95. [Google Scholar]
- Li, Y.; Liu, X.; Li, Y.; Gao, F. Analysis of water surface area variation of Ulungur Lake based on multi-source remote sensing data. Express Water Resour. Hydropower Inf. 2021, 42, 29–33+48. [Google Scholar]
- Li, Y.; Chen, Y.; Zhang, Q.; Fang, G. Analysis of the change in water level and its influencing factors on Bosten Lake from 1960 to 2018. Arid Zone Res. 2021, 38, 48–58. [Google Scholar]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Fang, G. Research progress on the impact of climate change on water resources in the arid region of Northwest China. Acta Geogr. Sin. 2014, 69, 1295–1304. [Google Scholar]
- Zhang, Q.; Chen, Y.; Li, Z.; Sun, C.; Xiang, Y.; Liu, Z. Spatio-Temporal Development of Vegetation Carbon Sinks and Sources in the Arid Region of Northwest China. Int. J. Environ. Res. Public Health 2023, 20, 3608. [Google Scholar] [CrossRef]
- Brown, I. Assessing climate change risks to the natural environment to facilitate cross-sectoral adaptation policy. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2018, 376, 20170297. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Li, Q.; Lin, G. Loss of terrestrial water storage in the Tianshan mountains from 2003 to 2015. Int. J. Remote Sens. 2019, 40, 8342–8358. [Google Scholar] [CrossRef]
- Khan, M.; Shakya, S.; Vu, H.; Ahn, J.; Nam, G. Water Environment Policy and Climate Change: A Comparative Study of India and South Korea. Sustainability 2019, 11, 3284. [Google Scholar] [CrossRef]
- Lankford, B.; Pringle, C.; McCosh, J.; Shabalala, M.; Hess, T.; Knox, J. Irrigation area, efficiency and water storage mediate the drought resilience of irrigated agriculture in a semi-arid catchment. Sci. Total Environ. 2023, 859, 160263. [Google Scholar] [CrossRef] [PubMed]
Lake Name | Lon() Lat() | Elevation (m) | Area (km) | Mean Temperature () | Annual Precipitation (mm) | Replenishment Source | Lake Type |
---|---|---|---|---|---|---|---|
Ulungur | 87.2854 47.2568 | 478 | 854.89 | 3.4 | 116.5 | Ulungur river and Irtysh river | Plain freshwater lake |
Manas | 85.9688 45.7981 | 244 | 263.88 | 8.8 | 63.7 | Manas river | Plain saltwater lake |
Bosten | 86.7480 41.9688 | 1050 | 961.84 | 9 | 66 | Kaidu river | Transition freshwater lake |
Ayakkum | 89.4271 37.5554 | 3876 | 616.34 | 0 | 100–200 | Ixakpatti river and Se Sikeya river | Plateau saltwater lake |
Aqqikkol | 88.4063 37.0764 | 4251 | 354.71 | −1.5 | 150 | Aqqikkol river | Plateau saltwater lake |
Aksayquin | 79.8229 35.2134 | 4844 | 165.96 | −8 | Less than 100 | Aksayquin river | Plateau saltwater lake |
Lakes | Begin | End |
---|---|---|
Ulungur | 5 March 2000 | 28 December 2020 |
Manas | 20 March 2016 | 12 December 2020 |
Bosten | 1 October 2002 | 19 December 2020 |
Ayakkum | 13 April 2000 | 19 December 2020 |
Aqqikkol | 13 March 2016 | 30 December 2020 |
Aksayquin | 28 October 2002 | 22 October 2014 |
Lakes | ||||||
---|---|---|---|---|---|---|
Ulungur | 19 | 1 | ||||
Manas | 8 | 3 | 1 | 2 | 6 | |
Bosten | 7 | 8 | 5 | |||
Ayakkum | 2 | 3 | 15 | |||
Aqqikkol | 6 | 14 | ||||
Aksayquin | 1 | 7 | 11 | 1 |
Lakes | Area | Level | Accumulative Storage Changes |
---|---|---|---|
Ulungur | 3.96 *** | 3.05 *** | 3.02 *** |
Manas | 1.90 ** | 0.09 | −1.01 |
Bosten | −2.14 ** | −2.14 ** | −1.72 ** |
Ayakkum | 6.13 *** | 5.95 *** | 5.87 *** |
Aqqikkol | 6.31 *** | 6.31 *** | 6.13 *** |
Aksayquin | 6.19 *** | 5.41*** | 5.35 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Xu, J.; Zheng, L. Long-Term Change of Lake Water Storage and Its Response to Climate Change for Typical Lakes in Arid Xinjiang, China. Water 2023, 15, 1444. https://doi.org/10.3390/w15081444
Huang Z, Xu J, Zheng L. Long-Term Change of Lake Water Storage and Its Response to Climate Change for Typical Lakes in Arid Xinjiang, China. Water. 2023; 15(8):1444. https://doi.org/10.3390/w15081444
Chicago/Turabian StyleHuang, Zijin, Jianhua Xu, and Lilin Zheng. 2023. "Long-Term Change of Lake Water Storage and Its Response to Climate Change for Typical Lakes in Arid Xinjiang, China" Water 15, no. 8: 1444. https://doi.org/10.3390/w15081444
APA StyleHuang, Z., Xu, J., & Zheng, L. (2023). Long-Term Change of Lake Water Storage and Its Response to Climate Change for Typical Lakes in Arid Xinjiang, China. Water, 15(8), 1444. https://doi.org/10.3390/w15081444