Hydrochemical Assessment of the Kisköre Reservoir (Lake Tisza) and the Impacts of Water Quality on Tourism Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Water Sampling and Laboratory Measurements
2.3. Water Quality Evaluation
3. Results
3.1. Ecological Potential Assessment of the Reservoir Based on Physico-Chemical Parameters
3.2. Evaluation of the Hydrochemical Composition of Lake Tisza
3.3. Statistical Analysis of the Water Samples Collected between 2021 and 2022
3.4. The Impact of Favorable Ecological Status on Tourism Development
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carstens, D.; Amer, R. Spatio-Temporal Analysis of Urban Changes and Surface Water Quality. J. Hydrol. 2019, 569, 720–734. [Google Scholar] [CrossRef]
- Östlund, C.; Flink, P.; Strömbeck, N.; Pierson, D.; Lindell, T. Mapping of the Water Quality of Lake Erken, Sweden, from Imaging Spectrometry and Landsat Thematic Mapper. Sci. Total Environ. 2001, 268, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Pande, C.B.; Moharir, K.N.; Singh, S.K.; Elbeltagi, A.; Pham, Q.B.; Panneerselvam, B.; Varade, A.M.; Kouadri, S. Groundwater Flow Modeling in the Basaltic Hard Rock Area of Maharashtra, India. Appl. Water Sci. 2021, 12, 12. [Google Scholar] [CrossRef]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Singh Sidhu, G.P.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y.; et al. Global Evaluation of Heavy Metal Content in Surface Water Bodies: A Meta-Analysis Using Heavy Metal Pollution Indices and Multivariate Statistical Analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef]
- Kim, H.-S.; Ko, J.-M.; Hwang, S.-J. Evaluation of Water Quality Variation and Sediment of a Shallow Artificial Lake (Lake llgam) in Located the Metropolitan Area. Korean J. Ecol. Environ. 2003, 36, 161–171. [Google Scholar]
- Hong, T.T.K.; Giao, N.T. Analysis of Surface Water Quality in Upstream Province of Vietnamese Mekong Delta Using Multivariate Statistics. Water 2022, 14, 1975. [Google Scholar] [CrossRef]
- Panneerselvam, B.; Ravichandran, N.; Kaliyappan, S.P.; Karuppannan, S.; Bidorn, B. Quality and Health Risk Assessment of Groundwater for Drinking and Irrigation Purpose in Semi-Arid Region of India Using Entropy Water Quality and Statistical Techniques. Water 2023, 15, 601. [Google Scholar] [CrossRef]
- Bhagowati, B.; Ahamad, K.U. A Review on Lake Eutrophication Dynamics and Recent Developments in Lake Modeling. Ecohydrol. Hydrobiol. 2019, 19, 155–166. [Google Scholar] [CrossRef]
- Li-kun, Y.; Sen, P.; Xin-hua, Z.; Xia, L. Development of a Two-Dimensional Eutrophication Model in an Urban Lake (China) and the Application of Uncertainty Analysis. Ecol. Model. 2017, 345, 63–74. [Google Scholar] [CrossRef]
- Adhurya, S.; Das, S.; Ray, S. Nitrogen and Phosphorous Loading by Aquatic Avifauna in a Shallow Eutrophic Freshwater Lake. Energ. Ecol. Environ. 2022, 7, 111–129. [Google Scholar] [CrossRef]
- Gurkan, Z.; Zhang, J.; Jørgensen, S.E. Development of a Structurally Dynamic Model for Forecasting the Effects of Restoration of Lake Fure, Denmark. Ecol. Model. 2006, 197, 89–102. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Z.; Qiao, H.; Liu, F. Assessment of Eutrophication and Water Quality in the Estuarine Area of Lake Wuli, Lake Taihu, China. Sci. Total Environ. 2019, 650, 1392–1402. [Google Scholar] [CrossRef]
- Heredia, C.; Guédron, S.; Point, D.; Perrot, V.; Campillo, S.; Verin, C.; Espinoza, M.E.; Fernandez, P.; Duwig, C.; Achá, D. Anthropogenic Eutrophication of Lake Titicaca (Bolivia) Revealed by Carbon and Nitrogen Stable Isotopes Fingerprinting. Sci. Total Environ. 2022, 845, 157286. [Google Scholar] [CrossRef]
- Kincaid, D.W.; Adair, E.C.; Joung, D.; Stockwell, J.D.; Schroth, A.W. Ice Cover and Thaw Events Influence Nitrogen Partitioning and Concentration in Two Shallow Eutrophic Lakes. Biogeochemistry 2022, 157, 15–29. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global Lake Responses to Climate Change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Komatsu, E.; Fukushima, T.; Harasawa, H. A Modeling Approach to Forecast the Effect of Long-Term Climate Change on Lake Water Quality. Ecol. Model. 2007, 209, 351–366. [Google Scholar] [CrossRef]
- Golub, M.; Thiery, W.; Marcé, R.; Pierson, D.; Vanderkelen, I.; Mercado-Bettin, D.; Woolway, R.I.; Grant, L.; Jennings, E.; Kraemer, B.M.; et al. A Framework for Ensemble Modelling of Climate Change Impacts on Lakes Worldwide: The ISIMIP Lake Sector. Geosci. Model Dev. 2022, 15, 4597–4623. [Google Scholar] [CrossRef]
- Savic, R.; Stajic, M.; Blagojević, B.; Bezdan, A.; Vranesevic, M.; Nikolić Jokanović, V.; Baumgertel, A.; Bubalo Kovačić, M.; Horvatinec, J.; Ondrasek, G. Nitrogen and Phosphorus Concentrations and Their Ratios as Indicators of Water Quality and Eutrophication of the Hydro-System Danube–Tisza–Danube. Agriculture 2022, 12, 935. [Google Scholar] [CrossRef]
- Lawniczak-Malińska, A.; Nowak, B.; Pajewski, K. Agricultural Pressures on the Quality of Ground and Surface Waters in Catchments of Artificial Reservoirs. Water 2023, 15, 661. [Google Scholar] [CrossRef]
- Halkos, G.; Matsiori, S. Assessing the Economic Value of Protecting Artificial Lakes. Available online: https://mpra.ub.uni-muenchen.de/39557/1/MPRA_paper_39557.pdf (accessed on 2 March 2023).
- Reynaud, A.; Lanzanova, D. A Global Meta-Analysis of the Value of Ecosystem Services Provided by Lakes. Ecol. Econ. 2017, 137, 184–194. [Google Scholar] [CrossRef]
- Turner, R.K.; van den Bergh, J.C.J.M.; Söderqvist, T.; Barendregt, A.; van der Straaten, J.; Maltby, E.; van Ierland, E.C. Ecological-Economic Analysis of Wetlands: Scientific Integration for Management and Policy. Ecol. Econ. 2000, 35, 7–23. [Google Scholar] [CrossRef]
- Meyerhoff, J.; Klefoth, T.; Arlinghaus, R. The Value Artificial Lake Ecosystems Provide to Recreational Anglers: Implications for Management of Biodiversity and Outdoor Recreation. J. Environ. Manag. 2019, 252, 109580. [Google Scholar] [CrossRef] [PubMed]
- Nijkamp, P.; Vindigni, G.; Nunes, P.A.L.D. Economic Valuation of Biodiversity: A Comparative Study. Ecol. Econ. 2008, 67, 217–231. [Google Scholar] [CrossRef]
- Hammer, D.A.; Bastian, R.K. Wetlands Ecosystems: Natural Water Purifiers? In Constructed Wetlands for Wastewater Treatment; CRC Press: Boca Raton, FL, USA, 1989; ISBN 978-1-00-306985-0. [Google Scholar]
- El-Zehairy, A.A.; Lubczynski, M.W.; Gurwin, J. Interactions of Artificial Lakes with Groundwater Applying an Integrated MODFLOW Solution. Hydrogeol. J. 2018, 26, 109–132. [Google Scholar] [CrossRef] [Green Version]
- El Gammal, E.A.; Salem, S.M.; El Gammal, A.E.A. Change Detection Studies on the World’s Biggest Artificial Lake (Lake Nasser, Egypt). Egypt. J. Remote Sens. Space Sci. 2010, 13, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Wildi, W. Environmental Hazards of Dams and Reservoirs. NEAR Curric. Nat. Environ. Sci. 2010, 2, 187–197. Available online: https://www.semanticscholar.org/paper/Environmental-hazards-of-dams-and-reservoirs-Wildi/4731514a2648e74c44001d66c664526717940d87 (accessed on 2 March 2023).
- Gao, L.; Gao, B.; Xu, D.; Peng, W.; Lu, J. Multiple Assessments of Trace Metals in Sediments and Their Response to the Water Level Fluctuation in the Three Gorges Reservoir, China. Sci. Total Environ. 2019, 648, 197–205. [Google Scholar] [CrossRef]
- Li, Q.; Yu, M.; Lu, G.; Cai, T.; Bai, X.; Xia, Z. Impacts of the Gezhouba and Three Gorges Reservoirs on the Sediment Regime in the Yangtze River, China. J. Hydrol. 2011, 403, 224–233. [Google Scholar] [CrossRef]
- Wang, C.; Fang, F.; Yuan, Z.; Zhang, R.; Zhang, W.; Guo, J. Spatial Variations of Soil Phosphorus Forms and the Risks of Phosphorus Release in the Water-Level Fluctuation Zone in a Tributary of the Three Gorges Reservoir. Sci. Total Environ. 2020, 699, 134124. [Google Scholar] [CrossRef]
- Lee, L.-H.; Lee, Y.-D. The Impact of Water Quality on the Visual and Olfactory Satisfaction of Tourists. Ocean Coast. Manag. 2015, 105, 92–99. [Google Scholar] [CrossRef]
- Zhong, L.; Deng, J.; Song, Z.; Ding, P. Research on Environmental Impacts of Tourism in China: Progress and Prospect. J. Environ. Manag. 2011, 92, 2972–2983. [Google Scholar] [CrossRef]
- Qu, X. Effect of Tourism Development on Water Environment of Sand Lake in Ningxia. J. Arid. Land Resour. Environ. 2007, 21, 105–108. [Google Scholar]
- Mosisch, T.D.; Arthington, A.H. The Impacts of Power Boating and Water Skiing on Lakes and Reservoirs. Lakes Reserv. Sci. Policy Manag. Sustain. Use 1998, 3, 1–17. [Google Scholar] [CrossRef]
- Kumar, R.; Parvaze, S.; Huda, M.B.; Allaie, S.P. The Changing Water Quality of Lakes—A Case Study of Dal Lake, Kashmir Valley. Environ. Monit. Assess. 2022, 194, 228. [Google Scholar] [CrossRef]
- Dokulil, M.T. Environmental Impacts of Tourism on Lakes. In Eutrophication: Causes, Consequences and Control: Volume 2; Ansari, A.A., Gill, S.S., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 81–88. ISBN 978-94-007-7814-6. [Google Scholar]
- Schulz, L. Naehrstoffeintrag in seen durch badegaeste. Zbl. Bakt. Hyg. I Abt. Orig. B 1981, 173, 528–548. [Google Scholar]
- Puczkó, L.; Rátz, T. Tourist and Resident Perceptions of the Physical Impacts of Tourism at Lake Balaton, Hungary: Issues for Sustainable Tourism Management. J. Sustain. Tour. 2000, 8, 458–478. [Google Scholar] [CrossRef]
- King, J.G.; Mace, A.C. Effects of Recreation on Water Quality. J. (Water Pollut. Control Fed.) 1974, 46, 2453–2459. [Google Scholar]
- Marion, J.L. A Review and Synthesis of Recreation Ecology Research Supporting Carrying Capacity and Visitor Use Management Decisionmaking. J. For. 2016, 114, 339–351. [Google Scholar] [CrossRef]
- Nichols, D.S.; Prettyman, D.; Gross, M. Movement of Bacteria and Nutrients from Pit Latrines in the Boundary Waters Canoe Area Wilderness. Water Air Soil Pollut. 1983, 20, 171–180. [Google Scholar] [CrossRef]
- Derlet, R.W.; Carlson, J.R. Coliform Bacteria in Sierra Nevada Wilderness Lakes and Streams: What Is the Impact of Backpackers, Pack Animals, and Cattle? Wilderness Environ. Med. 2006, 17, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Katona, G. A Tisza-tó öblítő csatornáinak környezetbiztonságra gyakorolt hatása. The impact of flushing canals of Lake Tisza on environmental safety. Hung. J. Hydrol. 2020, 100, 95–104. [Google Scholar]
- Pomucz, A.B.; Csete, M. Sustainability Assessment of Hungarian Lakeside Tourism Development. Period. Polytech. Soc. Man. Sci. 2015, 23, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Teszárné Nagy, M.; Márialigeti, K.; Végvári, P.; Csépes, E.; Bancsi, I. Stratification Analysis of the Óhalász Ox-Bow of the River Tisza (Kisköre Reservoir, Hungary). Hydrobiologia 2003, 506, 37–44. [Google Scholar] [CrossRef]
- Borics, G.; Ács, É.; Boda, P.; Boros, E.; Erős, T.; Grigorszky, I.; Kiss, K.T.; Lengyel, S.; Re, N.M. Water Bodies in Hungary—An Overview of Their Management and Present State. Hidrológiai Közlöny 2016, 96, 57–67. [Google Scholar]
- Teplán, I. A Tisza és Vízrendszere 1-2; Teplán, I., Ed.; MTA Társadalomkutató Központ: Budapest, Hungary, 2003. [Google Scholar]
- Harka, Á.; Csipkés, R.; Kovács, P.; Juhász, L. Impact of the Development and Three Decades Operation of the “Lake Tisza” Reservoir on the Fish Community of This Area; “Vasile Goldis” University Press: Arad, Romania, 2014; Volume 24. [Google Scholar]
- Middle-Tisza District Water Directorate. Water System of Lake Tisza, in Hungarian. A Tisza-Tó Vízrendszere. Available online: http://www.kotivizig.hu/index.php?option=com_content&view=article&id=20%3Atisza-to-vizrendszere&catid=47%3Atisza-to-vizrendszere&Itemid=77&fbclid=IwAR0dj-tbL2H6nICJjZ_oZU6wfBBub5J37LtWS1_JktVpUaJzF3D-_JVFQw4 (accessed on 28 January 2023).
- Kókai, Z.; Borics, G.; Bácsi, I.; Lukács, Á.; Tóthmérész, B.; Csépes, E.; Török, P.; Béres, V.B. Water Usage and Seasonality as Primary Drivers of Benthic Diatom Assemblages in a Lowland Reservoir. Ecol. Indic. 2019, 106, 105443. [Google Scholar] [CrossRef] [Green Version]
- Metzger, M.J.; Shkaruba, A.D.; Jongman, R.H.G.; Bunce, R.G.H. Descriptions of the European Environmental Zones and Strata; Alterra: Wageningen, The Netherlands, 2012. [Google Scholar]
- Piper, A.M. A Graphic Procedure in the Geochemical Interpretation of Water-Analyses—Piper—1944—Eos, Transactions American Geophysical Union—Wiley Online Library. Available online: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/TR025i006p00914 (accessed on 23 January 2023).
- Durov, S.A. Natural Waters and Graphic Representation of Their Composition. Dokl. Akad. Nauk SSSR 1948, 59, 87–90. [Google Scholar]
- Stiff, H.A. The Interpretation of Chemical Water Analysis by Means of Patterns. J. Pet. Technol. 1951, 3, 15–17. [Google Scholar] [CrossRef]
- Moreno Merino, L.; Aguilera, H.; González-Jiménez, M.; Díaz-Losada, E. D-Piper, a Modified Piper Diagram to Represent Big Sets of Hydrochemical Analyses. Environ. Model. Softw. 2021, 138, 104979. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Li, X.; Qi, J.; Zhang, Q.; Guo, J.; Yu, L.; Zhao, R. Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding County, Southwestern China. Water 2018, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Panneerselvam, B.; Paramasivam, S.K.; Karuppannan, S.; Ravichandran, N.; Selvaraj, P. A GIS-Based Evaluation of Hydrochemical Characterisation of Groundwater in Hard Rock Region, South Tamil Nadu, India. Arab. J. Geosci. 2020, 13, 837. [Google Scholar] [CrossRef]
- Balamurugan, P.; Kumar, P.S.; Shankar, K.; Nagavinothini, R.; Vijayasurya, K.; Balamurugan, P.; Kumar, P.S.; Shankar, K.; Nagavinothini, R.; Vijayasurya, K. Non-carcinogenic risk assessment of groundwater in southern part of salem district in tamilnadu, india. J. Chil. Chem. Soc. 2020, 65, 4697–4707. [Google Scholar] [CrossRef]
- Batabyal, A.K.; Gupta, S. Fluoride-Contaminated Groundwater of Birbhum District, West Bengal, India: Interpretation of Drinking and Irrigation Suitability and Major Geochemical Processes Using Principal Component Analysis. Environ. Monit. Assess. 2017, 189, 369. [Google Scholar] [CrossRef]
Component Group | Lake | Watercourse |
---|---|---|
Oxygen balance, organic pollution | CODcr BOI5 TOC | Dissolved oxygen CODcr BOI5 TOC NH4-N |
Plant nutrients | NH4-N NO2-N NO3-N Total N PO4-P Total P | inorganic-N Total N PO4-P Total P |
State of acidification | pH | pH |
Salinity | EC | Cl− EC |
Component | Dimension | Classification Limit | |||
---|---|---|---|---|---|
Excellent–Good | Good–Moderate | Moderate–Low | Low–Worse | ||
1 | 2 | 3 | 4 | ||
pH | 7.9–8.2 | 7.6–7.8 | 7.3–7.5 | 7.0–7.2 | |
8.3–8.5 | 8.6–8.8 | 8.9–9.1 | |||
EC | μS/cm | ≤600 | 700 | 900 | 1100 |
CODcr | mg/L | ≤15.0 | 30.0 | 50.0 | 75.0 |
BOI5 | mg/L | ≤3.50 | 5.00 | 8.00 | 12.0 |
TOC | mg/L | ≤8.00 | 15.0 | 20.0 | 25.0 |
NH4-N | mg/L | ≤0.05 | 0.10 | 0.30 | 0.50 |
NO2-N | mg/L | ≤0.01 | 0.02 | 0.03 | 0.05 |
NO3-N | mg/L | ≤0.2 | 0.40 | 0.80 | 1.50 |
Total N | mg/L | ≤1.00 | 2.00 | 4.00 | 7.50 |
PO4-P | mg/L | ≤0.05 | 0.10 | 0.15 | 0.25 |
Total P | mg/L | ≤0.20 | 0.40 | 0.60 | 0.80 |
Component | Tiszavalk Basin | Poroszló Basin | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | LQ * | UQ * | Mean | Rank | Min. | Max. | LQ * | UQ * | Mean | Rank | |
pH | 7.7 | 9.0 | 7.9 | 8.8 | 8.4 | 2 | 7.9 | 8.8 | 8.0 | 8.6 | 8.3 | 2 |
EC | 302 | 578 | 347 | 484 | 430 | 1 | 334 | 572 | 367 | 475 | 422 | 1 |
CODcr | 10.30 | 28.00 | 13.0 | 21.5 | 17.00 | 2 | 2.50 | 22.0 | 12.75 | 16.0 | 14.04 | 1 |
BOI5 | 1.40 | 3.60 | 2.05 | 3.40 | 2.65 | 1 | 1.40 | 3.8 | 1.57 | 3.03 | 2.34 | 1 |
TOC | 3.70 | 8.40 | 3.85 | 6.15 | 4.97 | 1 | 3.10 | 8.00 | 4.50 | 6.20 | 5.44 | 1 |
NH4-N | 0.01 | 0.08 | 0.03 | 0.05 | 0.04 | 1 | 0.01 | 0.10 | 0.03 | 0.04 | 0.41 | 1 |
NO2-N | 0.002 | 0.02 | 0.002 | 0.01 | 0.01 | 1 | 0.00 | 0.01 | 0.002 | 0.01 | 0.004 | 1 |
NO3-N | 0.05 | 0.67 | 0.05 | 0.29 | 0.18 | 1 | 0.05 | 0.31 | 0.05 | 0.19 | 0.12 | 1 |
Total N | 0.54 | 1.60 | 0.29 | 1.20 | 1.05 | 2 | 0.68 | 1.30 | 0.82 | 1.03 | 0.92 | 1 |
PO4-P | 0.01 | 0.12 | 0.02 | 0.07 | 0.04 | 1 | 0.01 | 0.05 | 0.005 | 0.23 | 0.02 | 1 |
Total P | 0.05 | 0.21 | 0.05 | 0.12 | 0.09 | 1 | 0.05 | 0.11 | 0.05 | 0.05 | 0.05 | 1 |
Overall rank | 2 | Overall rank | 2 | |||||||||
Component | Sarud Basin | Abádszalók Basin | ||||||||||
Min. | Max. | LQ * | UQ * | Mean | Rank | Min. | Max. | LQ * | UQ * | Mean | Rank | |
pH | 7.7 | 8.9 | 8.1 | 8.6 | 8.3 | 2 | 7.8 | 8.8 | 8.1 | 8.5 | 8.3 | 2 |
EC | 302 | 614 | 328 | 487 | 414 | 1 | 298 | 553 | 374 | 479 | 405 | 1 |
CODcr | 2.50 | 20.0 | 8.00 | 12.0 | 12.59 | 1 | 6.60 | 18.00 | 9.90 | 15.0 | 12.76 | 1 |
BOI5 | 0.99 | 3.20 | 0.89 | 1.70 | 2.17 | 1 | 0.58 | 3.00 | 1.00 | 2.00 | 1.54 | 1 |
TOC | 3.00 | 6.60 | 3.4 | 5.2 | 4.42 | 1 | 2.9 | 4.2 | 3.3 | 3.8 | 3.60 | 1 |
NH4-N | 0.03 | 0.09 | 0.06 | 0.11 | 0.04 | 1 | 0.02 | 0.13 | 0.05 | 0.10 | 0.07 | 1 |
NO2-N | 0.001 | 0.01 | 0.01 | 0.01 | 0.01 | 1 | 0.00 | 0.01 | 0.001 | 0.01 | 0.007 | 1 |
NO3-N | 0.05 | 0.76 | 0.38 | 0.93 | 0.21 | 2 | 0.05 | 0.59 | 0.05 | 0.3 | 0.22 | 1 |
Total N | 0.63 | 1.90 | 1.00 | 1.60 | 1.06 | 2 | 0.25 | 1.50 | 0.53 | 0.83 | 0.71 | 1 |
PO4-P | 0.01 | 0.03 | 0.02 | 0.02 | 0.01 | 1 | 0.01 | 0.002 | 0.01 | 0.03 | 0.02 | 1 |
Total P | 0.05 | 0.11 | 0.05 | 0.05 | 0.06 | 1 | 0.05 | 0.017 | 0.05 | 0.11 | 0.07 | 1 |
Overall rank | 2 | Overall rank | 2 |
pH | EC | Na+ | K+ | Ca2+ | Mg2+ | CO3− | HCO3− | Cl− | SO42− | NH4+ | NO2− | NO3− | PO43− | CODcr | BOI5 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | |||||||||||||||
EC | −0.044 | 1 | ||||||||||||||
Na+ | −0.093 | 0.884 | 1 | |||||||||||||
K+ | −0.078 | 0.705 | 0.745 | 1 | ||||||||||||
Ca2+ | 0.068 | 0.672 | 0.631 | 0.654 | 1 | |||||||||||
Mg2+ | −0.005 | 0.392 | 0.266 | 0.426 | 0.191 | 1 | ||||||||||
CO32− | 0.559 | −0.072 | −0.160 | −0.049 | −0.061 | 0.176 | 1 | |||||||||
HCO3− | 0.132 | 0.639 | 0.559 | 0.596 | 0.828 | 0.468 | 0.045 | 1 | ||||||||
Cl− | −0.080 | 0.884 | 0.982 | 0.707 | 0.598 | 0.267 | −0.138 | 0.528 | 1 | |||||||
SO42− | 0.101 | 0.199 | 0.159 | 0.457 | 0.227 | 0.467 | 0.198 | 0.209 | 0.130 | 1 | ||||||
NH4+ | −0.407 | 0.001 | 0.043 | −0.029 | −0.083 | −0.185 | −0.361 | −0.278 | 0.030 | −0.036 | 1 | |||||
NO2− | −0.334 | −0.117 | −0.094 | −0.081 | −0.073 | −0.136 | −0.149 | −0.194 | −0.148 | 0.127 | 0.549 | 1 | ||||
NO3− | −0.261 | −0.288 | −0.259 | −0.243 | −0.204 | −0.228 | −0.144 | −0.348 | −0.299 | 0.081 | 0.537 | 0.666 | 1 | |||
PO43− | −0.388 | 0.030 | 0.003 | 0.119 | 0.116 | −0.044 | −0.259 | −0.052 | −0.038 | 0.143 | 0.421 | 0.414 | 0.471 | 1 | ||
CODcr | 0.196 | −0.071 | −0.054 | 0.160 | −0.018 | 0.144 | 0.228 | 0.072 | −0.045 | −0.068 | −0.240 | −0.415 | −0.304 | −0.043 | 1 | |
BOI5 | 0.261 | 0.246 | 0.205 | 0.330 | 0.292 | 0.385 | 0.339 | 0.443 | 0.226 | 0.237 | −0.361 | −0.338 | −0.407 | −0.238 | −0.410 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mester, T.; Benkhard, B.; Vasvári, M.; Csorba, P.; Kiss, E.; Balla, D.; Fazekas, I.; Csépes, E.; Barkat, A.; Szabó, G. Hydrochemical Assessment of the Kisköre Reservoir (Lake Tisza) and the Impacts of Water Quality on Tourism Development. Water 2023, 15, 1514. https://doi.org/10.3390/w15081514
Mester T, Benkhard B, Vasvári M, Csorba P, Kiss E, Balla D, Fazekas I, Csépes E, Barkat A, Szabó G. Hydrochemical Assessment of the Kisköre Reservoir (Lake Tisza) and the Impacts of Water Quality on Tourism Development. Water. 2023; 15(8):1514. https://doi.org/10.3390/w15081514
Chicago/Turabian StyleMester, Tamás, Borbála Benkhard, Mária Vasvári, Péter Csorba, Emőke Kiss, Dániel Balla, István Fazekas, Eduárd Csépes, Ayoub Barkat, and György Szabó. 2023. "Hydrochemical Assessment of the Kisköre Reservoir (Lake Tisza) and the Impacts of Water Quality on Tourism Development" Water 15, no. 8: 1514. https://doi.org/10.3390/w15081514