Radium Isotopes and Hydrochemical Signatures of Surface Water-Groundwater Interaction in the Salt-Wedge Razdolnaya River Estuary (Sea of Japan) in the Ice-Covered Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Work, Hydrological Surveys, and Water Sampling
2.3. Radium Isotopes Measurements
2.4. Analysis of Hydrochemical Characteristics
3. Results
3.1. Hydrological Conditions
3.2. Radium Isotopes Activity and Distribution of Hydrochemical Characteristics
4. Discussion
4.1. Identification and Control Factorsof SW-GW Interaction
4.2. River Water, Seawater, and Groundwater Fractions in the Bottom Water Layer
4.3. Potential Estuarine Ecosystem Response to SW-GW Interaction
5. Conclusions
- SW-GW interaction has a significant effect on the ecological state of the estuary because it is accompanied by a response in the concentration of DO, CO2, and nutrients, thus forming local recycling from sediments;
- The SW-GW interaction can be an additional source of organic matter from sediments;
- SW-GW interaction increases the temperature of the salt-wedge region in the ice-covered estuary.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ledford, S.H.; Briggs, M.; Glas, R.; Margaret, A.; Zimmer, N.A. Connecting diverse disciplines to improve understanding of surface water-groundwater interactions. J. Hydrol. X 2022, 17, 100141. [Google Scholar] [CrossRef]
- Mackie, C.; Levison, J.; Binns, A.; O’Halloran, I. Groundwater-surface water interactions and agricultural nutrient transport in a Great Lakes clay plain system. J. Great Lakes Res. 2021, 47, 145–159. [Google Scholar] [CrossRef]
- Xin, P.; Wilson, A.; Shen, C.; Ge, Z.; Moffett, K.B.; Santos, I.R.; Chen, X.; Xu, X.; Yau, Y.Y.Y.; Moore, W.; et al. Surface water and groundwater interactions in salt marshes and their impact on plant ecology and coastal biogeochemistry. Rev. Geophys. 2022, 60, e2021RG000740. [Google Scholar] [CrossRef]
- Moore, W.S.; Joye, S.B. Saltwater intrusion and submarine groundwater discharge: Acceleration of biogeochemical reactions in changing coastal aquifers. Front. Earth Sci. 2021, 9, 600710. [Google Scholar] [CrossRef]
- Rocha, C.; Robinson, C.E.; Santos, I.R.; Waska, H.; Michael, H.A.; Bokuniewicz, H.J. A place for subterranean estuaries in the coastal zone. Front. Earth Sci. 2021, 250, 107167. [Google Scholar] [CrossRef]
- Garcia-Orellana, J.; Rodellas, V.; Tamborski, J.; Diego-Feliu, M.; van Beek, P.; Weinstein, Y.; Charette, M.; Alorda-Kleinglass, A.; Michael, H.A.; Stieglitz, T.; et al. Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations. Earth-Sci. Rev. 2021, 14, 103681. [Google Scholar] [CrossRef]
- Santos, I.R.; Cook, P.L.M.; Rogers, L.; De Weys, J.; Eyre, B.D. The “salt wedge pump”: Convection-driven pore-water exchange as a source of dissolved organic and inorganic carbon and nitrogen to an estuary. Limnol. Oceanogr. 2012, 57, 1415–1426. [Google Scholar] [CrossRef]
- Anderson, M.P. Heat as a ground water tracer. Ground Water 2005, 43, 951–968. [Google Scholar] [CrossRef]
- Morin, A.; Lamoureux, W.; Busnarda, J. Empirical Models Predicting Primary Productivity from Chlorophyll a and Water Temperature for Stream Periphyton and Lake and Ocean Phytoplankton. J. N. Am. Benthol. Soc. 1999, 18, 299–307. [Google Scholar] [CrossRef]
- Shuter, B.J.; Finstad, A.G.; Helland, I.P.; Zweimüller, I.; Hölker, F. The role of winter phenology in shaping the ecology of freshwater fish and their sensitivities to climate change. Aquat. Sci. 2012, 74, 637–657. [Google Scholar] [CrossRef]
- Moore, W.S. The subterranean estuary: A reaction zone of ground water and sea water. Mar. Chem. 1999, 65, 111–125. [Google Scholar] [CrossRef]
- Burnett, W.C.; Aggarwal, P.K.; Aureli, A.; Bokuniewicz, H.; Cable, J.E.; Charette, M.A.; Kontar, E.; Krupa, S.; Kulkarni, K.M.; Loveless, A.; et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 2006, 367, 498–543. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Waska, H.; Kwon, E.; Suryaputra, I.G.N.; Kim, G. Production, degradation, and flux of dissolved organic matter in the subterranean estuary of a large tidal flat. Mar. Chem. 2012, 142–144, 1–10. [Google Scholar] [CrossRef]
- Santos, I.R.; Bryan, K.B.; Pilditch, C.A.; Tait, D.R. Influence of porewater exchange on nutrient dynamics in two New Zealand estuarine intertidal flats. Mar. Chem. 2014, 167, 57–70. [Google Scholar] [CrossRef]
- McCoy, C.; Viso, R.; Peterson, R.N.; Libes, S.; Lewis, B.; Ledoux, J.; Voulgaris, G.; Smith, E.; Sanger, D. Radon as an indicator of limited cross-shelf mixing of submarine groundwater discharge along an open ocean beach in the South Atlantic Bight during observed hypoxia. Cont. Shelf Res. 2011, 31, 1306–1317. [Google Scholar] [CrossRef]
- Peterson, R.N.; Moore, W.S.; Chappel, S.L.; Viso, F.R.; Libes, S.M.; Peterson, L.E. A new perspective on coastal hypoxia: The role of saline groundwater. Mar. Chem. 2016, 179, 1–11. [Google Scholar] [CrossRef]
- Guo, X.; Xu, B.; Burnett, W.C.; Wei, Q.; Nan, H.; Zhao, S.h.; Charette, M.A.; Lian, E.; Chen, G.; Yu, Z. Does submarine groundwater discharge contribute to summer hypoxia in the Changjiang (Yangtze) River Estuary? Sci. Total Environ. 2020, 719, 137450. [Google Scholar] [CrossRef]
- Abbott, B.W.; Bishop, K.; Zarnetske, J.P.; Minaudo, C.; Chapin III, F.S.; Krause, S.; Hannah, D.M.; Conner, L.; Ellison, D.; Godsey, S.E.; et al. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 2019, 12, 533–540. [Google Scholar] [CrossRef]
- Kwon, E.Y.; Kim, G.; Primeau, F.; Moore, W.S.; Cho, H.-M.; DeVries, T.; Sarmiento, J.L.; Charette, M.A.; Cho, Y.-K. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophys. Res. Lett. 2014, 41, 8438–8444. [Google Scholar] [CrossRef]
- Webster, I.T.; Hancock, G.J.; Murray, A.S. Modelling the effect of salinity on radium desorption from sediments. Geochim. Cosmochim. Acta 1995, 59, 2469–2476. [Google Scholar] [CrossRef]
- Hancock, G.J.; Murray, A.S. Source and distribution of dissolved radium in the Bega River estuary, Southeastern Australia. Earth Planet. Sci. Lett. 1996, 138, 145–155. [Google Scholar] [CrossRef]
- Moore, W.S. Using the Ra quartet for evaluating groundwater input and water exchange in salt marshes. Geochim. Cosmochim. Acta 1996, 60, 4645–4652. [Google Scholar] [CrossRef]
- Young, M.B.; Gonneea, M.E.; Fong, D.A.; Moore, W.S.; Herrera-Silveira, J.; Paytan, A. Characterizing sources of groundwater to a tropical coastal lagoon in a karstic area using radium isotopes and water chemistry. Mar. Chem. 2008, 109, 377–394. [Google Scholar] [CrossRef]
- Wang, X.; Du, J. Submarine groundwater discharge into typical tropical lagoons: A case study in eastern Hainan Island, China. Geochem. Geophys. Geosystems 2016, 17, 4366–4382. [Google Scholar] [CrossRef]
- Rodellas, V.; Garcia-Orellana, J.; Trezzi, G.; Masqué, P.; Stieglitz, T.C.; Bokuniewicz, H.; Cochran, J.K.; Berdalet, E. Using the radium quartet to quantify submarine groundwater discharge and porewater exchange. Geochim. Cosmochim. Acta 2017, 196, 58–73. [Google Scholar] [CrossRef]
- Tamborski, J.; van Beek, P.; Rodellas, V.; Monnin, C.; Bergsma, E.; Stieglitz, T.; Heilbrun, C.; Cochran, J.K.; Charbonnier, C.; Anschutz, P.; et al. Temporal variability of lagoon–sea water exchange and seawater circulation through a Mediterranean barrier beach. Limnol. Oceanogr. 2019, 64, 2059–2080. [Google Scholar] [CrossRef]
- Carol, E.; Pilar Alvarez, M.D.; Santucci, L.; Candanedo, I.; Arcia, M. Origin and dynamics of surface water-groundwater flows that sustain the Matusagaratí Wetland, Panamá. Aquat. Sci. 2022, 84, 16. [Google Scholar] [CrossRef]
- Lecher, A. Groundwater discharge in the Arctic: A review of studies and implications for biogeochemistry. Hydrology 2017, 441, 41. [Google Scholar] [CrossRef]
- Dabrowski, J.S.; Charette, M.A.; Mann, P.J.; Ludwig, S.M.; Natali, S.M.; Holmes, R.M.; Schade, J.D.; Powell, M.; Henderson, P.B. Using radon to quantify groundwater discharge and methane fluxes to a shallow, tundra lake on the Yukon-Kuskokwim Delta, Alaska. Biogeochemistry 2020, 148, 69–89. [Google Scholar] [CrossRef]
- Valle-Levinson, A. Contemporary Issues in Estuarine Physics; Cambridge University Press: Cambridge, UK, 2010; p. 315. [Google Scholar] [CrossRef]
- Funahashi, T.; Kasai, A.; Ueno, M.; Yamashita, Y. Effects of short time variation in the river discharge on the salt wedge intrusion in the Yura estuary, a micro tidal estuary, Japan. J. Water Resour. Prot. 2013, 5, 343–348. [Google Scholar] [CrossRef]
- Zvalinsky, V.I.; Maryash, A.A.; Shvetsova, M.G.; Sagalaev, S.G.; Tishchenko, P.Y.; Stonik, I.V.; Begun, A.A. Production and hydrochemical characteristics of ice, under-ice water and sediments in the Razdolnaya River estuary (Amursky Bay, Sea of Japan). Russ. J. Mar. Biol. 2010, 36, 270–281. [Google Scholar] [CrossRef]
- Tishchenko, P.Y.; Semkin, P.J.; Tishchenko, P.P.; Zvalinsky, V.I.; Barabanshchikov, Y.u.A.; Mikhailik, T.A.; Sagalaev, S.G.; Shvetsova, M.G.; Shkirnikova, E.V.; Shulkin, V.M. Hypoxia of bottom waters of the Razdolnaya River Estuary. In Doklady Earth Sciences; Pleiades Publishing: New York, NY, USA, 2017; Volume 476, pp. 1207–1211. [Google Scholar] [CrossRef]
- Tishchenko, P.Y.; Tishchenko, P.P.; Lobanov, V.B.; Mikhaylik, T.A.; Sergeev, A.F.; Semkin, P.Y.; Shvetsova, M.G. Impact of the transboundary Razdolnaya and Tumannaya Rivers on deoxygenation of the Peter the Great Bay (Sea of Japan). Estuar. Coast. Shelf Sci. 2020, 239, 106731. [Google Scholar] [CrossRef]
- Semkin, P.; Tishchenko, P.; Pavlova, G.; Barabanshchikov, Y.; Tishchenko, P.; Shvetsova, M.; Shkirnikova, E.; Fedorets, Y. O2 and CO2 Responses of the synaptic period to under-ice phytoplankton bloom in the eutrophic Razdolnaya River Estuary of Amur Bay, the Sea of Japan. J. Mar. Sci. Eng. 2022, 10, 1798. [Google Scholar] [CrossRef]
- Semkin, P.Y.; Tishchenko, P.Y.; Charkin, A.N.; Pavlova, G.Y.; Anisimova, E.V.; Barabanshchikov, Y.A.; Mikhailik, T.A.; Tibenko, E.Y.; Tishchenko, P.P.; Shvetsova, M.G.; et al. Isotopic, hydrological and hydrochemical indicators of submarine groundwater discharge in the estuary of Razdolnaya River (Amursky Bay, Sea of Japan) in the ice covered period. Geoecol. Eng. Geol. Hydrogeol. Geocryol. 2021, 3, 29–43. (In Russian) [Google Scholar] [CrossRef]
- Tamborski, J.J.; Cochran, J.K.; Bokuniewicz, H.J. Submarine groundwater discharge driven nitrogen fluxes to Long Island Sound, NY: Terrestrial vs. marine sources. Geochim. Cosmochim. Acta. 2017, 218, 40–57. [Google Scholar] [CrossRef]
- Moore, W.S. Fifteen years experience in measuring 224Ra and 223Ra by delayed coincidence counting. Mar. Chem. 2008, 109, 188–197. [Google Scholar] [CrossRef]
- Moore, W.S.; Arnold, R. Measurement of 223Ra and 224Ra in coastal waters using delayed coincidence counter. J. Geophys. Res. Ocean. 1996, 101, 1321–1329. [Google Scholar] [CrossRef]
- Moore, W.S.; Cai, P. Calibration of RaDeCC systems for 223Ra measurements. Mar. Chem. 2013, 156, 130–137. [Google Scholar] [CrossRef]
- Grasshoff, K.; Ehrhard, M.; Kremling, K. Methods of Seawater Analysis; Verlag Chemie: Weinheim, Germany, 1983; p. 419. Available online: https://scholar.google.com/scholar_lookup?title=Methods+of+Seawater+Analysis&author=Grasshoff,+K.&author=Ehrhard,+M.&author=Kremling,+K.&publication_year=1983 (accessed on 18 May 2022).
- Dickson, A.G.; Sabine, C.L.; Christian, J.R. (Eds.) Guide to Best Practices for Ocean CO2 Measurements; PICES Special Publication 3; PICES: Sidney, BC, Canada, 2007; 191p, Available online: http://hdl.handle.net/11329/249 (accessed on 31 October 2022).
- Tishchenko, P.; Zhang, J.; Pavlova, G.; Tishchenko, P.; Sagalaev, S.; Shvetsova, M. Revisiting the Carbonate Chemistry of the Sea of Japan (East Sea): From Water Column to Sediment. J. Mar. Sci. Eng. 2022, 10, 438. [Google Scholar] [CrossRef]
- Pavlova, G.Y.; Tishchenko, P.Y.; Volkova, T.I.; Dickson, A.; Wallmann, K. Intercalibration of Bruevich’s method to determine the total alkalinity in seawater. Oceanology 2008, 48, 438–443. [Google Scholar] [CrossRef]
- van der Loeff, M.R.; Kipp, L.; Charette, M.A.; Moore, W.S.; Black, E.; Stimac, I.; Charkin, A.; Bauch, D.; Valk, O.; Karcher, M.; et al. Radium isotopes across the Arctic Ocean show time scales of water mass ventilation and increasing shelf inputs. J. Geophys. Res. Oceans 2018, 123, 4853–4873. [Google Scholar] [CrossRef]
- Semkin, P.Y.; Tishchenko, P.Y.; Tishchenko, P.P.; Pavlova, G.Y.; Anisimova, E.V.; Barabanshchikov, Y.A.; Mikhailik, T.A.; Charakin, A.N.; Shvetsova, M.G. Radium Isotopes and Nutrients in Razdolnaya River Estuary (Amur Bay, the Sea of Japan) in the Period of Summer Flood. Water Res. 2022, 49, 429–439. [Google Scholar] [CrossRef]
- Taniguchi, M.; Burnett, W.C.; Cable, J.E.; Turner, J.V. Investigation of submarine groundwater discharge. Hydrol. Process. 2002, 16, 2115–2129. [Google Scholar] [CrossRef]
- Semkin, P.Y.; Tishchenko, P.Y.; Charkin, A.N.; Pavlova, G.Y.; Tishchenko, P.P.; Anisimova, E.V.; Barabanshchikov, Y.A.; Leusov, A.E.; Mikhailik, T.A.; Tibenko, E.Y.; et al. Discharge of salt groundwater in the Estuary of Razdolnaya River (Amursky Bay) in February 2020. Water Res. 2021, 48, 254–259. [Google Scholar] [CrossRef]
- Chelnokov, G.A.; Kharitonova, N.A.; Zykin, N.N.; Vereshchagina, O.F. Genesis of the mineral groundwaters of the Razdol’nenskii occurrence in Primorye. Russ. J. Pac. Geol. 2008, 2, 521–527. [Google Scholar] [CrossRef]
- Santos, I.R.; Burnett, W.C.; Dittmar, T.; Suryaputra, I.G.N.A.; Chanton, J. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary. Geochim. Cosmochim. Acta 2009, 73, 1325–1339. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.-K.; Yang, Y.; Li, F.; Xiao, S. Groundwater Circulation in the Xianshui River Fault Region: A Hydrogeochemical Study. Water 2020, 12, 3310. [Google Scholar] [CrossRef]
- Vallejos, A.; Sola, F.; Pulido-Bosch, A. Processes Influencing Groundwater Level and the Freshwater-Saltwater Interface in a Coastal Aquifer. Water Res. Manag. 2015, 29, 679–697. [Google Scholar] [CrossRef]
- Smith, A.J.; Turner, J.V. Density-dependent surface water-groundwater interaction and nutrient discharge in the Swan-Canning Estuary. Hydrol. Process. 2001, 15, 2595–2616. [Google Scholar] [CrossRef]
- Kobayashi, S.; Sugimoto, R.; Honda, H.; Miyata, Y.; Tahara, D.; Tominaga, O.; Shoji, J.; Yamada, M.; Nakada, S.; Taniguchi, M. High-resolution mapping and time-series measurements of Rn-222 concentrations and biogeochemical properties related to submarine groundwater discharge along the coast of Obama Bay, a semi-enclosed sea in Japan. Prog. Earth Planet. Sci. 2017, 4, 6. [Google Scholar] [CrossRef]
- Eissa, M.A.; Thomas, J.M.; Pohll, G.; Shouakar-Stash, O.; Hershey, R.L.; Dawoud, M. Groundwater recharge and salinization in the arid coastal plain aquifer of the Wadi Watir delta, Sinai, Egypt. Appl. Geochem. 2016, 71, 48–62. [Google Scholar] [CrossRef]
- Luo, X.; Jiao, J.J. Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks. Water Res. 2016, 102, 11–31. [Google Scholar] [CrossRef]
- Regnier, P.; Dale, A.W.; Arndt, S.; LaRowe, D.E.; Mogollón, J.; Van Cappellen, P. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective. Earth-Sci. Rev. 2011, 106, 105–130. [Google Scholar] [CrossRef]
- Shulkin, V.M.; Tishchenko, P.Y.; Semkin, P.Y.; Shvetsova, M.G. Influence of river discharge and phytoplankton on the distribution of nutrients and trace metals in Razdolnaya River estuary, Russia. Estuar. Coast. Shelf Sci. 2018, 211, 166–176. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, J.J. Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China. J. Hydrol. 2012, 438, 112–124. [Google Scholar] [CrossRef]
- Mikhailik, T.A.; Tishchenko, P.Y.; Koltunov, A.M.; Tishchenko, P.P.; Shvetsova, M.G. The effect of Razdol’naya River on the environmental state of Amur Bay (the Sea of Japan). Water Res. 2011, 38, 512–521. [Google Scholar] [CrossRef]
- Pavlova, G.Y.; Tishchenko, P.Y.; Khodorenko, N.D.; Shvetsova, M.G.; Sagalaev, S.G. Major ion composition and carbonate equilibrium in the sediment pore water of the Razdol’naya River estuary of Amur Bay, the Sea of Japan. Russ. J. Pac. Geol. 2012, 6, 251–262. [Google Scholar] [CrossRef]
- Ruttenberg, K.C.; Sulak, D.J. Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr)oxides in seawater. Geochim. Cosmochim. Acta 2011, 75, 4095–4112. [Google Scholar] [CrossRef]
- Mort, H.P.; Slomp, C.P.; Gustafsson, B.G.; Andersen, T.J. Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions. Geochim. Cosmochim. Acta 2010, 74, 1350–1362. [Google Scholar] [CrossRef]
Station Numbers | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dates | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
22 January | 75 | 70 | 65 | 60 | 65 | 64 | 56 | 56 | 60 | 56 | 50 | 40 | 53 | 48 | |
28 January | 79 | 73 | 66 | 64 | 65 | 65 | 58 | 56 | 61 | 58 | 51 | 42 | 56 | 51 | 45 |
4 February | 83 | 75 | 68 | 65 | 67 | 67 | 56 | 57 | 62 | 57 | 50 | 35 | 50 | 55 | 49 |
11 February | 81 | 76 | 70 | 69 | 70 | 70 | 56 | 55 | 62 | 58 | 50 | 40 | 64 | 60 | 54 |
23 February | 90 | 79 | 66 | 67 | 69 | 69 | 55 | 55 | 61 | 59 | 52 | 41 | 70 | 66 | 60 |
St. №/Water Mass | Depth of Sampling | S | ex223Ra | ex224Ra | 224Ra/223Ra | 228Ra | 224Ra/228Ra |
---|---|---|---|---|---|---|---|
1/RW | 8.3 | 0.14 | 0.05 ± 0.009 | 7.89 ± 0.19 | 157.8 | 11.95 ± 0.82 | 0.66 |
1/RW + Salt | 8.3 | 21.5 | 4.38 ± 0.38 | 37.27 ± 1.04 | 8.5 | 7.84 ± 0.56 | 4.76 |
2/SWR | 5 | 15.23 | 4.80 ± 0.42 | 38.74 ± 1.09 | 8.1 | 189.71 ± 4.66 | 0.2 |
4/SWR | 6.8 | 21.09 | 2.55 ± 0.23 | 55.37 ± 1.1 | 21.7 | 82.29 ± 2.1 | 0.67 |
5/SWR | 6.3 | 24.19 | 1.36 ± 0.18 | 27.01 ± 0.82 | 19.9 | 79.62 ± 3.26 | 0.34 |
6/SWR | 7.8 | 24.56 | 0.70 ± 0.11 | 30.00 ± 0.87 | 42.9 | 49.81 ± 1.48 | 0.6 |
7/SWR | 7.3 | 24.99 | 0.79 ± 0.13 | 22.31 ± 0.87 | 28.2 | 81.95 ± 4.77 | 0.27 |
8/SWR | 6.7 | 25.03 | 0.33 ± 0.07 | 20.76 ± 0.84 | 62.9 | 61.57 ± 3.32 | 0.34 |
9/SWR | 6.8 | 25.13 | 0.79 ± 0.06 | 15.12 ± 0.24 | 19.1 | 68.70 ± 3.29 | 0.22 |
10/SWR | 4 | 22.88 | 1.39 ± 0.06 | 19.64 ± 0.29 | 14.1 | 55.44 ± 1.97 | 0.35 |
11/HTBW | 1.3 | 19.25 | 0.64 ± 0.04 | 16.57 ± 1.39 | 25.9 | 5.92 ± 0.42 | 2.8 |
12/HTBW | 0.5 | 19.1 | 0.41 ± 0.03 | 10.91 ± 0.67 | 26.6 | 21.11 ± 1.50 | 0.52 |
13/SW | 3.9 | 32.52 | 0.15 ± 0.015 | 2.37 ± 1.63 | 15.8 | 11.58 ± 0.92 | 0.2 |
14/SW | 8 | 34 | 0.13 ± 0.004 | 2.13 ± 0.03 | 16.4 | 20.44 ± 2.12 | 0.1 |
15/SW | 1 | 31.15 | 0.08 ± 0.015 | 1.72 ± 0.087 | 21.5 | 23.40 ± 1.63 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semkin, P.; Tishchenko, P.; Charkin, A.; Pavlova, G.; Barabanshchikov, Y.; Leusov, A.; Tishchenko, P.; Shkirnikova, E.; Shvetsova, M. Radium Isotopes and Hydrochemical Signatures of Surface Water-Groundwater Interaction in the Salt-Wedge Razdolnaya River Estuary (Sea of Japan) in the Ice-Covered Period. Water 2023, 15, 1792. https://doi.org/10.3390/w15091792
Semkin P, Tishchenko P, Charkin A, Pavlova G, Barabanshchikov Y, Leusov A, Tishchenko P, Shkirnikova E, Shvetsova M. Radium Isotopes and Hydrochemical Signatures of Surface Water-Groundwater Interaction in the Salt-Wedge Razdolnaya River Estuary (Sea of Japan) in the Ice-Covered Period. Water. 2023; 15(9):1792. https://doi.org/10.3390/w15091792
Chicago/Turabian StyleSemkin, Pavel, Pavel Tishchenko, Alexander Charkin, Galina Pavlova, Yuri Barabanshchikov, Andrey Leusov, Petr Tishchenko, Elena Shkirnikova, and Maria Shvetsova. 2023. "Radium Isotopes and Hydrochemical Signatures of Surface Water-Groundwater Interaction in the Salt-Wedge Razdolnaya River Estuary (Sea of Japan) in the Ice-Covered Period" Water 15, no. 9: 1792. https://doi.org/10.3390/w15091792
APA StyleSemkin, P., Tishchenko, P., Charkin, A., Pavlova, G., Barabanshchikov, Y., Leusov, A., Tishchenko, P., Shkirnikova, E., & Shvetsova, M. (2023). Radium Isotopes and Hydrochemical Signatures of Surface Water-Groundwater Interaction in the Salt-Wedge Razdolnaya River Estuary (Sea of Japan) in the Ice-Covered Period. Water, 15(9), 1792. https://doi.org/10.3390/w15091792