Experimental Study of Laser-Induced Cavitation Bubbles near Wall: Plasma Shielding Observation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Properties
2.2. Signal Acquisition and Detection Equipment
2.3. Surface Morphology Measuring Equipment
3. Results
3.1. Evolution of Laser-Induced Cavitation Bubbles at Different Laser Energies
3.2. Cavitation Shock Wave Effects at Different Laser Energies
3.3. Surface Morphology Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, Y.D.; Sun, H.; Wang, C.; Lu, R.; Liu, B.Q.; Ge, J. Effect of Trimmed Rear Shroud on Performance and Axial Thrust of Multi-Stage Centrifugal Pump With Emphasis on Visualizing Flow Losses. J. Fluids Eng. 2024, 146, 011204. [Google Scholar] [CrossRef]
- Wang, H.L.; Jia, X.W.; Wang, C.; Hu, B.; Cao, W.D.; Li, S.S.; Wang, H. Study on the Sand-Scouring Characteristics of Pulsed Submerged Jets Based on Experiments and Numerical Methods. J. Mar. Sci. Eng. 2024, 12, 57. [Google Scholar] [CrossRef]
- Ren, X.D.; He, H.; Tong, Y.Q.; Ren, Y.P.; Yuan, S.Q.; Liu, R.; Zuo, C.Y.; Wu, K.; Sui, S.; Wang, D.S. Experimental investigation on dynamic characteristics and strengthening mechanism of laser-induced cavitation bubbles. Ultrason. Sonochem. 2016, 32, 218–223. [Google Scholar] [CrossRef]
- Ylonen, M.; Franc, J.P.; Miettinen, J.; Saarenrinne, P.; Fivel, M. Shedding frequency in cavitation erosion evolution tracking. Int. J. Multiph. Flow 2019, 118, 141–149. [Google Scholar] [CrossRef]
- Wang, C.; Tan, L.; Chen, M.; Fan, H.; Liu, D. A review on synergy of cavitation and sediment erosion in hydraulic machinery. Front. Energy Res. 2022, 10, 1047984. [Google Scholar] [CrossRef]
- Huang, L.Y.; Chen, Z.S. Effect of technological parameters on hydrodynamic performance of ultra-high-pressure water-jet nozzle. Appl. Ocean. Res. 2022, 129, 103410. [Google Scholar] [CrossRef]
- Izadifar, Z.; Babyn, P.; Chapman, D. Ultrasound Cavitation/Microbubble Detection and Medical Applications. J. Med. Biol. Eng. 2019, 39, 259–276. [Google Scholar] [CrossRef]
- Zekonis, G.; Sadzeviciene, R.; Balnyte, I.; Noreikiene, V.; Sidlauskaite, G.M.; Sadzeviciute, E.; Zekonis, J. Clinical and Microbiological Effects of Weekly Supragingival Irrigation with Aerosolized 0.5% Hydrogen Peroxide and Formation of Cavitation Bubbles in Gingival Tissues after This Irrigation: A Six-Month Randomized Clinical Trial. Oxidative Med. Cell. Longev. 2020, 2020, 3852431. [Google Scholar] [CrossRef]
- Hu, S.A.; Zhang, X.R.; Melzer, A.; Landgraf, L. Ultrasound-induced cavitation renders prostate cancer cells susceptible to hyperthermia: Analysis of potential cellular and molecular mechanisms. Front. Genet. 2023, 14, 1122758. [Google Scholar] [CrossRef]
- Kim, C.; Choi, W.J.; Ng, Y.; Kang, W. Mechanically Induced Cavitation in Biological Systems. Life 2021, 11, 546. [Google Scholar] [CrossRef]
- Ren, X.D.; Wang, J.; Yuan, S.Q.; Adu-Gyamfi, S.; Tong, Y.Q.; Zuo, C.Y.; Zhang, H.F. Mechanical effect of laser-induced cavitation bubble of 2A02 alloy. Opt. Laser Technol. 2018, 105, 180–184. [Google Scholar] [CrossRef]
- Liu, H.; Liu, F.; Ma, Y.; Jiang, C.; Wang, X. Investigation of a novel laser shock liquid flexible microforming process applied to embossing three-dimensional large area microarrays on metallic foils. Int. J. Adv. Manuf. Technol. 2018, 99, 419–435. [Google Scholar] [CrossRef]
- Blanken, J.; Moor, R.J.G.D.; Meire, M.; Verdaasdonk, R. Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 1: A visualization study. Lasers Surg. Med. 2009, 41, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Sabzeghabae, A.N.; Devia-Cruz, L.F.; Gutierrez-Herrera, E.; Camacho-Lopez, S.; Aguilar, G. Bubble dynamics of laser-induced cavitation in plasmonic gold nanorod solutions and the relative effect of surface tension and viscosity. Opt. Laser Technol. 2021, 134, 106621. [Google Scholar] [CrossRef]
- Enrico, A.; Voulgaris, D.; Östmans, R.; Sundaravadivel, N.; Moutaux, L.; Cordier, A.; Niklaus, F.; Herland, A.; Stemme, G. 3D Microvascularized Tissue Models by Laser-Based Cavitation Molding of Collagen. Adv. Mater. 2022, 34, 2109823. [Google Scholar] [CrossRef]
- Gu, J.; Luo, C.; Zhou, W.; Tong, Z.; Zhang, H.; Zhang, P.; Ren, X. Degradation of Rhodamine B in aqueous solution by laser cavitation. Ultrason. Sonochem. 2020, 68, 105181. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Jiang, B.; Chen, X.; Ren, X.; Lu, J.; Ding, L. Synergistic degradation of methylene blue by laser cavitation and activated carbon fiber. Opt. Laser Technol. 2022, 155, 108417. [Google Scholar] [CrossRef]
- Wen, H.G.; Yao, Z.F.; Wu, Q.; Sun, Y.R.; Yang, C.X.; Zhong, Q. Investigation of cavitation erosion caused by laser-induced single bubble collapse near alloy coating surface. J. Hydrodyn. 2023, 35, 180–184. [Google Scholar] [CrossRef]
- Song, W.D.; Xie, Q. Mechanism and characteristics of steam laser patterning. Appl. Phys. A-Mater. Sci. Process. 2008, 91, 137–140. [Google Scholar] [CrossRef]
- Docchio, F.; Regondi, P.; Capon, M.R.; Mellerio, J. Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 2: Plasma luminescence and shielding. Appl. Opt. 1988, 27, 3669–3674. [Google Scholar] [CrossRef]
- Docchio, F.; Regondi, P.; Capon, M.R.; Mellerio, J. Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times. Appl. Opt. 1988, 27, 3661–3668. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Qin, D.; Zhang, J.; Ma, C.; Wan, M. Acoustic signal characteristics of laser induced cavitation in DDFP droplet: Spectrum and time-frequency analysis. Bio-Med. Mater. Eng. 2015, 26, S423–S427. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, N.; Fujita, Y.; Yanagisawa, K.; Fujisawa, K.; Yamagata, T. Simultaneous observation of cavitation collapse and shock wave formation in cavitating jet. Exp. Therm. Fluid Sci. 2018, 94, 159–167. [Google Scholar] [CrossRef]
- Akhatov, I.; Lindau, O.; Topolnikov, A.; Mettin, R.; Vakhitova, N.; Lauterborn, W. Collapse and rebound of a laser-induced cavitation bubble. Phys. Fluids 2001, 13, 2805–2819. [Google Scholar] [CrossRef]
- Zhong, X.; Eshraghi, J.; Vlachos, P.; Dabiri, S.; Ardekani, A.M. A model for a laser-induced cavitation bubble. Int. J. Multiph. Flow 2020, 132, 103433. [Google Scholar] [CrossRef]
- Zhang, J. Effect of stand-off distance on “counterjet” and high impact pressure by a numerical study of laser-induced cavitation bubble near a wall. Int. J. Multiph. Flow 2021, 142, 103706. [Google Scholar] [CrossRef]
- Lee, S.J.; Theerthagiri, J.; Choi, M.Y. Time-resolved dynamics of laser-induced cavitation bubbles during production of Ni nanoparticles via pulsed laser ablation in different solvents and their electrocatalytic activity for determination of toxic nitroaromatics. Chem. Eng. J. 2022, 427, 130970. [Google Scholar] [CrossRef]
- Flannigan, D.J.; VandenBussche, E.J. Pulsed-beam transmission electron microscopy and radiation damage. Micron 2023, 172, 130970. [Google Scholar] [CrossRef]
- Lopez-Claros, M.; Dell’Aglio, M.; Gaudiuso, R.; Santagata, A.; De Giacomo, A.; Fortes, F.J.; Laserna, J.J. Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra. Spectrochim. Acta Part B-At. Spectrosc. 2017, 133, 63–71. [Google Scholar] [CrossRef]
- Phukan, A.; Nath, A. Influence of an external magnetic field on laser-induced plasma and cavitation bubbles in submerged targets. J. Laser Appl. 2023, 35, 012011. [Google Scholar] [CrossRef]
- Guo-cai, T.; Jian, L.; Yi-xin, H. Application of ionic liquids in hydrometallurgy of nonferrous metals. Trans. Nonferrous Met. Soc. China 2010, 20, 513–520. [Google Scholar] [CrossRef]
- Brujan, E.A.; Ikeda, T.; Matsumoto, Y. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Phys. Med. Biol. 2005, 50, 4797–4809. [Google Scholar] [CrossRef] [PubMed]
- Brujan, E.A.; Ikeda, T.; Matsumoto, Y. On the pressure of cavitation bubbles. Exp. Therm. Fluid Sci. 2008, 32, 1188–1191. [Google Scholar] [CrossRef]
- Rayleigh, L., VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1917, 34, 94–98. [Google Scholar] [CrossRef]
- Plesset, M.S.; Prosperetti, A. Bubble Dynamics and Cavitation. Annu. Rev. Fluid Mech. 1977, 9, 145–185. [Google Scholar] [CrossRef]
- Hamdan, A.; Noel, C.; Kosior, F.; Henrion, G.; Belmonte, T. Dynamics of bubbles created by plasma in heptane for micro-gap conditions. J. Acoust. Soc. Am. 2013, 134, 991–1000. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, D.M. Vaporization and plasma shielding during high power nanosecond laser ablation of silicon and nickel. Chin. Phys. Lett. 2008, 25, 1368–1371. [Google Scholar]
Density | Elastic Modulus | Poisson Ratio | Yield Strength | Tensile Strength |
---|---|---|---|---|
2780/ | 72 GPa | 0.33 | 435.7 MPa | 534.624 MPa |
Energy/J | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 |
---|---|---|---|---|---|
First maximum diameter/mm | 6.02 | 6.16 | 6.86 | 7.00 | 6.86 |
First maximum diameter time/s | 210 | 210 | 210 | 215 | 215 |
First collapse time/s | 415 | 425 | 465 | 475 | 460 |
Second maximum diameter/mm | 2.94 | 3.01 | 3.43 | 3.78 | 3.36 |
Second maximum diameter time/s | 525 | 550 | 590 | 615 | 585 |
Second collapse time/s | 635 | 640 | 705 | 715 | 700 |
Energy/J | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 |
---|---|---|---|---|---|
Peak 1/MPa | 10.8 | 11.3 | 14.2 | 15.0 | 11.7 |
Peak 2/MPa | 4.3 | 4.8 | 6.3 | 7.2 | 6.8 |
Energy/J | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 |
---|---|---|---|---|---|
Calculated pressure/MPa | 11.4 | 12.1 | 14.7 | 15.2 | 12.7 |
Measured pressure/MPa | 10.8 | 11.3 | 14.2 | 15.0 | 11.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, R.; Li, K.; Cao, Y.; Shi, W.; Yang, Y.; Tan, L.; Hu, R.; Jin, Y. Experimental Study of Laser-Induced Cavitation Bubbles near Wall: Plasma Shielding Observation. Water 2024, 16, 1324. https://doi.org/10.3390/w16101324
Zhou R, Li K, Cao Y, Shi W, Yang Y, Tan L, Hu R, Jin Y. Experimental Study of Laser-Induced Cavitation Bubbles near Wall: Plasma Shielding Observation. Water. 2024; 16(10):1324. https://doi.org/10.3390/w16101324
Chicago/Turabian StyleZhou, Rui, Kangwen Li, Yupeng Cao, Weidong Shi, Yongfei Yang, Linwei Tan, Ranran Hu, and Yongxin Jin. 2024. "Experimental Study of Laser-Induced Cavitation Bubbles near Wall: Plasma Shielding Observation" Water 16, no. 10: 1324. https://doi.org/10.3390/w16101324
APA StyleZhou, R., Li, K., Cao, Y., Shi, W., Yang, Y., Tan, L., Hu, R., & Jin, Y. (2024). Experimental Study of Laser-Induced Cavitation Bubbles near Wall: Plasma Shielding Observation. Water, 16(10), 1324. https://doi.org/10.3390/w16101324