Experimental Study on Near-Wall Laser-Induced Cavitation Bubble Micro-Dimple Formation on 7050 Aluminum Alloy
Abstract
:1. Introduction
2. Experimental Setup and Methods
2.1. Experimental Setup
2.2. Sample and Specimen Pre-Treatment
2.3. Experimental Process and Parameters
3. Result and Discussion
3.1. Evolution of Cavitation Bubble
3.2. Modeling of LICB Impact on Micro-Dimple Formation
3.3. The Influence of Process Parameters on the Surface Morphology of Micro-Dimple
3.3.1. The Influence of Absorption Layer on Surface Morphology of Micro-Dimple
3.3.2. The Effect of Laser Parameters on the Surface Morphology of Micro-Dimple
4. Conclusions
- (1)
- By laser-induced cavitation bubble (LICB) technology, under the synergy of laser plasma shock wave and bubble collapse shock wave, a micro-dimple with a diameter of 450 μm and high surface quality is formed. The feasibility of the apparatus is verified, and a model of laser-induced bubble micro-dimple formation is established, elucidating the mechanism of micro-dimple formation fabricated by LICB.
- (2)
- Copper foil, as an absorption layer, results in smooth, unburned, and protrusion-free micro-dimple induced by LICB. With laser energy ranging from 100 to 500 mJ, the depth of micro-dimple exhibits a trend of initially increasing and then decreasing, ranging between 15 and 35 μm. Under the action of a laser-induced bubble for 1 to 3 times, the plastic deformation depth of the micro-dimple shows a non-linear increasing trend between 10 and 35 μm, with the increasing trend slowing down, demonstrating saturation effects. The optimal process parameters for preparing a micro-dimple by laser-induced bubble are as follows: copper foil is the absorption layer, energy is 400 mJ, and the single point impact is three times.
- (3)
- Due to limitations in the experimental equipment, the current high-speed camera fails to clearly capture the shock wave and water jet induced by LICB. In the future, more detailed studies on the mechanical effects of laser-induced shock wave and water jet can be conducted by new devices. Subsequent work also involves detecting residual stress and hardness on the surface of the micro-dimple to further explain the influence of the number of laser cavitation events on the smoothness of the dimple bottoms. In the future, should thicker copper foils become available, a greater number of experiments with repeated impacts will be conducted. In conclusion, LICB provides a new technical way for laser micro-texturing, with greater flexibility and precision, and provides a broad prospect for intelligent equipment friction reduction.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yue, H.; Schneider, J.; Deng, J. Laser surface texturing for ground surface: Frictional effect of plateau roughness and surface textures under oil lubrication. Lubricants 2024, 12, 22. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Zhu, H.; Zhang, Z.Y.; Xu, K.; Gao, J.; Dai, X.; Huang, L. Influence of electrochemical discharge machining parameters on machining quality of microstructure. Int. J. Adv. Manuf. Technol. 2022, 119, 841–854. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, Z.; Zhu, H.; Cao, Z.; Xu, K. An investigation into laser-assisted electrochemical discharge machining of transparent insulating hard-brittle material. Micromachines 2021, 12, 2010022. [Google Scholar] [CrossRef] [PubMed]
- Romano, L.; Jefimovs, K. Editorial for the special issue on recent advances in reactive ion etching and applications of high-aspect-ratio microfabrication. Micromachines 2023, 14, 1630. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, U.; Jacobson, S. Friction and wear properties of micro texturingd DLC coated surfaces in boundary lubricated sliding. Tribol. Lett. 2004, 17, 553–559. [Google Scholar] [CrossRef]
- Wu, Z.; Bao, H.; Xing, Y.; Liu, L. Tribological characteristics and advanced processing methods of textured surfaces: A Review. Int. J. Adv. Manuf. Technol. 2021, 114, 1241–1277. [Google Scholar] [CrossRef]
- Mao, B.; Li, B.; Lin, D.; Liao, Y. Enhanced room temperature-stretch formability of AZ31B magnesium alloy sheet by laser shock peening. Mater. Sci. Eng. A 2019, 756, 219–225. [Google Scholar] [CrossRef]
- Soyama, H. Cavitation peening: A Review. Met.-Open Access Metall. J. 2020, 10, 270. [Google Scholar] [CrossRef]
- Wang, H.; Jia, X.; Wang, C.; Hu, B.; Cao, W.; Li, S.; Wang, H. Study on the sand-scouring characteristics of pulsed submerged jets based on experiments and numerical methods. J. Mar. Sci. Eng. 2024, 12, 57. [Google Scholar] [CrossRef]
- Gu, Y.; Sun, H.; Wang, C.; Lu, R.; Liu, B.; Ge, J. Effect of trimmed rear shroud on performance and axial thrust of multi-stage centrifugal pump with emphasis on visualizing flow losses. J. Fluids Eng. 2024, 146, 1. [Google Scholar] [CrossRef]
- Han, Y.J.; Liu, C.L.; Yu, M.H.; Jiang, L.; Zhu, W.; Qian, L.; Beaucamp, A. Material removal characteristics in submerged pulsating air jet polishing process. Int. J. Mech. Sci. 2023, 257, 108534. [Google Scholar] [CrossRef]
- Kennedy, P.K.; Hammer, D.X.; Rockwell, B.A. Laser induced breakdown in aqueous media. Prog. Quantum Electron. 1997, 21, 155–248. [Google Scholar] [CrossRef]
- Vogel, A.; Busch, S.; Parlitz, U. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 1998, 100, 148–165. [Google Scholar] [CrossRef]
- Liang, X.X.; Linz, N.; Freidank, S.; Paltauf, G.; Vogel, A. Comprehensive analysis of spherical bubble oscillations and shock wave emission in laser induced cavitation. J. Fluid Mech. 2022, 940, A5. [Google Scholar] [CrossRef]
- Sinibaldi, G.; Occhicone, A.; Pereira, F.A.; Caprini, D.; Marino, L.; Michelotti, F.; Casciola, C.M. Laser induced cavitation: Plasma generation and breakdown shockwave. Phys. Fluids 2019, 31, 103302. [Google Scholar] [CrossRef]
- Lai, G.; Geng, S.; Zheng, H.; Yao, Z.; Zhong, Q.; Wang, F. Early dynamics of a laser induced underwater shock wave. J. Fluids Eng. Trans. ASME 2022, 1, 144. [Google Scholar] [CrossRef]
- Wen, H.; Yao, Z.; Zhong, Q.; Tian, Y.; Sun, Y.; Wang, F. Energy partitioning in laser induced millimeter-sized spherical cavitation up to the fourth oscillation. Ultrason. Sonochemisty 2023, 95, 106391. [Google Scholar] [CrossRef]
- Devin, C. Survey of thermal, radiation, and viscous damping of pulsating air bubble in water. J. Acoust. Soc. Am. 1959, 31, 1654–1667. [Google Scholar] [CrossRef]
- Long, J.; Eliceiri, M.H.; Wang, L.; Vangelatos, Z.; Ouyang, Y.; Xie, X.; Zhang, Y.; Grigoropoulos, C.P. Capturing the final stage of the collapse of cavitation bubble generated during nanosecond laser ablation of submerged targets. Opt. Laser Technol. 2021, 134, 106647. [Google Scholar] [CrossRef]
- Long, J.; Eliceiri, M.H.; Ouyang, Y.; Zhang, Y.; Xie, X.; Grigoropoulos, C.P. Effects of immersion depth on the dynamics of cavitation bubble generated during ns laser ablation of submerged targets. Opt. Lasers Eng. 2020, 137, 106334. [Google Scholar] [CrossRef]
- Nie, Z.; Ye, Y.; Ren, Y.; Ren, X.; Hua, Y.; Fu, Y. Experimental research on plastic deforming of metal foil through ns laser induced mechanical effects underwater. Opt. Laser Technol. 2021, 134, 106629. [Google Scholar] [CrossRef]
- Gu, J.; Luo, C.; Ma, P.; Xu, X.; Wu, Y.; Ren, X. Study on processing and strengthening mechanisms of mild steel subjected to laser cavitation peening. Appl. Surf. Sci. 2021, 562, 150242. [Google Scholar] [CrossRef]
- Zhang, H.F.; Ren, X.D.; Tong, Y.Q.; Larson, E.A.; Adu-Gyamfi, S.; Wang, J.; Li, X. Surface integrity of 2A70 aluminum alloy processed by laser induced peening and cavitation bubble. Results Phys. 2018, 12, 1204–1211. [Google Scholar] [CrossRef]
- Hanke, S.; Kaiser, S.A. Comparison of damage mechanisms: Acoustic cavitation versus series of single laser induced bubble. Wear 2021, 476, 203641. [Google Scholar] [CrossRef]
- Gonzalez-Parra, J.C.; Robles, V.; Devia-Cruz, L.F.; Rodriguez-Beltran, R.I.; Cuando-Espitia, N.; Camacho-Lopez, S.; Aguilar, G. Mitigation of cavitation erosion using laser induced periodic surface structures. Surf. Interfaces 2022, 29, 101692. [Google Scholar] [CrossRef]
- Ren, X.D.; Wang, J.; Yuan, S.Q.; Adu-Gyamfi, S.; Tong, Y.; Zuo, C.; Zhang, H. Mechanical effect of laser induced cavitation bubble of 2A02 alloy. Opt. Laser Technol. 2018, 105, 180–184. [Google Scholar] [CrossRef]
- Ye, Y.; Wu, M.; Ren, X.D.; Zhou, J.; Li, L. Hole-like surface morphologies on the stainless steel surface through laser surface texturing underwater. Appl. Surf. Sci. 2018, 462, 847–855. [Google Scholar] [CrossRef]
- Shaw, S.J.; Schiffers, W.P.; Gentry, T.P.; Emmony, D.C. Study of the interaction of a laser-generated dimple with a nearby solid boundary. J. Phys. D Appl. Phys. 1999, 32, 1612–1617. [Google Scholar] [CrossRef]
- Gregorcic, P.; Petkovsek, R.; Mozina, J. Investigation of a cavitation bubble between a rigid boundary and a free surface. J. Appl. Phys. 2007, 102, 27–28. [Google Scholar] [CrossRef]
- Lauterborn, W.; Vogel, A. Shock wave emission by laser generated bubble. Bubble Dyn. Shock. Waves 2013, 8, 67–103. [Google Scholar]
- Nguyen, T.T.P.; Tanabe, R.; Ito, Y. Effects of an absorptive coating on the dynamics of underwater laser induced shock process. Appl. Phys. A 2014, 116, 1109–1117. [Google Scholar] [CrossRef]
- Sasoh, A.; Watanabe, K.; Sano, Y.; Mukai, N. Behavior of bubble induced by the interaction of a laser evolution with a metal plate in water. Appl. Phys. A 2005, 80, 1497–1500. [Google Scholar] [CrossRef]
- Brujan, E.A.; Nahen, K.; Schmid, T.P.; Vogel, A. Dynamics of laser induced cavitation bubble near elastic boundaries: Influence of the elastic modulus. J. Fluid Mech. 2001, 433, 283–314. [Google Scholar] [CrossRef]
- Lu, Z.; Gu, J.; Zhang, P.; Luo, C.; Ren, X. Investigation on laser cavitation micro-forming process: Deforming behavior of 1060 aluminum foil and bubble evolution in a gap. J. Manuf. Process. 2021, 67, 619–627. [Google Scholar] [CrossRef]
- Zheng, C.; Sun, S.; Ji, Z.; Wang, W. Effect of laser energy on the deforming behavior in microscale laser bulge forming. Appl. Surf. Sci. 2010, 257, 1589–1595. [Google Scholar] [CrossRef]
- Guo, Y.B.; Caslaru, R. Fabrication and characterization of micro dent arrays produced by laser shock peening on titanium Ti-6Al-4V surfaces. J. Sample Process. Technol. 2011, 211, 729–736. [Google Scholar] [CrossRef]
- Sollier, A.; Berthe, L.; Fabbro, R. Numerical modeling of the transmission of breakdown plasma generated in water during laser shock processing. Eur. Phys. J.-Appl. Phys. 2001, 16, 131–139. [Google Scholar] [CrossRef]
- Wang, Y.D.; Liu, C.; Li, C.L. Evolution of ns evolution laser induced shock wave on aluminum surface by numerical simulation. Results Phys. 2021, 22, 103920. [Google Scholar] [CrossRef]
Element | Si | Fe | Cu | Mn | Mg | Zn |
---|---|---|---|---|---|---|
Value | 0.12 | 0.15 | 2.0–2.6 | 0.1 | 1.9–2.6 | 5.6–6.7 |
Test Parameter | Value |
---|---|
Laser wavelength/nm | 1064 |
Laser pulse width/ns | 9 |
Laser frequency/Hz | 5 |
Spot diameter/mm | 0.5 |
Laser energy/mJ | 100, 200, 300, 400, 500 |
Shock times | 1, 2, 3 |
Temperature | 25 °C |
Air humidity | 50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Hu, R.; Shi, W.; Zhou, R. Experimental Study on Near-Wall Laser-Induced Cavitation Bubble Micro-Dimple Formation on 7050 Aluminum Alloy. Water 2024, 16, 1410. https://doi.org/10.3390/w16101410
Cao Y, Hu R, Shi W, Zhou R. Experimental Study on Near-Wall Laser-Induced Cavitation Bubble Micro-Dimple Formation on 7050 Aluminum Alloy. Water. 2024; 16(10):1410. https://doi.org/10.3390/w16101410
Chicago/Turabian StyleCao, Yupeng, Ranran Hu, Weidong Shi, and Rui Zhou. 2024. "Experimental Study on Near-Wall Laser-Induced Cavitation Bubble Micro-Dimple Formation on 7050 Aluminum Alloy" Water 16, no. 10: 1410. https://doi.org/10.3390/w16101410
APA StyleCao, Y., Hu, R., Shi, W., & Zhou, R. (2024). Experimental Study on Near-Wall Laser-Induced Cavitation Bubble Micro-Dimple Formation on 7050 Aluminum Alloy. Water, 16(10), 1410. https://doi.org/10.3390/w16101410