Water Quality from Natural Sources for Sustainable Agricultural Development Strategies: Galapagos, Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Context
2.2. Methodological Approach and Study Phases
2.2.1. Phase I: Freshwater Supply Situation Diagnosis
2.2.2. Phase II: In Situ and Laboratory Water Characterisation
2.2.3. Phase III: Irrigation Analysis and Sustainability Strategies Configuration
- (a)
- Analysis of irrigation water quality according to regulations
- (b)
- Hydrochemical analysis of water
- (c)
- Analysis of water quality according to irrigation water indices
- (d)
- Qualitative analysis for water resource management
3. Results
3.1. Inventory of Natural Water Sources
3.2. Irrigation Water Quality According to In Situ Physicochemical Parameters
3.3. Irrigation Water Quality According to Laboratory Parameters
3.4. Hydrochemistry of Natural Water Sources
3.4.1. Stiff Diagram
3.4.2. Piper Diagram
3.5. Irrigation Water Quality Indices
3.6. SWOT Analysis and Agricultural Sustainability Strategies
- Carry out quarterly monitoring of natural water sources inventoried by the environmental control institutions of the Galapagos Islands (CGREG, MAG, and PNG) in laboratories accredited by the SAE for decision-making regarding water quality in the different seasons of the year.
- Complete existing hydrological and hydrogeological studies with research projects between government entities, academia, and communities for the study of new natural water sources and the management–restoration of existing sources.
- Propose the creation of community irrigation boards on the study islands for the integral sustainable management (catchment, distribution, and conservation) of water resources for agricultural use in conjunction with an inter-institutional cooperation network.
- Promote implementing water sowing and harvesting (WS&H) systems to manage existing water resources effectively.
- Design a new effluent discharge management system (due to the annual increase in the local population and tourists), considering a sustainable system with circular economy criteria through the study of the current infrastructure and its limitations to control discharges and avoid contamination of natural water sources.
- Strengthen the agricultural system in the rural areas of the study islands by raising support funds from non-governmental organizations (NGOs) and community participation with national and international entities with sustainable production systems.
4. Discussion
4.1. Irrigation Water Quality Analysis
4.2. Strategies for Agricultural Sustainability
4.3. Water and Agricultural Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoekstra, A.Y. A Critique on the Water-Scarcity Weighted Water Footprint in LCA. Ecol. Indic. 2016, 66, 564–573. [Google Scholar] [CrossRef]
- Huang, Z.; Hejazi, M.; Li, X.; Tang, Q.; Vernon, C.; Leng, G.; Liu, Y.; Döll, P.; Eisner, S.; Gerten, D.; et al. Reconstruction of Global Gridded Monthly Sectoral Water Withdrawals for 1971–2010 and Analysis of Their Spatiotemporal Patterns. Hydrol. Earth Syst. Sci. 2018, 22, 2117–2133. [Google Scholar] [CrossRef]
- USGS. The Distribution of Water on, in, and above the Earth. Available online: https://www.usgs.gov/media/images/distribution-water-and-above-earth (accessed on 5 October 2023).
- Mishra, B.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water Security in a Changing Environment: Concept, Challenges and Solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- Li, P.; Wu, J. Drinking Water Quality and Public Health. Expo. Health 2019, 11, 73–79. [Google Scholar] [CrossRef]
- Morante-Carballo, F.; Montalván-Burbano, N.; Quiñonez-Barzola, X.; Jaya-Montalvo, M.; Carrión-Mero, P. What Do We Know about Water Scarcity in Semi-Arid Zones? A Global Analysis and Research Trends. Water 2022, 14, 2685. [Google Scholar] [CrossRef]
- Baggio, G.; Qadir, M.; Smakhtin, V. Freshwater Availability Status across Countries for Human and Ecosystem Needs. Sci. Total Environ. 2021, 792, 148230. [Google Scholar] [CrossRef]
- Jiang, Y. China’s Water Security: Current Status, Emerging Challenges and Future Prospects. Environ. Sci. Policy 2015, 54, 106–125. [Google Scholar] [CrossRef]
- The World Bank Group Water. Available online: https://www.worldbank.org/en/topic/water/overview#1 (accessed on 17 November 2023).
- UN. Water Summary Progress Update 2021: SDG 6—Water and Sanitation for All; UN: New York, NY, USA, 2021; p. 58.
- Asian Development Bank. Asian Water Development Outlook (AWDO) Strengthening Water Security in Asia and the Pacific; Asian Development Bank: Mandaluyong, Philippines, 2020. [Google Scholar]
- World Economic Forum. The Global Risks Report 2020 Insight Report, 15th ed.; World Economic Forum: Cologny, Switzerland, 2020. [Google Scholar]
- Ricart, S.; Rico-Amorós, A.M. Constructed Wetlands to Face Water Scarcity and Water Pollution RRisks: Learning from Farmers’ Perception in Alicante, Spain. Water 2021, 13, 2431. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water Scarcity Assessments in the Past, Present, and Future. Earth’s Futur. 2017, 5, 545–559. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water Supply and Water Scarcity. Water 2020, 12, 2347. [Google Scholar] [CrossRef]
- Yao, Y.; Andrews, C.; Zheng, Y.; He, X.; Babovic, V.; Zheng, C. Development of Fresh Groundwater Lens in Coastal Reclaimed Islands. J. Hydrol. 2019, 573, 365–375. [Google Scholar] [CrossRef]
- Holding, S.; Allen, D.M.; Foster, S.; Hsieh, A.; Larocque, I.; Klassen, J.; Van Pelt, S.C. Groundwater Vulnerability on Small Islands. Nat. Clim. Chang. 2016, 6, 1100–1103. [Google Scholar] [CrossRef]
- Bailey, R.T.; Barnes, K.; Wallace, C.D. Predicting Future Groundwater Resources of Coral Atoll Islands. Hydrol. Process. 2016, 30, 2092–2105. [Google Scholar] [CrossRef]
- Post, V.E.A.; Galvis, S.C.; Sinclair, P.J.; Werner, A.D. Evaluation of Management Scenarios for Potable Water Supply Using Script-Based Numerical Groundwater Models of a Freshwater Lens. J. Hydrol. 2019, 571, 843–855. [Google Scholar] [CrossRef]
- Tzanakakis, V.; Angelakis, A.; Paranychianakis, N.; Dialynas, Y.; Tchobanoglous, G. Challenges and Opportunities for Sustainable Management of Water Resources in the Island of Crete, Greece. Water 2020, 12, 1538. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Karatzas, G.P.; Dokou, Z.; Kokorogiannis, A. Groundwater Footprint Methodology as Policy Tool for Balancing Water Needs (Agriculture & Tourism) in Water Scarce Islands—The Case of Crete, Greece. Sci. Total Environ. 2018, 615, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Steiakakis, E.; Vavadakis, D.; Kritsotakis, M.; Voudouris, K.; Anagnostopoulou, C. Drought Impacts on the Fresh Water Potential of a Karst Aquifer in Crete, Greece. Environ. Earth Sci. 2016, 75, 507. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Karatzas, G.P. Groundwater Contamination Risk Assessment in Crete, Greece, Using Numerical Tools within a GIS Framework. Hydrol. Sci. J. 2015, 60, 111–132. [Google Scholar] [CrossRef]
- Rosales-Asensio, E.; García-Moya, F.J.; González-Martínez, A.; Borge-Diez, D.; de Simón-Martín, M. Stress Mitigation of Conventional Water Resources in Water-Scarce Areas through the Use of Renewable Energy Powered Desalination Plants: An Application to the Canary Islands. Energy Rep. 2020, 6, 124–135. [Google Scholar] [CrossRef]
- García-Rubio, M.A.; Guardiola, J. Desalination in Spain: A Growing Alternative for Water Supply. Int. J. Water Resour. Dev. 2012, 28, 171–186. [Google Scholar] [CrossRef]
- Dallavalle, E.; Cipolletta, M.; Casson Moreno, V.; Cozzani, V.; Zanuttigh, B. Towards Green Transition of Touristic Islands through Hybrid Renewable Energy Systems. A Case Study in Tenerife, Canary Islands. Renew. Energy 2021, 174, 426–443. [Google Scholar] [CrossRef]
- UN. International Decade for Action ‘Water for Life’ 2005–2015. Available online: https://www.un.org/waterforlifedecade/ (accessed on 25 November 2023).
- Carrión-Mero, P.; Montalván, F.J.; Morante-Carballo, F.; Heredia, J.; Elorza, F.J.; Solórzano, J.; Aguilera, H. Hydrochemical and Isotopic Characterization of the Waters of the Manglaralto River Basin (Ecuador) to Contribute to the Management of the Coastal Aquifer. Water 2021, 13, 537. [Google Scholar] [CrossRef]
- Goethals, P.; Volk, M. Implementing Sustainability in Water Management: Are We Still Dancing in the Dark? Sustain. Water Qual. Ecol. 2016, 7, 1–4. [Google Scholar] [CrossRef]
- Teixeira, Z.; Teixeira, H.; Marques, J.C. Systematic Processes of Land Use/Land Cover Change to Identify Relevant Driving Forces: Implications on Water Quality. Sci. Total Environ. 2014, 470–471, 1320–1335. [Google Scholar] [CrossRef] [PubMed]
- Forio, M.A.E.; Mouton, A.; Lock, K.; Boets, P.; Nguyen, T.H.T.; Damanik Ambarita, M.N.; Musonge, P.L.S.; Dominguez-Granda, L.; Goethals, P.L.M. Fuzzy Modelling to Identify Key Drivers of Ecological Water Quality to Support Decision and Policy Making. Environ. Sci. Policy 2017, 68, 58–68. [Google Scholar] [CrossRef]
- Hauck, J.; Winkler, K.J.; Priess, J.A. Reviewing Drivers of Ecosystem Change as Input for Environmental and Ecosystem Services Modelling. Sustain. Water Qual. Ecol. 2015, 5, 9–30. [Google Scholar] [CrossRef]
- He, H.; Cheng, Y.; Zhou, J.; Keo, S.; Goethals, P. Monitoring and Assessment of Water Quality and Ecology. Sustain. Water Qual. Ecol. 2014, 3–4, 1–2. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Olbert, A.I. A Review of Water Quality Index Models and Their Use for Assessing Surface Water Quality. Ecol. Indic. 2021, 122, 107218. [Google Scholar] [CrossRef]
- Gleick, P.H.; Cooley, H. Freshwater Scarcity. Annu. Rev. Environ. Resour. 2021, 46, 319–348. [Google Scholar] [CrossRef]
- UN. Goal 6: Ensure Availability and Sustainable Management of Water and Sanitation for All. Available online: https://unstats.un.org/sdgs/report/2017/goal-06/ (accessed on 25 November 2023).
- UNESCO-WHC. Galápagos Islands. Available online: https://whc.unesco.org/en/list/1/ (accessed on 25 November 2023).
- UNESCO. Man and the Biosphere Programme (MAB)-Galápagos. Available online: https://www.unesco.org/en/mab/galapagos#:~:text=La%20Reserva%20de%20la%20Biosfera,Ecuador%20en%20la%20isla%20Isabela (accessed on 25 November 2023).
- Carrión-Mero, P.; Sánchez-Zambrano, E.; Mata-Perelló, J.; Jaya-Montalvo, M.; Herrera-Franco, G.; Berrezueta, E.; Espinel, R.L.; Baque, M.; Morante-Carballo, F. Geosites Assessment in a Volcanic Hotspot Environment and Its Impact on Geotourism, Santa Cruz-Galapagos Islands, Ecuador. Int. J. Geoheritage Park. 2024, 12, 147–167. [Google Scholar] [CrossRef]
- Informe Anual de Visitantes a Las Áreas Protegidas de Galápagos Del Año 2023; Dirección del Parque Nacional Galápagos: Santa Cruz, Ecuador, 2024.
- Mateus, C.; Guerrero, C.A.; Quezada, G.; Lara, D.; Ochoa-Herrera, V. An Integrated Approach for Evaluating Water Quality between 2007–2015 in Santa Cruz Island in the Galapagos Archipelago. Water 2019, 11, 937. [Google Scholar] [CrossRef]
- Re, V.; Rizzi, J.; Tuci, C.; Tringali, C.; Mancin, M.; Mendieta, E.; Marcomini, A. Challenges and Opportunities of Water Quality Monitoring and Multi-Stakeholder Management in Small Islands: The Case of Santa Cruz, Galápagos (Ecuador). Environ. Dev. Sustain. 2023, 25, 3867–3891. [Google Scholar] [CrossRef]
- Riascos-Flores, L.; Bruneel, S.; Van der Heyden, C.; Deknock, A.; Van Echelpoel, W.; Forio, M.A.E.; De Saeyer, N.; Vanden Berghe, W.; Spanoghe, P.; Bermudez, R.; et al. Polluted Paradise: Occurrence of Pesticide Residues within the Urban Coastal Zones of Santa Cruz and Isabela (Galapagos, Ecuador). Sci. Total Environ. 2021, 763, 142956. [Google Scholar] [CrossRef] [PubMed]
- Vernaza, W.; Pozo, R.; Mateus, M.C.; Quiroga, D.; Stewart, J.; Thompson, A.; Raheem, N.; Ochoa-Herrera, V. “Agua Para Galápagos”: Un Programa de Monitoreo de La Calidad Del Agua En Las Islas Galápagos. Esferas 2021, 2, 26. [Google Scholar] [CrossRef]
- Reyes, M.; Petričić, A.; Trifunović, N.; Sharma, S. Water Management Strategies Using Multi-Criteria Decision Analysis in Santa Cruz Island (Galapagos Archipelago). Guigoz. Sci. Rev. 2019, 5, 112–123. [Google Scholar] [CrossRef]
- Grube, A.M.; Stewart, J.R.; Ochoa-Herrera, V. The Challenge of Achieving Safely Managed Drinking Water Supply on San Cristobal Island, Galápagos. Int. J. Hyg. Environ. Health 2020, 228, 113547. [Google Scholar] [CrossRef]
- Van Echelpoel, W.; Forio, M.A.E.; Van der Heyden, C.; Bermúdez, R.; Ho, L.; Moncayo, A.M.R.; Narea, R.N.P.; Granda, L.E.D.; Sanchez, D.; Goethals, P.L.M. Spatial Characteristics and Temporal Evolution of Chemical and Biological Freshwater Status as Baseline Sssessment on the Tropical Island San Cristóbal (Galapagos, Ecuador). Water 2019, 11, 880. [Google Scholar] [CrossRef]
- Gerhard, W.A.; Choi, W.S.; Houck, K.M.; Stewart, J.R. Water Quality at Points-of-Use in the Galapagos Islands. Int. J. Hyg. Environ. Health 2017, 220, 485–493. [Google Scholar] [CrossRef]
- Badhwa, N.; Fejfar, D.; Pozo, R.; Nicholas, K.; Grube, A.; Stewart, J.; Thompson, A.; Ochoa-Herrera, V. Water Quality and Access in Isabela: Results from a Household Water Survey. In Water, Food and Human Health in the Galapagos, Ecuador. Social and Ecological Interactions in the Galapagos Islands; Springer: Berlin/Heidelberg, Germany, 2022; pp. 57–74. [Google Scholar]
- Sampedro, C.; Pizzitutti, F.; Quiroga, D.; Walsh, S.J.; Mena, C.F. Food Supply System Dynamics in the Galapagos Islands: Agriculture, Livestock and Imports. Renew. Agric. Food Syst. 2020, 35, 234–248. [Google Scholar] [CrossRef]
- Burke, A. The Crossroads of Ecotourism Dependency, Food Security and a Global Pandemic in Galápagos, Ecuador. Sustainability 2021, 13, 13094. [Google Scholar] [CrossRef]
- INEC-Ecuador Análisis de Resultados Definitivos Censo de Población y Vivienda Galápagos. 2015. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Poblacion_y_Demografia/CPV_Galapagos_2015/Analisis_Galapagos%202015.pdf (accessed on 29 November 2023).
- Plan de Manejo de Las Áreas Protegidas de Galápagos Para El Buen Vivir; Dirección del Parque Nacional Galápagos: Galápagos, Ecuador, 2014.
- INEC. Censo de Población y Vivienda-Galápagos. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Poblacion_y_Demografia/CPV_Galapagos_2015/Presentacion_CPVG15.pdf (accessed on 29 November 2023).
- Villagómez, D.R.; Toomey, D.R.; Hooft, E.E.E.; Solomon, S.C. Upper Mantle Structure beneath the Galápagos Archipelago from Surface Wave Tomography. J. Geophys. Res. Solid Earth 2007, 112, B07303. [Google Scholar] [CrossRef]
- Simkin, T. Geology of Galapagos. Biol. J. Linn. Soc. 1984, 21, 61–75. [Google Scholar] [CrossRef]
- Harpp, K.S.; Wanless, V.D.; Otto, R.H.; Hoernle, K.; Werner, R. The Cocos and Carnegie Aseismic Ridges: A Trace Element Record of Long-Term Plume–Spreading Center Interaction. J. Petrol. 2005, 46, 109–133. [Google Scholar] [CrossRef]
- Toulkeridis, T. Volcanic Galápagos Volcánico; Centro de Geología, Volcanología y Geodinámica, Escuela Politécnica del Ejército: Sangolquí, Ecuador, 2011. [Google Scholar]
- Glynn, P.W.; Feingold, J.S.; Baker, A.; Banks, S.; Baums, I.B.; Cole, J.; Colgan, M.W.; Fong, P.; Glynn, P.J.; Keith, I.; et al. State of Corals and Coral Reefs of the Galápagos Islands (Ecuador): Past, Present and Future. Mar. Pollut. Bull. 2018, 133, 717–733. [Google Scholar] [CrossRef] [PubMed]
- Paltán, H.A.; Benitez, F.L.; Rosero, P.; Escobar-Camacho, D.; Cuesta, F.; Mena, C.F. Climate and Sea Surface Trends in the Galapagos Islands. Sci. Rep. 2021, 11, 14465. [Google Scholar] [CrossRef]
- The World Bank Group Ecuador Climatology. Available online: https://climateknowledgeportal.worldbank.org/country/ecuador/climate-data-historical (accessed on 27 November 2023).
- Larrea, O.I.; Di Carlo, G. Climate Change Vulnerability Assessment of the Galápagos Islands; WWF and Conservation International: Arlington, VA, USA, 2011; p. 116. [Google Scholar]
- Trueman, M.; D’Ozouville, N. Characterizing the Galapagos Terrestrial Climate in the Face of Global Climate Change. Galapagos Res. 2010, 67, 26–37. [Google Scholar]
- Adelinet, M.; Fortin, J.; D’Ozouville, N.; Violette, S. The Relationship between Hydrodynamic Properties and Weathering of Soils Derived from Volcanic Rocks, Galapagos Islands (Ecuador). Environ. Geol. 2008, 56, 45–58. [Google Scholar] [CrossRef]
- Stoops, G. A Micromorphological Evaluation of Pedogenesis on Isla Santa Cruz (Galápagos). Span. J. Soil Sci. 2013, 3, 14–37. [Google Scholar] [CrossRef]
- Rhea, S.; Camacho, B.E.; Amoriello, C.W.; Correa, M.; Lewbart, G.A.; Cruz, M.; Vélez, A.; Castillo, P.; Pairis-Garcia, M. Assessing Livestock Production Practices on Small-Scale Multi-Species Farms Located on Floreana Island, Galápagos Islands. Animals 2023, 13, 686. [Google Scholar] [CrossRef]
- Klassen, C. El Junco, La Única Laguna de Agua Dulce de Galápagos, Nuevamente Libre de Especies Invasoras. Available online: https://www.metropolitantouring.com/noticias-ecuadory-%0Agalapagos/el-junco-la-unica-laguna-de-agua-dulce-de-galapagos-nuevamente-libre-de-especies-invasoras (accessed on 27 November 2023).
- Jaramillo Díaz, P.; Calle-Loor, A.; Velasco, N.; Cevallos, D. Water-Saving Technologies in Galapagos Agriculture: A Step towards Sustainability. Horticulturae 2023, 9, 683. [Google Scholar] [CrossRef]
- Informe de Componente Ambiental. Elaboración de Estudios para Formular el Plan de Riego y Drenaje de Galápagos; Internal Report; Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT): Guayaquil, Ecuador, 2022. [Google Scholar]
- Centro de Investigaciones Rurales (CIR). Estudios Para Formular el Plan de Riego y Drenaje en las Islas Galápagos; Internal Report; Escuela Superior Politécncia del Litoral: Guayaquil, Ecuador, 2022. [Google Scholar]
- Centro de Investigaciones Rurales (CIR). Estudios y Diseños Definitivos del Sistema de Riego Comunitario Camote-Cascajo del Cantón Santa Cruz, Galápagos; Internal Report; Centro de Investigaciones Rurales: Guayaquil, Ecuador, 2023. [Google Scholar]
- McBirney, A.R.; Williams, H. Geology and Petrology of the Galápagos Islands. In GSA Memoirs; The Geological Society of America: Boulder, CO, USA, 1969; pp. 1–197. [Google Scholar]
- Warrier, R.B.; Castro, M.C.; Hall, C.M. Recharge and Source-Water Insights from the Galapagos Islands Using Noble Gases and Stable Isotopes. Water Resour. Res. 2012, 48, W03508. [Google Scholar] [CrossRef]
- Cazorla, M.; Herrera, E. Air Quality in the Galapagos Islands: A Baseline View from Remote Sensing and in Situ Measurements. Meteorol. Appl. 2020, 27, e1878. [Google Scholar] [CrossRef]
- Reyes, M.; Trifunović, N.; Sharma, S.; Behzadian, K.; Kapelan, Z.; Kennedy, M. Mitigation Options for Future Water Scarcity: A Case Study in Santa Cruz Island (Galapagos Archipelago). Water 2017, 9, 597. [Google Scholar] [CrossRef]
- Haukeland, J.V.; Daugstad, K.; Vistad, O.I. Harmony or Conflict? A Focus Group Study on Traditional Use and Tourism Development in and around Rondane and Jotunheimen National Parks in Norway. Scand. J. Hosp. Tour. 2011, 11, 13–37. [Google Scholar] [CrossRef]
- INEN NTE-INEN 2169; Agua. Calidad Del Agua. Muestreo, Manejo y Conservación de Muestras. Instituto Ecuatoriano de Normalizacion: Quito, Ecuador, 2013.
- INEN NTE-INEN 2176; Agua.Calidad Del Agua. Muestreo. Técncias de Muestreo. Instituto Ecuatoriano de Normalizacion: Quito, Ecuador, 1998.
- ISO 5667-3:2012; Water Quality Sampling Part 3: Guidance on the Preservation and Handling of Water Samples. International Organization for Standardization: Geneva, Switzerland, 2012. Available online: https://www.iso.org/standard/33486.html (accessed on 6 March 2024).
- ISO 5667-1:2020; Water Quality Sampling Part 1: Guidance on the Design of Sampling Programmes and Sampling Techniques. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/72369.html (accessed on 6 March 2024).
- INEN NTE INEN-ISO/IEC 17025; Requisitos Generales Para La Competencia de Los Laboratorios de Ensayo y Calibración. Instituto Ecuatoriano de Normalizacion: Quito, Ecuador, 2018.
- Ministerio del Ambiente-Agua y Transición Ecológica (MAATE). Norma de Calidad Ambiental y de Descarga de Efluentes: Recurso Agua. Available online: https://faolex.fao.org/docs/pdf/ecu155128.pdf (accessed on 10 February 2024).
- Ministerio del Ambiente Perú. Decreto Supremo No 004-2017-MINAM—Estándares de Calidad Ambiental (ECA) Para Agua y Disposiciones Complementarias. 2017. Available online: https://www.minam.gob.pe/wp-content/uploads/2017/06/DS-004-2017-MINAM.pdf (accessed on 10 February 2024).
- NCh 1.333; Requisitos de Calidad del Agua para Diferentes Usos. Instituto Nacional de Normalización de Chile: Santiago, Chile, 1987.
- Stiff, H.A. The Interpretation of Chemical Water Analysis by Means of Patterns. J. Pet. Technol. 1951, 3, 15. [Google Scholar] [CrossRef]
- Piper, A.M. A Graphic Procedure in the Geochemical Interpretation of Water-Analyses. Trans. Am. Geophys. Union 1944, 25, 914. [Google Scholar] [CrossRef]
- Pivić, R.; Maksimović, J.; Dinić, Z.; Jaramaz, D.; Majstorović, H.; Vidojević, D.; Stanojković-Sebić, A. Hydrochemical Assessment of Water Used for Agricultural Soil Irrigation in the Water Area of the Three Morava Rivers in the Republic of Serbia. Agronomy 2022, 12, 1177. [Google Scholar] [CrossRef]
- Shah, B.; Kansara, B.; Shankar, J.; Soni, M.; Bhimjiyani, P.; Bhanushali, T.; Shah, M.; Sircar, A. Reckoning of Water Quality for Irrigation and Drinking Purposes in the Konkan Geothermal Provinces, Maharashtra, India. Groundw. Sustain. Dev. 2019, 9, 100247. [Google Scholar] [CrossRef]
- Moreno Merino, L.; De la Losa Román, A.; Romero Prados, A.; Carro Martín, S. Interpretación de Análisis Químicos de Aguas Subterráneas Mediante La Hoja INAQUAS; Instituto Geológico y Minero de España, Ed.; Instituto Geológico y Minero de España: Madrid, Spain, 2006; ISBN 978-84-9138-019-1. [Google Scholar]
- Vazquez-Suñé, E.; Serrano-Juan, A. Easy_Quim v. 5.0. 2015. Available online: https://h2ogeo.upc.edu/es/software-hidrologiasubterrania/11-software-hidrologia-subterrania/42-easy-quim (accessed on 17 November 2023).
- Hou, Q.; Pan, Y.; Zeng, M.; Wang, S.; Shi, H.; Huang, C.; Peng, H. Assessment of Groundwater Hydrochemistry, Water Quality, and Health Risk in Hainan Island. China. Sci. Rep. 2023, 13, 12104. [Google Scholar] [CrossRef]
- Rengasamy, P. Irrigation Water Quality and Soil Structural Stability: A Perspective with Some New Insights. Agronomy 2018, 8, 72. [Google Scholar] [CrossRef]
- Wilcox, L.W. Classification and Use of Irrigation Waters; U.S. Department of Agriculture: Washington, DC, USA, 1955. [Google Scholar]
- Nagaraju, A.; Suresh, S.; Killham, K.; Hudson-Edwards, K. Hydrogeochemistry of Waters of Mangampeta Barite Mining Area, Cuddapah Basin, Andhra Pradesh, India. Turkish J. Eng. Environ. Sci. 2006, 30, 203–219. [Google Scholar]
- Kelley, W.P. Permissible Composition and Concentration of Irrigation Water. Trans. Am. Soc. Civ. Eng. 1941, 106, 849–855. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkaline Soils; United States Department of Agriculture, Soil and Water Conservation Research Branch, Agricultural Research Service: Washington, DC, USA, 1954; Volume 18. [Google Scholar]
- Doneen, L.D. The Influence of Crop and Soil on Percolating Water. In Biennial Conference on Groundwater Recharge; Ground Water Recharge Laboratory, Southwest Branch, Soil and Water Conservation Research Division: Fresno, CA, USA, 1962; pp. 156–163. [Google Scholar]
- Okoli, C.; Pawlowski, S.D. The Delphi Method as a Research Tool: An Example, Design Considerations and Applications. Inf. Manag. 2004, 42, 15–29. [Google Scholar] [CrossRef]
- Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT). Programa de la Consultoría para Identificar las Fuentes de Contaminación en Agua y Suelo en el Cantón Santa Cruz y Elaborar su Plano de Manejo Ambiental; CIPAT: Guayaquil, Ecuador, 2011. [Google Scholar]
- Huang, C.H.; Xue, X.; Wang, T.; De Mascellis, R.; Mele, G.; You, Q.G.; Peng, F.; Tedeschi, A. Effects of Saline Water Irrigation on Soil Properties in Northwest China. Environ. Earth Sci. 2011, 63, 701–708. [Google Scholar] [CrossRef]
- Rahimi, L.; Amanipoor, H.; Battaleb-Looie, S. Effect of Salinity of Irrigation Water on Soil Properties (Abadan Plain, SW Iran). Geocarto Int. 2021, 36, 1884–1903. [Google Scholar] [CrossRef]
- Fageria, N.K.; Gheyi, H.R.; Moreira, A. Nutrient Bioavailability in Salt Affected Soils. J. Plant Nutr. 2011, 34, 945–962. [Google Scholar] [CrossRef]
- Alva, A.K.; Syvertsen, J.P. Irrigation Water Salinity Affects Soil Nutrient Distribution, Root Density, and Leaf Nutrient Levels of Citrus under Drip Fertigation 1. J. Plant Nutr. 1991, 14, 715–727. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Fan, J.; Wang, X.; Sun, X.; Yang, L.; Zhang, S.; Xiang, Y.; Zhang, F. Crop Yield and Water Productivity under Salty Water Irrigation: A Global Meta-Analysis. Agric. Water Manag. 2021, 256, 107105. [Google Scholar] [CrossRef]
- Lili, Z.; Peiling, Y.; Wengang, Z.; Yunkai, L.; Yu, L.; Chong, Z. Effects of Water Salinity on Emitter Clogging in Surface Drip Irrigation Systems. Irrig. Sci. 2021, 39, 209–222. [Google Scholar] [CrossRef]
- Harpp, K.S.; Geist, D.J. The Galápagos Islands. In Encyclopedia of Geology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 659–673. [Google Scholar]
- Bartholomeus, R.P.; Witte, J.-P.M.; van Bodegom, P.M.; van Dam, J.C.; Aerts, R. Critical Soil Conditions for Oxygen Stress to Plant Roots: Substituting the Feddes-Function by a Process-Based Model. J. Hydrol. 2008, 360, 147–165. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing Soil Salinity Using Soil Salinity and Vegetation Indices Derived from IKONOS High-Spatial Resolution Imageries: Applications in a Date Palm Dominated Region. Geoderma 2014, 230–231, 1–8. [Google Scholar] [CrossRef]
- Kumar, S.; Nakajima, T.; Mbonimpa, E.G.; Gautam, S.; Somireddy, U.R.; Kadono, A.; Lal, R.; Chintala, R.; Rafique, R.; Fausey, N. Long-Term Tillage and Drainage Influences on Soil Organic Carbon Dynamics, Aggregate Stability and Corn Yield. Soil Sci. Plant Nutr. 2014, 60, 108–118. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater Intrusion Processes, Investigation and Management: Recent Advances and Future Challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Javier Montalván, F.; Solórzano, J.; Sánchez-Zambrano, E.; Bailón-Piguave, I.; Tomalá-Guale, H.; Loor-Flores de Valgas, C.; Carrión-Mero, P. Vulnerability to Contamination of the Olón Aquifer Using the GOD Method, Olón-Ecuador. In Sustainability in Practice; Springer: Cham, Switzerland, 2023; pp. 525–544. [Google Scholar]
- Gopinath, S.; Srinivasamoorthy, K.; Saravanan, K.; Suma, C.S.; Prakash, R.; Senthilnathan, D.; Chandrasekaran, N.; Srinivas, Y.; Sarma, V.S. Modeling Saline Water Intrusion in Nagapattinam Coastal Aquifers, Tamilnadu, India. Model. Earth Syst. Environ. 2016, 2, 2. [Google Scholar] [CrossRef]
- Nadjla, B.; Abdellatif, D.; Assia, S. Mapping of the Groundwater Vulnerability to Saline Intrusion Using the Modified GALDIT Model (Case: The Ain Temouchent Coastal Aquifer, (North-Western Algeria)). Environ. Earth Sci. 2021, 80, 319. [Google Scholar] [CrossRef]
- Steele, M.; Odumeru, J. Irrigation Water as Source of Foodborne Pathogens on Fruit and Vegetables. J. Food Prot. 2004, 67, 2839–2849. [Google Scholar] [CrossRef] [PubMed]
- Morante-Carballo, F.; Brito-Marcatoma, L.; Carrión-Mero, P.; Aguilar-Aguilar, M.; Ramírez-Tumbaco, J. Urban Wastewater Treatment Through a System of Green Filters in the Montañita Commune, Santa Elena, Ecuador. In Water and Society V; WIT Transactions on Ecology and the Environment; WIT Press: Southampton, UK, 2019; pp. 233–249. [Google Scholar]
- Alvarez Vega, F. Filtros Verdes. Un Sistema de Depuración Ecológico. Ing. Hidráulica Ambient. 2002, 23, 25–28. [Google Scholar]
- Chen, X.; Luo, A.C.; Sato, K.; Wakatsuki, T.; Masunaga, T. An Introduction of a Multi-soil-layering System: A Novel Green Technology for Wastewater Treatment in Rural Areas. Water Environ. J. 2009, 23, 255–262. [Google Scholar] [CrossRef]
- Qadir, M.; Schubert, S.; Oster, J.D.; Sposito, G.; Minhas, P.S.; Cheraghi, S.A.M.; Murtaza, G.; Mirzabaev, A.; Saqib, M. High-magnesium Waters and Soils: Emerging Environmental and Food Security Constraints. Sci. Total Environ. 2018, 642, 1108–1117. [Google Scholar] [CrossRef]
- United Nations. Department of Economic and Social Affairs. Sustainable Development. SDG Goal 2. Available online: https://sdgs.un.org/goals/goal2 (accessed on 10 January 2024).
- United Nations. Sustainable Development. Department of Economic and Social Affairs. SDG Goal 6. Available online: https://sdgs.un.org/goals/goal6 (accessed on 10 January 2024).
- FAO. World Food Security: A Reappraisal of the Concepts and Approaches; FAO: Rome, Italy, 1983. [Google Scholar]
- Carrión-Mero, P.; Morante-Carballo, F.; Herrera-Franco, G.; Jaya-Montalvo, M.; Rodríguez, D.; Loor-Flores de Valgas, C.; Berrezueta, E. Community-University Partnership in Water Education and Linkage Process. Study Case: Manglaralto, Santa Elena, Ecuador. Water 2021, 13, 25. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Alvarado-Macancela, N. Participatory Process for Local Development: Sustainability of Water Resources in Rural Communities: Case Manglaralto-Santa Elena, Ecuador. In Handbook of Sustainability Science and Research. World Sustainability Series; Leal Filho, W., Ed.; Springer: Cham, Switzerland, 2018; pp. 663–676. [Google Scholar]
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Mora-Frank, C.; Berrezueta, E. Bibliometric Analysis of Groundwater’s Life Cycle Assessment Research. Water 2022, 14, 1082. [Google Scholar] [CrossRef]
- Morante-Carballo, F.; Gurumendi-Noriega, M.; Cumbe-Vásquez, J.; Bravo-Montero, L.; Carrión-Mero, P. Georesources as an Alternative for Sustainable Development in COVID-19 Times—A Study Case in Ecuador. Sustainability 2022, 14, 7856. [Google Scholar] [CrossRef]
- Martos-Rosillo, S.; Durán, A.; Castro, M.; Vélez, J.J.; Herrera, G.; Martín-Civantos, J.M.; Mateos, L.; Durán, J.J.; Jódar, J.; Gutiérrez, C.; et al. Ancestral Techniques of Water Sowing and Harvesting in Ibero-America: Examples of Hydrogeoethical Systems. In Advances in Geoethics and Groundwater Management: Theory and Practice for a Sustainable Development. Advances in Science, Technology & Innovation; Abrunhosa, M., Chambel, A., Peppoloni, S., Chaminé, H.I., Eds.; Springer: Cham, Switzerland, 2021; pp. 489–492. [Google Scholar]
- Cassin, J.; Ochoa-Tocachi, B.F. Learning from Indigenous and Local Knowledge: The Deep History of Nature-Based Solutions. In Nature-based Solutions and Water Security; Elsevier: Amsterdam, The Netherlands, 2021; pp. 283–335. [Google Scholar]
- Carrión, P.; Herrera, G.; Briones, J.; Sánchez, C.; Limón, J. Practical Adaptations of Ancestral Knowledge for Groundwater Artificial Recharge Management of Manglaralto Coastal Aquifer, Ecuador. In Sustainable Development and Planning X; WIT Press: Southampton, UK, 2018; pp. 375–386. [Google Scholar]
- Jaramillo Díaz, P.; Calle-Loor, A.; Gualoto, E.; Bolaños, C.; Cevallos, D. Adoption of Sustainable Agriculture Practices through Participatory Research: A Case Study on Galapagos Islands Farmers Using Water-Saving Technologies. Plants 2022, 11, 2848. [Google Scholar] [CrossRef] [PubMed]
- CGREG. Plan de Desarrollo Sustentable y Ordenamiento Territorial Del Régimen Especial de Galápagos. Available online: https://www.gobiernogalapagos.gob.ec/wp-content/uploads/downloads/2017/04/Plan-Galapagos-2015-2020_12.pdf (accessed on 12 March 2024).
- Willy, M.; El-Hage, S.N. Climate Change and Food Security in the Pacific; FAO: Rome, Italy, 2009; pp. 1–22. [Google Scholar]
- Mena, C.F.; Paltán, H.A.; Benitez, F.L.; Sampedro, C.; Valverde, M. Correction to: Threats of Climate Change in Small Oceanic Islands: The Case of Climate and Agriculture in the Galapagos Islands, Ecuador. In Land Cover and Land Use Change on Islands. Social and Ecological Interactions in the Galapagos Islands; Walsh, S.J., Riveros-Iregui, D., Arce-Nazario, J., Page, P.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Butrico, G.M.; Kaplan, D.H. Greenhouse Agriculture in the Icelandic Food System. Eur. Countrys. 2018, 10, 711–724. [Google Scholar] [CrossRef]
- Martinez-Alvarez, V.; Bar-Tal, A.; Diaz Peña, F.J.; Maestre-Valero, J.F. Desalination of Seawater for Agricultural Irrigation. Water 2020, 12, 1712. [Google Scholar] [CrossRef]
- Alonso, J.J.S.; Álvarez, L.Á.; Melián-Martel, N.; Díaz, J.S. The Canary Islands and Its Passion for Water Desalination. Desalin. Water Treat. 2015, 55, 2340–2350. [Google Scholar] [CrossRef]
- Martínez-Alvarez, V.; González-Ortega, M.J.; Martin-Gorriz, B.; Soto-García, M.; Maestre-Valero, J.F. The Use of Desalinated Seawater for Crop Irrigation in the Segura River Basin (South-Eastern Spain). Desalination 2017, 422, 153–164. [Google Scholar] [CrossRef]
- Raveh, E.; Ben-Gal, A. Leveraging Sustainable Irrigated Agriculture via Desalination: Evidence from a Macro-Data Case Study in Israel. Sustainability 2018, 10, 974. [Google Scholar] [CrossRef]
Parameters | Tests |
---|---|
Physicochemical | Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD5), Dissolved Oxygen, Ammonia, Ammonium, Bicarbonates, Calcium, Carbonates, Chlorides, Phosphorus, Magnesium, Nitrates, Nitrites, Phosphates, Potassium, Silica, Sodium, Sulphates, Sulphides |
Potentially Toxic Elements | Aluminium, Boron, Cadmium, Copper, Iron, Lithium, Manganese, Molybdenum, Nickel, Silver, Lead, Zinc |
Microbiological | Total Coliforms, Faecal Coliforms |
Water Quality Index | Equation | Water Quality Criteria |
---|---|---|
%Na | <20 excellent, 20–40 good, 40–60 suitable, 60–80 unsafe, >80 unsuitable | |
RSC (meq/L) | <1.25 safe, 1.25–2.5 marginally suitable, >2.5 unsuitable | |
KR (meq/L) | <1 suitable, >1 unsuitable | |
SAR (meq/L) | <10 excellent (S1), 10–18 good (S2), 18–26 permissible (S3), >26 unsuitable | |
MAR (%) | <50 suitable, >50 unsuitable | |
PI (%) | <80 good, 80–100 moderate, >100 poor |
In Situ Parameters | San Cristobal Range | Santa Cruz Range | Isabela Range | Floreana Range | TULSMA Limit * | Other Permissible Limits |
---|---|---|---|---|---|---|
pH | 6.6–8.4 | 7.3–8.8 | 7.1–7.4 | 8.11–8.31 | 6–9 | 6.5–8.4 ** |
Conductivity (μS/cm) | 45.0–156.1 | 129.0–271.3 | 1512.0–1620.0 | 184.2–431.3 | Restriction category None: ≤700 Moderate: 700–3000 Severe: >3000 | Effects Not harmful: <750 *** Harmful to adverse: 750–3000 *** |
Temperature (°C) | 20.6–27.3 | 21.4–25.9 | 23.3–24.7 | 23.1–25.5 | Natural condition (23) ± 3 | Natural condition (23) ± 3 ** |
TDS (mg/L) | 23.0–103.2 | 64.0–136.0 | 757.8–808.2 | 92.5–215.9 | Restriction category None: ≤450 Moderate: 450–2000 Severe: >2000 | Effects Not harmful: ≤500 *** Harmful to adverse: 500–2000 *** |
Salinity (mg/L) | 30.8–102.4 | 76.8–134.0 | 762.4–824.6 | 91.7–208.4 | Salinity status: <500 freshwater, 500 to 30,000 brackish water, >30,000 saltwater | <450 * |
Parameters | Tests | Unity | San Cristobal Range | Santa Cruz Range | Isabela Range | Floreana Range | MPL |
---|---|---|---|---|---|---|---|
Physicochemical | COD | mgO2/L | <0.44–25.70 | 3.4–174.74 | 2.29–34.24 | 2.60–98.85 | 40 ** |
BOD5 | mgO2/L | <0.57–9.12 | 1.25–94.2 | 1.0–17.0 | 0.84–45.24 | 15.0 ** | |
Dissolved oxygen | mgO2/L | 5.59–8.32 | 7.02–8.86 | 4.89–7.36 | 7.31–8.73 | ≥4.0 ** | |
Ammonia | mg/L | 0.03–0.7 | 0.03–0.17 | 0.03–1.09 | 0.02–0.33 | - | |
Ammonium | mg/L | <0.01–0.7 | <0.01–0.18 | 0.44–1.15 | <0.01–0.35 | - | |
Bicarbonates | mg/L | <7.5–55.3 | <7.48–110.93 | 76.02–76.51 | 36.54–129.53 | 518.0 ** | |
Calcium | mg/L | 1.95–9.38 | 6.27–26.90 | 18.82–21.60 | 8.95–24.79 | 200 ** | |
Carbonates | mgCO3Ca/L | <0.00 | <0.00–42.42 | <0.00 | <14.03–19.25 | 5.0 ** | |
Chlorides | mg/L | 4.93–9.35 | 6.09–461.98 | 392.43–425.30 | 17.12–20.04 | 200.0 *** | |
Phosphorus | mg/L | <0.0122 | 0.03–1.49 | 0.20–0.34 | 0.20–0.56 | - | |
Magnesium | mg/L | 1.27–7.90 | 2.74–37.60 | 20.36–20.69 | 6.59–17.50 | 150.0 * | |
Nitrates | mg/L | <0.34–0.44 | 0.34–0.89 | 0.44–6.20 | <0.34–0.44 | 100.0 ** | |
Nitrites | mg/L | 0.02–0.07 | <0.005–0.02 | 0.026–2.937 | <0.005–0.033 | 10.0 ** | |
Phosphates | mg/L | 0.27–0.62 | 0.45–2.88 | 0.46–0.80 | 0.98–1.48 | - | |
Potassium | mg/L | 0.27–1.49 | <0.04–10.75 | 17.49–19.35 | 1.73–5.49 | - | |
Silica | mgSiO2/L | 12.7–26.7 | 8.90–31.50 | 44.70–47.10 | 21.80–41.20 | - | |
Sodium | mg/L | 4.0–10.0 | 2.38–209.87 | 238.98–264.47 | 9.77–31.22 | - | |
Sulphates | mg/L | 1.0–10.0 | 1.0–70.0 | 59.0 | 1.0–7.0 | 250.0 *** | |
Sulphides | mg/L | 0.01–0.03 | 0.01–0.14 | <0.001–0.02 | <0.001–0.01 | - | |
Potentially Toxic Elements | Aluminium | mg/L | 0.05–2.54 | 0.30–3.16 | <0.0285 | <0.0285–11.2 | 5.0 * |
Boron | mg/L | 0.03–0.04 | 0.03–0.08 | 0.16–0.17 | 0.079–0.152 | 0.75 * | |
Cadmium | mg/L | <0.0007 | 0.0008–0.0018 | <0.0007 | <0.00070–0.002 | 0.05 * | |
Copper | mg/L | 0.001–0.003 | 0.002–0.007 | 0.008–0.014 | 0.0028–0.0454 | 0.2 * | |
Iron | mg/L | 0.05–1.13 | 0.17–9.94 | 0.07–0.13 | 0.05–0.45 | 5.0 * | |
Lithium | mg/L | <0.0118 | 0.012–0.013 | 0.023–0.025 | 0.012–0.018 | 2.5 * | |
Manganese | mg/L | 0.0013–0.018 | 0.004–0.704 | 0.0025–0.0046 | 0.0015–0.4116 | 0.2 * | |
Molybdenum | mg/L | <0.0016–0.003 | <0.0016–0.002 | 0.0046–0.0078 | <0.00160–0.0023 | 0.01 * | |
Nickel | mg/L | <0.0014–0.003 | 0.0022–0.0073 | <0.0014 | 0.001–0.028 | 0.2 * | |
Silver | mg/L | <0.0006 | 0.0008–0.0020 | <0.0006 | 0.0007–0.0009 | 0.05 ** | |
Lead | mg/L | <0.0024 | <0.0024–0.0033 | <0.0024 | 0.0029–0.0045 | 5.0 * 0.05 *** | |
Zinc | mg/L | 0.007–0.035 | 0.006–0.673 | 0.031–0.041 | 0.006–0.036 | 2.0 * | |
Microbiological | Total coliforms | NMP/100 mL | 310.0–16,580.0 | 3900.0 | 100.0–310.0 | 7900.0 | - |
Faecal coliforms | NMP/100 mL | 100–1250 | <1.8–200.0 | <1.0 | 180.0–200.0 | 1000.0 * |
Source | Water Quality Index | Water Quality Criteria Observations | |||||
---|---|---|---|---|---|---|---|
Na (%) | RSC (meq/L) | KR (meq/L) | SAR (meq/L) | MAR (%) | PI (%) | ||
SC-3 | 35.52 | 0.41 | 0.51 | 2.51 | 46.25 | 70.51 | %Na: good, RSC: safe, KR: suitable, SAR: excellent, MAR: suitable, PI: good |
SC-4 | 45.17 | 0.16 | 0.78 | 2.68 | 42.21 | 86.64 | %Na: suitable, RSC: safe, KR: suitable, SAR: excellent, MAR: suitable, PI: moderate |
SC-6 | 60.77 | 0.03 | 1.24 | 3.15 | 39.47 | 93.35 | %Na: unsafe, RSC: safe, KR: unsuitable, SAR: excellent, MAR: suitable, PI: moderate |
SC-8 | 36.30 | 0.51 | 0.53 | 2.91 | 47.54 | 66.60 | %Na: good, RSC: safe, KR: suitable, SAR: excellent, MAR: suitable, PI: good |
SC-11 | 35.63 | 0.43 | 0.52 | 2.68 | 48.00 | 69.01 | %Na: good, RSC: safe, KR: suitable, SAR: excellent, MAR: suitable, PI: good |
SC-13 | 38.27 | 0.31 | 0.56 | 2.90 | 44.48 | 66.42 | %Na: good, RSC: safe, KR: suitable, SAR: excellent, MAR: suitable, PI: good |
SC-15 | 35.59 | 0.31 | 0.53 | 2.57 | 44.69 | 68.66 | %Na: good, RSC: safe, KR: suitable, SAR: excellent, MAR: suitable, PI: good |
SC-16 | 39.55 | 0.39 | 0.57 | 3.34 | 45.70 | 62.88 | %Na: good, RSC: safe, KR: suitable, SAR: excellent, MAR: suitable, PI: good |
SZ-6 | 77.38 | 0.47 | 3.25 | 36.96 | 58.29 | 80.33 | %Na: unsafe, RSC: safe, KR: unsuitable, SAR: unsuitable, MAR: unsuitable, PI: moderate |
SZ-9 | 51.77 | −0.34 | 0.55 | 3.10 | 34.59 | 48.84 | %Na: suitable, RSC: safe, KR: suitable, SAR: excellent, MAR: suitable, PI: good |
SZ-10 | 43.00 | 0.54 | 0.75 | 3.88 | 41.70 | 75.22 | %Na: suitable, RSC: safe, KR: suitable, SAR: excellent, MAR: suitable, PI: good |
SZ-11 | 49.06 | −0.19 | 0.29 | 1.23 | 30.43 | 46.00 | %Na: suitable, RSC: safe, KR: suitable, SAR: excellent, MAR: suitable, PI: good |
SZ-12 | 40.42 | −0.18 | 0.13 | 0.79 | 28.92 | 37.54 | %Na: suitable, RSC: safe, KR: suitable, SAR: excellent, MAR: suitable, PI: good |
IS-2 | 87.02 | 0.17 | 6.29 | 57.67 | 48.64 | 89.13 | %Na: unsafe, RSC: safe, KR: unsuitable, SAR: unsuitable, MAR: suitable, PI: moderate |
IS-3 | 86.73 | 0.31 | 6.05 | 53.77 | 52.36 | 88.95 | %Na: unsafe, RSC: safe, KR: unsuitable, SAR: unsuitable, MAR: unsuitable, PI: moderate |
FL-1 | 43.79 | 0.88 | 0.74 | 6.79 | 41.38 | 57.95 | %Na: suitable, RSC: safe, KR: suitable, SAR: excellent, MAR: suitable, PI: good |
FL-2 | 47.66 | 0.20 | 0.63 | 3.50 | 42.50 | 66.63 | %Na: suitable, RSC: safe, KR: suitable, SAR: excellent, MAR: suitable, PI: good |
Internal Analysis | External Analysis |
---|---|
Strengths | Opportunities |
|
|
Weaknesses | Threats |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrión-Mero, P.; Morante-Carballo, F.; Briones-Bitar, J.; Jaya-Montalvo, M.; Sánchez-Zambrano, E.; Solórzano, J.; Malavé-Hernández, J.; Montalván Toala, F.J.; Proaño, J.; Flor-Pineda, Á.; et al. Water Quality from Natural Sources for Sustainable Agricultural Development Strategies: Galapagos, Ecuador. Water 2024, 16, 1516. https://doi.org/10.3390/w16111516
Carrión-Mero P, Morante-Carballo F, Briones-Bitar J, Jaya-Montalvo M, Sánchez-Zambrano E, Solórzano J, Malavé-Hernández J, Montalván Toala FJ, Proaño J, Flor-Pineda Á, et al. Water Quality from Natural Sources for Sustainable Agricultural Development Strategies: Galapagos, Ecuador. Water. 2024; 16(11):1516. https://doi.org/10.3390/w16111516
Chicago/Turabian StyleCarrión-Mero, Paúl, Fernando Morante-Carballo, Josué Briones-Bitar, María Jaya-Montalvo, Emily Sánchez-Zambrano, Joselyne Solórzano, Jenifer Malavé-Hernández, Francisco Javier Montalván Toala, Jaime Proaño, Ángel Flor-Pineda, and et al. 2024. "Water Quality from Natural Sources for Sustainable Agricultural Development Strategies: Galapagos, Ecuador" Water 16, no. 11: 1516. https://doi.org/10.3390/w16111516
APA StyleCarrión-Mero, P., Morante-Carballo, F., Briones-Bitar, J., Jaya-Montalvo, M., Sánchez-Zambrano, E., Solórzano, J., Malavé-Hernández, J., Montalván Toala, F. J., Proaño, J., Flor-Pineda, Á., & Espinel, R. (2024). Water Quality from Natural Sources for Sustainable Agricultural Development Strategies: Galapagos, Ecuador. Water, 16(11), 1516. https://doi.org/10.3390/w16111516