Measuring the Gains and Losses of Virtual Water Flows in China’s Coastal Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Virtual Water Flow (VWF)
2.3. Resource Benefits
2.4. Economic Benefits
3. Theory
3.1. Theoretical Basis for the Improvement of the Water Stress Index in Coastal Provinces and Cities
3.2. Theoretical Basis for Economic Benefits Analysis Based on Shadow Prices
3.3. Relevant Concepts in the Benefit Analysis
4. Results
4.1. Virtual Water Flow Pattern
4.1.1. Overall Virtual Water Flow Patterns in Coastal Areas
4.1.2. Patterns of Virtual Water Flows among Coastal Provinces and Cities
4.2. Resource Benefits
4.2.1. Resource Benefits of Coastal Provinces and Cities under Virtual Water Flows Nationwide
4.2.2. Resource Benefits of Virtual Water Flows among Coastal Provinces and Cities
4.3. Economic Benefits
4.3.1. Economic Benefits for Coastal Provinces and Cities under Virtual Water Flows Nationwide
4.3.2. Economic Benefits of Virtual Water Flows among Coastal Provinces and Cities
5. Discussion
5.1. Applicability of the Benefit Analysis Methodology
5.2. Suggestions for China’s Coastal Areas
5.3. Future Research Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Lei, Y.L.; Wu, S.M. Virtual water embodied in the export from various provinces of China using multi-regional input-output analysis. Water Policy 2017, 19, 197–215. [Google Scholar] [CrossRef]
- Ma, H.L.; Li, Q.; Pang, Q.H. Spatial difference and decoupling analysis of industrial energy-water consumption coefficient in China. China Popul. Resour. Environ. 2019, 293, 62–70. [Google Scholar] [CrossRef]
- Qu, S.; Lin, J.; Wang, Y.H. Analysis of interprovincial virtual water flow model and its impact in electric power sector. J. Beijing Inst. Technol. (Soc. Sci. Ed.) 2023, 252, 45–56. [Google Scholar] [CrossRef]
- Allan, J.A. Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible. Priorities Water Resour. Alloc. Manag. 1993, 134, 26. [Google Scholar]
- Hoekstra, A.Y. Perspectives on Water: An Integrated Model-Based Exploration of the Future; Jan van Arkel (International Books): South Kensington, UK, 1998. [Google Scholar]
- Allan, J.A. Virtual water: A strategic resource. Ground Water 1998, 364, 545–547. [Google Scholar] [CrossRef]
- Islam, K.N.; Kenway, S.J.; Renouf, M.A.; Wiedmann, T.; Lam, K.L. A multi-regional input-output analysis of direct and virtual urban water flows to reduce city water footprints in Australia. Sustain. Cities Soc. 2021, 75, 103236. [Google Scholar] [CrossRef]
- White, D.J.; Hubacek, K.; Feng, K.; Sun, L.; Meng, B. The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis. Appl. Energy 2018, 210, 550–567. [Google Scholar] [CrossRef]
- Han, W.Y.; Zhang, Y.J.; Zhang, L.P. Research on virtual water trade between China and the United States based on input-output analysis. China Rural. Water Resour. Hydropower 2020, 12, 27–34+39. [Google Scholar] [CrossRef]
- Feng, K.; Hubacek, K.; Pfister, S.; Yu, Y.; Sun, L. Virtual scarce water in China. Environ. Sci. Technol. 2014, 4814, 7704–7713. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, G.; Li, Z.; Li, K. Interprovincial food trade and water resources conservation in China. Sci. Total Environ. 2020, 737, 139651. [Google Scholar] [CrossRef]
- Zheng, J.W.; Sun, C.Z. Analysis of water resource flow pattern in China based on MRIO and ESTDA model. China Popul. Resour. Environ. 2023, 334, 172–183. [Google Scholar] [CrossRef]
- Zhang, S.; Taiebat, M.; Liu, Y.; Qu, S.; Liang, S.; Xu, M. Regional water footprints and interregional virtual water transfers in China. J. Clean. Prod. 2019, 228, 1401–1412. [Google Scholar] [CrossRef]
- Feng, K.; Siu, Y.L.; Guan, D.; Hubacek, K. Assessing regional virtual water flows and water footprints in the Yellow River Basin, China: A consumption based approach. Appl. Geogr. 2012, 322, 691–701. [Google Scholar] [CrossRef]
- Tian, G.L.; Li, J.J.; Li, L.L. Research on virtual water flow pattern of Yangtze River Economic Belt based on multi-regional input-output model. China Popul. Resour. Environ. 2019, 293, 81–88. [Google Scholar] [CrossRef]
- Xie, W.W.; Ma, Z. Research on the pattern and trend of virtual water flow in 9 provinces (regions) in the Yellow River Basin. People’s Yellow River 2022, 4410, 78–83. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, K.; Yang, S.; Yu, Y. An input–output approach to evaluate the water footprint and virtual water trade of Beijing, China. J. Clean. Prod. 2013, 42, 172–179. [Google Scholar] [CrossRef]
- Dong, H.; Geng, Y.; Sarkis, J.; Fujita, T.; Okadera, T.; Xue, B. Regional water footprint evaluation in China: A case of Liaoning. Sci. Total Environ. 2013, 442, 215–224. [Google Scholar] [CrossRef]
- Tan, S.L.; Qiu, G.Y.; Xiong, Y.J. New application of input-output method in the study of virtual water consumption and trade. J. Nat. Resour. 2014, 292, 355–364. [Google Scholar] [CrossRef]
- Kumar, M.D.; Singh, O.P. Virtual water in global food and water policy making: Is there a need for rethinking? Water Resour. Manag. 2005, 19, 759–789. [Google Scholar] [CrossRef]
- Sun, C.Z.; Liu, Y.Y.; Chen, L.X. Analysis of the pattern and causes of virtual water flow in China’s grain trade: And the applicability of “virtual water strategy” in China. China Soft Sci. 2010, 7, 36–44. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Virtual water trade and world water resources. Water Sci. Technol. 2004, 497, 203–209. [Google Scholar] [CrossRef]
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro—scale water scarcity requires micro-scale approaches: Aspects of vulnerability in semi-arid development. Nat. Resour. Forum 1989, 134, 258–267. [Google Scholar] [CrossRef]
- Wang, D.; Hubacek, K.; Shan, Y.; Gerbens-Leenes, W.; Liu, J. A review of water stress and water footprint accounting. Water 2021, 132, 201. [Google Scholar] [CrossRef]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the environmental impacts of freshwater consumption in LCA. Environ. Sci. Technol. 2009, 4311, 4098–4104. [Google Scholar] [CrossRef]
- Zhong, R.; Chen, A.; Zhao, D.; Mao, G.; Zhao, X.; Huang, H.; Liu, J. Impact of international trade on water scarcity: An assessment by improving the Falkenmark indicator. J. Clean. Prod. 2023, 385, 135740. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Liu, Q.; Tillotson, M.R.; Guan, D.; Hubacek, K. Physical and virtual water transfers for regional water stress alleviation in China. Proc. Natl. Acad. Sci. USA 2015, 1124, 1031–1035. [Google Scholar] [CrossRef]
- Tian, X.; Xiong, Y.L.; Liu, S.W. Transfer model of inter-provincial water resources stress in China. China Popul. Resour. Environ. 2020, 3012, 75–83. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Yang, H.; Liu, W.; Tillotson, M.; Guan, D.; Yi, Y.; Wang, H. Measuring scarce water saving from interregional virtual water flows in China. Environ. Res. Lett. 2018, 135, 054012. [Google Scholar] [CrossRef]
- Wu, L.; Huang, K.; Ren, Y.; Yu, Y.; Huang, B. Toward a better understanding of virtual water trade: Comparing the volumetric and impact-oriented virtual water transfers in China. Resour. Conserv. Recycl. 2022, 186, 106573. [Google Scholar] [CrossRef]
- Wu, P.T.; Zhuo, L.; Liu, Y.L. Analysis and evaluation of the coupling flow process of physical water and virtual water in regional main crop production. Chin. Sci. Bull. 2019, 6418, 1953–1966. [Google Scholar] [CrossRef]
- Han, A.; Liu, A.; Guo, Z.; Liang, Y.; Chai, L. Measuring gains and losses in virtual water trade from environmental and economic perspectives. Environ. Resour. Econ. 2023, 851, 195–209. [Google Scholar] [CrossRef]
- An, Q.; Wu, S.; Li, L.; Li, S. Inequality of virtual water consumption and economic benefits embodied in trade: A case study of the Yellow River Basin, China. Water Policy 2021, 236, 1445–1467. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, S.X.; Li, S.T. Unfair exchange of virtual water consumption and value-added income between regions caused by China’s exports. China Popul. Resour. Environ. 2022, 324, 164–176. [Google Scholar] [CrossRef]
- Isard, W. Interregional and regional input-output analysis: A model of a space-economy. Rev. Econ. Stat. 1951, 33, 318–328. [Google Scholar] [CrossRef]
- Carbon Emission Accounts & Datasets. Available online: https://www.ceads.net/user/login.php?lang=cn (accessed on 10 March 2024).
- National Bureau of Statistics of China. China Statistical Yearbook 2018; China Statistical Publishing House: Beijing, China, 2018. Available online: http://www.stats.gov.cn/sj/ndsj/2018/indexch.htm (accessed on 10 April 2024).
- Zhang, C.; Anadon, L.D. A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China. Ecol. Econ. 2014, 100, 159–172. [Google Scholar] [CrossRef]
- Ziolkowska, J.R. Shadow price of water for irrigation—A case of the High Plains. Agric. Water Manag. 2015, 153, 20–31. [Google Scholar] [CrossRef]
Provinces and Cities | Seawater Cooling Water (Billion tons/Year) | Seawater Desalination (Million tons/Day) | Blue Water (Billion m3) | Total Available Water (Billion m3) | Percentage of Additional Water Resources in Total Available Water (%) |
---|---|---|---|---|---|
Liaoning | 92.94 | 8.77 | 186.3 | 279.6 | 33.4 |
Tianjin | 12.09 | 31.72 | 13.0 | 26.2 | 50.5 |
Hebei | 38.72 | 17.35 | 138.3 | 177.7 | 22.2 |
Shandong | 83.08 | 28.26 | 225.6 | 309.7 | 27.2 |
Shanghai | 31.62 | / | 34.0 | 65.6 | 48.2 |
Jiangsu | 42.40 | 0.51 | 392.9 | 435.3 | 9.7 |
Zhejiang | 306.84 | 22.78 | 895.3 | 1203.0 | 25.6 |
Fujian | 225.19 | 1.12 | 1055.6 | 1280.8 | 17.6 |
Guangdong | 418.37 | 8.13 | 1786.6 | 2205.3 | 19.0 |
Guangxi | 54.20 | / | 2388.0 | 2442.2 | 2.2 |
Hainan | 39.40 | 0.27 | 383.9 | 423.3 | 9.3 |
Virtual Water Flow Relationships | Virtual Water Inflow | Virtual Water Outflow | Net Outflows | ||||
---|---|---|---|---|---|---|---|
From Coastal Provinces and Cities | From Inland Areas | Total Inflows | Flows to Coastal Provinces and Cities | Flows to Inland Areas | Total Outflows | ||
Liaoning | 10.3 | 25.2 | 35.5 | 13.5 | 12.9 | 26.4 | −9.1 |
Tianjin | 10.4 | 12.1 | 22.5 | 4.4 | 6.4 | 10.8 | −11.7 |
Hebei | 10.1 | 23.3 | 33.4 | 14.1 | 21.3 | 35.4 | 2.0 |
Shandong | 7.9 | 22.6 | 30.5 | 3.7 | 5.7 | 9.3 | −21.2 |
Shanghai | 7.5 | 14.5 | 21.9 | 10.6 | 12.0 | 22.6 | 0.7 |
Jiangsu | 9.9 | 38.4 | 48.4 | 28.6 | 37.9 | 66.5 | 18.2 |
Zhejiang | 28.3 | 57.1 | 85.4 | 10.5 | 27.7 | 38.2 | −47.2 |
Fujian | 7.9 | 25.6 | 33.5 | 5.0 | 12.9 | 18.0 | −15.6 |
Guangdong | 50.3 | 34.7 | 85.0 | 17.9 | 39.2 | 57.1 | −27.9 |
Guangxi | 7.8 | 13.4 | 21.1 | 34.2 | 11.9 | 46.1 | 25.0 |
Hainan | 2.8 | 10.0 | 12.8 | 10.5 | 6.1 | 16.6 | 3.8 |
Coastal areas | 153.0 | 276.9 | 430.0 | 153.0 | 194.0 | 347.0 | −83.0 |
To | Liaoning | Tianjin | Hebei | Shandong | Shanghai | Jiangsu | Zhejiang | Fujian | Guangdong | Guangxi | Hainan | Outflow | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
From | |||||||||||||
Liaoning | / | 3.4 | 0.2 | 0.3 | 0.1 | 0.4 | 0.6 | 0.1 | 7.9 | 0.1 | 0.3 | 13.5 | |
Tianjin | 0.4 | / | 0.8 | 0.2 | 0.2 | 0.5 | 0.9 | 0.4 | 0.6 | 0.2 | 0.1 | 4.4 | |
Hebei | 1.3 | 2.4 | / | 2.9 | 1.1 | 1.2 | 2.7 | 0.5 | 1.3 | 0.5 | 0.2 | 14.1 | |
Shandong | 0.5 | 0.2 | 0.3 | / | 0.2 | 0.5 | 1.2 | 0.1 | 0.5 | 0.1 | 0.1 | 3.7 | |
Shanghai | 0.6 | 0.4 | 3.5 | 0.8 | / | 1.5 | 1.4 | 0.5 | 1.1 | 0.7 | 0.2 | 10.6 | |
Jiangsu | 2.5 | 1.8 | 1.6 | 1.3 | 1.8 | / | 12.7 | 2.2 | 3.1 | 1.3 | 0.4 | 28.6 | |
Zhejiang | 0.9 | 0.3 | 1.0 | 1.0 | 1.5 | 2.0 | / | 1.9 | 1.5 | 0.3 | 0.2 | 10.5 | |
Fujian | 0.7 | 0.1 | 0.3 | 0.1 | 1.5 | 0.3 | 1.2 | / | 0.5 | 0.3 | 0.1 | 5.0 | |
Guangdong | 2.6 | 1.1 | 1.5 | 0.8 | 0.8 | 2.0 | 5.6 | 1.3 | / | 1.5 | 0.8 | 17.9 | |
Guangxi | 0.7 | 0.3 | 0.9 | 0.4 | 0.3 | 1.4 | 1.9 | 0.6 | 27.3 | / | 0.3 | 34.2 | |
Hainan | 0.1 | 0.34 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 6.4 | 2.8 | / | 10.5 | |
Inflow | 10.3 | 10.4 | 10.1 | 7.9 | 7.5 | 9.9 | 28.3 | 7.9 | 50.3 | 7.8 | 2.8 | 153.0 | |
Net inflow | −3.2 | 6.0 | −4.1 | 4.2 | −3.2 | −18.7 | 17.8 | 2.9 | 32.4 | −26.4 | −7.7 | / |
Province | WSI | Province | WSI | Province | WSI | Province | WSI |
---|---|---|---|---|---|---|---|
Ningxia | 6.120 | Shanxi | 0.575 | Hubei | 0.232 | Guangxi | 0.117 |
Shanghai | 1.597 | Henan | 0.553 | Shaanxi | 0.207 | Sichuan | 0.109 |
Jiangsu | 1.358 | Xinjiang | 0.542 | Guangdong | 0.197 | Hainan | 0.108 |
Beijing | 1.326 | Gansu | 0.49 | Hunan | 0.171 | Guizhou | 0.098 |
Tianjin | 1.048 | Heilongjiang | 0.486 | Fujian | 0.150 | Yunnan | 0.071 |
Hebei | 1.022 | Liaoning | 0.469 | Jiangxi | 0.150 | Qinghai | 0.033 |
Shandong | 0.676 | Anhui | 0.370 | Zhejiang | 0.149 | Tibet | 0.007 |
Inner Mongolia | 0.607 | Jilin | 0.321 | Chongqing | 0.118 | / | / |
To | Liaoning | Tianjin | Hebei | Shandong | Shanghai | Jiangsu | Zhejiang | Fujian | Guangdong | Guangxi | Hainan | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
From | |||||||||||||
Liaoning | / | 2.66 | 0.10 | −0.02 | 0.05 | 0.45 | −0.22 | −0.04 | −1.98 | −0.04 | −0.09 | 0.86 | |
Tianjin | −0.18 | / | 0.18 | −0.10 | 0.01 | 0.51 | −0.81 | −0.32 | −0.46 | −0.17 | −0.11 | −1.45 | |
Hebei | −0.71 | 0.33 | / | −1.79 | 0.29 | 0.88 | −2.44 | −0.46 | −1.09 | −0.39 | −0.21 | −5.58 | |
Shandong | 0.04 | 0.10 | 0.30 | / | 1.18 | 1.38 | −0.60 | −0.06 | −0.16 | −0.04 | −0.06 | 2.06 | |
Shanghai | −0.39 | −0.14 | −1.35 | −0.76 | / | 2.42 | −1.85 | −0.65 | −1.39 | −0.89 | −0.25 | −5.25 | |
Jiangsu | −2.53 | −1.50 | −1.12 | −1.37 | −0.13 | / | −16.28 | −2.76 | −3.88 | −1.59 | −0.53 | −31.70 | |
Zhejiang | 0.38 | 0.27 | 0.90 | 0.19 | 4.03 | 4.40 | / | 0.00 | 0.07 | 0.02 | 0.01 | 10.29 | |
Fujian | 0.36 | 0.12 | 0.42 | 0.07 | 2.76 | 0.52 | −0.01 | / | 0.02 | 0.04 | 0.00 | 4.30 | |
Guangdong | 0.98 | 1.40 | 1.57 | 0.35 | 1.42 | 3.84 | −0.21 | −0.07 | / | 0.07 | 0.03 | 9.39 | |
Guangxi | 0.17 | 0.15 | 0.44 | 0.07 | 0.25 | 1.45 | −0.08 | −0.02 | 1.15 | / | −0.01 | 3.58 | |
Hainan | 0.04 | 0.21 | 0.06 | 0.02 | 0.13 | 0.32 | 0.00 | 0.00 | 1.32 | 0.30 | / | 2.41 | |
Total | −1.84 | 3.61 | 1.50 | −3.34 | 10.00 | 16.18 | −22.51 | −4.39 | −6.40 | −2.70 | −1.22 | −11.10 |
Province | SP | Province | SP | Province | SP | Province | SP |
---|---|---|---|---|---|---|---|
Tianjin | 905 | Zhejiang | 157 | Hunan | 93 | Qinghai | 54 |
Beijing | 544 | Guangdong | 141 | Hainan | 91 | Jiangxi | 52 |
Shandong | 450 | Shaanxi | 134 | Inner Mongolia | 91 | Jilin | 45 |
Chongqing | 287 | Fujian | 132 | Liaoning | 88 | Gansu | 42 |
Guizhou | 263 | Henan | 126 | Shanxi | 83 | Guangxi | 39 |
Hebei | 206 | Sichuan | 114 | Yunnan | 79 | Heilongjiang | 24 |
Shanghai | 191 | Jiangsu | 97 | Ningxia | 60 | Xinjiang | 19 |
Hubei | 183 | Anhui | 95 | Tibet | 56 | / | / |
To | Liaoning | Tianjin | Hebei | Shandong | Shanghai | Jiangsu | Zhejiang | Fujian | Guangdong | Guangxi | Hainan | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
From | |||||||||||||
Liaoning | / | 2783 | 24 | 111 | 10 | 4 | 42 | 6 | 420 | −7 | 1 | 3394 | |
Tianjin | −356 | / | −569 | −107 | −157 | −422 | −673 | −283 | −434 | −176 | −96 | −3273 | |
Hebei | −157 | 1689 | / | 711 | −16 | −129 | −132 | −39 | −87 | −76 | −26 | 1738 | |
Shandong | −181 | 71 | −69 | / | −43 | −175 | −355 | −43 | −148 | −49 | −39 | −1031 | |
Shanghai | −65 | 264 | 54 | 206 | / | −138 | −47 | −29 | −54 | −102 | −19 | 70 | |
Jiangsu | −23 | 1418 | 173 | 443 | 166 | / | 759 | 76 | 137 | −77 | −3 | 3069 | |
Zhejiang | −60 | 249 | 48 | 280 | 50 | −117 | / | −49 | −25 | −40 | −10 | 326 | |
Fujian | −29 | 112 | 21 | 39 | 89 | −9 | 29 | / | 4 | −23 | −5 | 228 | |
Guangdong | −135 | 854 | 97 | 249 | 38 | −88 | 90 | −12 | / | −151 | −41 | 901 | |
Guangxi | 35 | 269 | 143 | 169 | 46 | 83 | 221 | 59 | 2798 | / | 18 | 3841 | |
Hainan | 0 | 288 | 9 | 28 | 6 | 1 | 15 | 8 | 318 | −146 | / | 527 | |
Total | −971 | 7997 | −69 | 2129 | 189 | −990 | −51 | −306 | 2929 | −847 | −220 | 9784 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Yang, S. Measuring the Gains and Losses of Virtual Water Flows in China’s Coastal Areas. Water 2024, 16, 1518. https://doi.org/10.3390/w16111518
Zhao L, Yang S. Measuring the Gains and Losses of Virtual Water Flows in China’s Coastal Areas. Water. 2024; 16(11):1518. https://doi.org/10.3390/w16111518
Chicago/Turabian StyleZhao, Liangshi, and Shuang Yang. 2024. "Measuring the Gains and Losses of Virtual Water Flows in China’s Coastal Areas" Water 16, no. 11: 1518. https://doi.org/10.3390/w16111518
APA StyleZhao, L., & Yang, S. (2024). Measuring the Gains and Losses of Virtual Water Flows in China’s Coastal Areas. Water, 16(11), 1518. https://doi.org/10.3390/w16111518