Degradation of Sulfamethoxazole in Secondary Wastewater Based on Persulfate Activated by Citric-Acid-Complexed Ferrous Ion under Sunlight
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Secondary Wastewater Effluent
2.3. Experiment Procedure
2.4. Identification of Reactive Species
2.5. Analytical Methods
2.5.1. Determination of SMX
2.5.2. Analysis of Fe species
2.5.3. Determination of Carboxylic Acids
2.5.4. Identification of SMX Degradation Products
3. Results and Discussion
3.1. Removal of SMX by Sunlight/Fe(II)/Cit/PS System
3.2. Changes in the Concentration of Different Fe Species and Carboxylic Acids
3.3. Identification of Reactive Species
3.4. Influencing Factors on the Removal of SMX
3.4.1. Influence of Fe(II) Concentration
3.4.2. Influence of Citric Acid Concentration
3.4.3. Influence of PS Concentration
3.5. Degradation Products of SMX
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Li, W.; Liu, K.; Guo, Y.; Ding, C.; Han, J. Global review of macrolide antibiotics in the aquatic environment: Sources, occurrence, fate, ecotoxicity, and risk assessment. J. Hazard. Mater. 2022, 439, 129628. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, P.; Shukla, P.; Giri, B.S.; Chowdhary, P.; Chandra, R.; Gupta, P.; Pandey, A. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environ. Res. 2021, 194, 110664. [Google Scholar] [CrossRef] [PubMed]
- Doretto, K.M.; Peruchi, L.M.; Rath, S. Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils. Sci. Total Environ. 2014, 476–477, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Cui, H.; Jia, X.; Huang, X. Occurrence and ecotoxicity of sulfonamides in the aquatic environment: A review. Sci. Total Environ. 2022, 820, 153178. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ji, M.; Zhai, H.; Guo, Y.; Liu, Y. Occurrence of antibiotics and antibiotic resistance genes in WWTP effluent-receiving water bodies and reclaimed wastewater treatment plants. Sci. Total Environ. 2021, 796, 148919. [Google Scholar] [CrossRef] [PubMed]
- Pu, M.; Ailijiang, N.; Mamat, A.; Chang, J.; Zhang, Q.; Liu, Y.; Li, N. Occurrence of antibiotics in the different biological treatment processes, reclaimed wastewater treatment plants and effluent-irrigated soils. J. Environ. Chem. Eng. 2022, 10, 107715. [Google Scholar] [CrossRef]
- Wu, Z.; Gong, S.; Liu, J.; Shi, J.; Deng, H. Progress and problems of water treatment based on UV/persulfate oxidation process for degradation of emerging contaminants: A review. J. Water Process Eng. 2024, 58, 104870. [Google Scholar] [CrossRef]
- Qiu, Q.; Li, G.; Dai, Y.; Xu, Y.; Bao, P. Removal of antibiotic resistant microbes by Fe(II)-activated persulfate oxidation. J. Hazard. Mater. 2020, 396, 122733. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, Q.; Lou, Y.; Liu, G.; Li, S.; Chen, L.; Yuan, B.; Zou, D.; Chen, J. Efficient degradation of Nizatidine by a Fe(II)/persulfate system activated with Zero-valent iron. Chem. Eng. Res. Des. 2023, 193, 447–459. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Ioannidi, A.A.; Mantzavinos, D.; Frontistis, Z. Heat-activated persulfate for the degradation of micropollutants in water: A comprehensive review and future perspectives. J. Environ. Manag. 2022, 318, 115568. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, J.; Dong, L.; Liu, B.; Xing, D.; Yang, S.; Wu, X.; Wang, Q.; Fan, J.; Feng, L.; et al. Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. J. Hazard. Mater. 2020, 388, 122070. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, Q.; Ji, G.; Li, A. Degradation of antibiotic pollutants by persulfate activated with various carbon materials. Chem. Eng. J. 2022, 429, 132387. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, F.; Jian, H.; Zhen, K.; Zhang, P.; Tang, X.; Fu, Z.; Xu, W.; Wang, C.; Sun, H. Pyrene degradation in an aqueous system using ferrous citrate complex activated persulfate over a wide pH range. J. Environ. Chem. Eng. 2021, 9, 106733. [Google Scholar] [CrossRef]
- Rao, Y.F.; Qu, L.; Yang, H.; Chu, W. Degradation of carbamazepine by Fe(II)-activated persulfate process. J. Hazard. Mater. 2014, 268, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Bu, L.; Shi, Z.; Zhou, S. Modeling of Fe(II)-activated persulfate oxidation using atrazine as a target contaminant. Sep. Purif. Technol. 2016, 169, 59–65. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Trimethoprim degradation by Fenton and Fe(II)-activated persulfate processes. Chemosphere 2018, 191, 97–105. [Google Scholar] [CrossRef]
- Nie, M.; Yan, C.; Li, M.; Wang, X.; Bi, W.; Dong, W. Degradation of chloramphenicol by persulfate activated by Fe2+ and zerovalent iron. Chem. Eng. J. 2015, 279, 507–515. [Google Scholar] [CrossRef]
- Ling, L.; Zhang, D.; Fan, C.; Shang, C. A Fe(II)/citrate/UV/PMS process for carbamazepine degradation at a very low Fe(II)/PMS ratio and neutral pH: The mechanisms. Water Res. 2017, 124, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Cao, S.; Bai, X.; Jin, X.; Shi, X.; Han, J.; Gao, Y.; Jin, P. Efficient Fe(III) reduction and persulfate activation induced by ligand-to-metal charge transfer under visible light enhances degradation of organics. Chem. Eng. J. 2022, 446, 137052. [Google Scholar] [CrossRef]
- Han, D.; Wan, J.; Wang, Y.; Li, Y.; Li, D.; Guan, Z. New insights into the role of organic chelating agents in Fe(II) activated persulfate processes. Chem. Eng. J. 2015, 269, 425–433. [Google Scholar] [CrossRef]
- Silva, G.D.; Marson, E.O.; Batista, L.L.; Ueira-Vieira, C.; Starling, M.C.V.M.; Trovó, A.G. Contrasting the performance of photo-Fenton at neutral pH in the presence of different organic iron-complexes using hydrogen peroxide or persulfate as oxidants for naproxen degradation and removal of antimicrobial activity. Process Saf. Environ. Prot. 2021, 147, 798–807. [Google Scholar] [CrossRef]
- Yuan, D.; Li, X.; Xiong, S.; Cui, J.; Zhou, J.; Kou, Y. Improving sludge dewaterability via Fe2+ chelated citrate activated peroxydisulfate oxidation. J. Environ. Sci. 2022, 125, 223–233. [Google Scholar] [CrossRef]
- Voelker, B.M.; Morel, F.M.M.; Sulzberger, B. Iron redox cycling in surface waters: Effects of humic substances and light. Environ. Sci. Technol. 1997, 31, 1004–1011. [Google Scholar] [CrossRef]
- Yin, R.; Chen, Y.; Hu, J.; Lu, G.; Zeng, L.; Choi, W.; Zhu, M. Complexes of Fe(III)-organic pollutants that directly activate Fenton-like processes under visible light. Appl. Catal. B Environ. 2021, 283, 119663. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Wang, Z.; Xue, M.; Zhu, X.; Tao, T. Photodegradation of propranolol by Fe(III)-citrate complexes: Kinetics, mechanism and effect of environmental media. J. Hazard. Mater. 2011, 194, 202–208. [Google Scholar] [CrossRef]
- Nie, M.; Yan, C.; Xiong, X.; Wen, X.; Yang, X.; Dong, W. Degradation of chloramphenicol using a combination system of simulated solar light, Fe2+ and persulfate. Chem. Eng. J. 2018, 348, 455–463. [Google Scholar] [CrossRef]
- Li, W.; Ding, C.; Korshin, G.; Li, J.; Cheng, H. Effect of chlorination on the characteristics of effluent organic matter and the phototransformation of sulfamethoxazole in secondary wastewater. Chemosphere 2022, 295, 133193. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhou, Y.; Wang, Z.; Li, J.; Zhang, X.; Fu, C.; Du, X.; Wang, Z.; Qiu, W. Accelerate sulfamethoxazole degradation and detoxification by persulfate mediated with Fe2+ & dithionite: Experiments and DFT calculation. J. Hazard. Mater. 2022, 436, 129254. [Google Scholar]
- Tan, Y.; Cheng, Z.; Liu, Y.; Gao, X.; Liu, S.; Shen, Z. Quantum parameter analysis of the adsorption mechanism by freshly formed ferric hydroxide for synthetic dye and antibiotic wastewaters. Chemosphere 2021, 280, 130577. [Google Scholar] [CrossRef]
- Bahnmüller, S.; von Gunten, U.; Canonica, S. Sunlight-induced transformation of sulfadiazine and sulfamethoxazole in surface waters and wastewater effluents. Water Res. 2014, 57, 183–192. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Comparative study on sulfamethoxazole degradation by Fenton and Fe(II)-activated persulfate process. RSC Adv. 2017, 7, 48670–48677. [Google Scholar] [CrossRef]
- Ouyang, Z.; Yang, C.; He, J.; Yao, Q.; Zhang, B.; Wang, H.; Jiang, Y.; Zhou, J.; Deng, Y.; Liu, Y.; et al. Homogeneous photocatalytic degradation of sulfamethazine induced by Fe(III)-carboxylate complexes: Kinetics, mechanism and products. Chem. Eng. J. 2020, 402, 126122. [Google Scholar] [CrossRef]
- Quici, N.; Morgada, M.E.; Gettar, R.T.; Bolte, M.; Litter, M.I. Photocatalytic degradation of citric acid under different conditions: TiO2 heterogeneous photocatalysis against homogeneous photolytic processes promoted by Fe(III) and H2O2. Appl. Catal. B Environ. 2007, 71, 117–124. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, D.; Chu, W.; Li, M.; Lu, X. Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin. Sep. Purif. Technol. 2019, 212, 536–544. [Google Scholar] [CrossRef]
- Zou, J.; Ma, J.; Chen, L.; Li, X.; Guan, Y.; Xie, P.; Pan, C. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine. Environ. Sci. Technol. 2013, 47, 11685–11691. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Gu, X.; Lu, S.; Xue, Y.; Zhang, X.; Hu, M.; Qiu, Z.; Sui, Q. Degradation of phenanthrene in aqueous solution by a persulfate/percarbonate system activated with CA chelated-Fe(II). Chem. Eng. J. 2018, 333, 122–131. [Google Scholar] [CrossRef]
- Dong, H.; Qiang, Z.; Hu, J.; Sans, C. Accelerated degradation of iopamidol in iron activated persulfate systems: Roles of complexing agents. Chem. Eng. J. 2017, 316, 288–295. [Google Scholar] [CrossRef]
- Ou, X.; Quan, X.; Chen, S.; Zhang, F.; Zhao, Y. Photocatalytic reaction by Fe(III)–citrate complex and its effect on the photodegradation of atrazine in aqueous solution. J. Photochem. Photobiol. A Chem. 2008, 197, 382–388. [Google Scholar] [CrossRef]
- Venâncio, J.P.F.; Rodrigues, C.S.D.; Nunes, O.C.; Madeira, L.M. Application of iron-activated persulfate for municipal wastewater disinfection. J. Hazard. Mater. 2022, 426, 127989. [Google Scholar] [CrossRef]
- Chen, L.; Dong, X.; Feng, R.; Li, W.; Ding, D.; Cai, T.; Jiang, C. Oxalic acid enhanced ferrous/persulfate process for the degradation of triclosan in soil: Efficiency, mechanism and a column study. Chem. Eng. J. 2023, 473, 144961. [Google Scholar] [CrossRef]
- Guo, J.; Du, Y.; Lan, Y.; Mao, J. Photodegradation mechanism and kinetics of methyl orange catalyzed by Fe(III) and citric acid. J. Hazard. Mater. 2011, 186, 2083–2088. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, Y.; Huang, D.; Wu, Y.; Dong, W. Enhanced activation of persulfate by Fe(III) and catechin without light: Reaction kinetics, parameters and mechanism. J. Hazard. Mater. 2021, 413, 125420. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Sun, Z.; Chen, Y.; Zhang, H.; Sun, Y.; Lu, D.; Ma, J. Catalytic ozonation of sulfamethoxazole using low-cost natural silicate ore supported Fe2O3: Influencing factors, reaction mechanisms and degradation pathways. RSC Adv. 2023, 13, 1906–1913. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yang, L.; Wang, M.; Zhang, Q.; Zhang, Y.; Li, Y. The influence of bromide and iodide ions on the sulfamethoxazole (SMX) halogenation during chlorination. Sci. Total Environ. 2022, 848, 157687. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ge, L.; Yan, W.; Yang, S.; Wang, G.; Miao, D.; Jin, P. Peroxymonosulfate activation by immobilized CoFe2O4 network for the degradation of sulfamethoxazole. J. Environ. Chem. Eng. 2022, 10, 107781. [Google Scholar] [CrossRef]
- Su, T.; Deng, H.; Benskin, J.P.; Radke, M. Biodegradation of sulfamethoxazole photo-transformation products in a water/sediment test. Chemosphere 2016, 148, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Willach, S.; Lutze, H.V.; Eckey, K.; Löppenberg, K.; Lüling, M.; Wolbert, J.B.; Kujawinski, D.M.; Jochmann, M.A.; Karst, U.; Schmidt, T.C. Direct Photolysis of Sulfamethoxazole Using Various Irradiation Sources and Wavelength Ranges—Insights from Degradation Product Analysis and Compound-Specific Stable Isotope Analysis. Environ. Sci. Technol. 2018, 52, 1225–1233. [Google Scholar] [CrossRef]
- Akbari, M.Z.; Xu, Y.; Liang, C.; Lu, Z.; Shen, S.; Peng, L. Synthesis of ZnO@VC for enhancement of synergic photocatalytic degradation of SMX: Toxicity assessment, kinetics and transformation pathway determination. Chem. Eng. Process.-Process Intensif. 2023, 193, 109544. [Google Scholar] [CrossRef]
- Li, Y.; Sun, M.; Gao, B.; Hu, B.; Zhou, S.; Liu, B.; Jiang, W.; Liu, C.; Che, G. 2D ZIF-L arrays supported on zinc foam to activate peroxymonosulfate for degrading sulfamethoxazole through both radical and non-radical pathways. Sep. Purif. Technol. 2024, 330, 125656. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Wang, J. Iron and sulfur co-doped graphite carbon nitride (FeOy/S-g-C3N4) for activating peroxymonosulfate to enhance sulfamethoxazole degradation. Chem. Eng. J. 2020, 382, 122836. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhu, Y.; Zhou, Y.; Tang, G.; Han, J.; Li, W. Degradation of Sulfamethoxazole in Secondary Wastewater Based on Persulfate Activated by Citric-Acid-Complexed Ferrous Ion under Sunlight. Water 2024, 16, 1564. https://doi.org/10.3390/w16111564
Chen X, Zhu Y, Zhou Y, Tang G, Han J, Li W. Degradation of Sulfamethoxazole in Secondary Wastewater Based on Persulfate Activated by Citric-Acid-Complexed Ferrous Ion under Sunlight. Water. 2024; 16(11):1564. https://doi.org/10.3390/w16111564
Chicago/Turabian StyleChen, Xinyang, Yan Zhu, Yuhao Zhou, Guoxin Tang, Jiangang Han, and Wei Li. 2024. "Degradation of Sulfamethoxazole in Secondary Wastewater Based on Persulfate Activated by Citric-Acid-Complexed Ferrous Ion under Sunlight" Water 16, no. 11: 1564. https://doi.org/10.3390/w16111564
APA StyleChen, X., Zhu, Y., Zhou, Y., Tang, G., Han, J., & Li, W. (2024). Degradation of Sulfamethoxazole in Secondary Wastewater Based on Persulfate Activated by Citric-Acid-Complexed Ferrous Ion under Sunlight. Water, 16(11), 1564. https://doi.org/10.3390/w16111564