Multimedia Nitrogen and Phosphorus Migration and Source Control Using Multivariate Analysis and XGBoost: The Case Study in a Typical Agricultural Basin, Danjiangkou Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Measurement
2.3. Data Analysis
2.3.1. Multivariate Analysis
2.3.2. Buffer Analysis
2.3.3. XGBoost Regression
3. Results
3.1. Distribution of Nitrogen and Phosphorus in Surface Water
3.1.1. Nitrogen in Surface Water
3.1.2. Phosphorus in Surface Water
3.2. Distribution of Nitrogen and Phosphorus in Sediment
3.2.1. Nitrogen in Sediment
3.2.2. Phosphorus in Sediment
3.3. Distribution of Nitrogen and Phosphorus in Soils
3.3.1. Nitrogen in Soils
3.3.2. Phosphorus in Soils
3.4. Contribution of Nutrients from the Guanshan River Basin to the Danjiangkou Reservoir
4. Discussion
4.1. Nitrogen and Phosphorus Sources and Their Scale Effects
4.1.1. Sources of Nitrogen and Phosphorus
4.1.2. Scale Effects of Nutrient Sources
4.2. Migration and Transformation of Nitrogen and Phosphorus in the Guanshan River Basin
4.2.1. Transformation of N and P within Soils
4.2.2. Migration of N and P from Soils to River
4.2.3. Migration of N and P between River Water and Sediment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Wu, Y.; Deng, Y.; Liang, D.; Zeng, Y.; Zhang, X.; Li, Y. Examination of Changes in Selected Nutrient Concentrations from 1988 to 2018 in the Largest Freshwater Lake in China. J. Hydrol. Eng. 2022, 27, 05022016. [Google Scholar] [CrossRef]
- Schilling, K.E.; Jones, C.S.; Clark, R.J.; Libra, R.D.; Liang, X.; Zhang, Y.-K. Contrasting NO3-N Concentration Patterns at Two Karst Springs in Iowa (USA): Insights on Aquifer Nitrogen Storage and Delivery. Hydrogeol. J. 2019, 27, 1389–1400. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, C.; Zheng, L.; Dong, X.; Chen, Y.; Li, C. Identification of Nitrate Sources and Transformations in Basin Using Dual Isotopes and Hydrochemistry Combined with a Bayesian Mixing Model: Application in a Typical Mining City. Environ. Pollut. 2020, 267, 115651. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Zhou, L.; Sun, W.; Wang, G.; Shrestha, S.; Xue, B.; Li, Z. Assessing Alterations of Water Level Due to Environmental Water Allocation at Multiple Temporal Scales and Its Impact on Water Quality in Baiyangdian Lake, China. Environ. Res. 2022, 212, 113366. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-S.; Bong, Y.-S.; Lee, D.; Kim, Y.; Kimd, K. Tracing the Sources of Nitrate in the Han River Watershed in Korea, Using δ15N-NO3− and δ18O-NO3− Values. Sci. Total Environ. 2008, 395, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Torrecilla, N.J.; Galve, J.P.; Zaera, L.G.; Retarnar, J.F.; Alvarez, A.N.A. Nutrient Sources and Dynamics in a Mediterranean Fluvial Regime (Ebro River, NE Spain) and Their Implications for Water Management. J. Hydrol. 2005, 304, 166–182. [Google Scholar] [CrossRef]
- Chen, P.; Li, L.; Zhang, H. Spatio-Temporal Variations and Source Apportionment of Water Pollution in Danjiangkou Reservoir Basin, Central China. Water 2015, 7, 2591–2611. [Google Scholar] [CrossRef]
- Gong, Y.; Yu, Z.; Yao, Q.; Chen, H.; Mi, T.; Tan, J. Seasonal Variation and Sources of Dissolved Nutrients in the Yellow River, China. Int. J. Environ. Res. Public Health 2015, 12, 9603–9622. [Google Scholar] [CrossRef]
- Li, S.; Ye, C.; Zhang, Q. 11-Year Change in Water Chemistry of Large Freshwater Reservoir Danjiangkou, China. J. Hydrol. 2017, 551, 508–517. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, H.; Lu, Y.; Jin, K.; Shi, J.; Zhao, R.; Ding, W.; Deng, H. The Research on Riverine Hydrochemistry and Controlling Factors in the Danjiangkou Reservoir. J. Radioanal. Nucl. Chem. 2020, 324, 507–519. [Google Scholar] [CrossRef]
- Wu, N.; Liu, S.-M.; Zhang, G.-L.; Zhang, H.-M. Anthropogenic Impacts on Nutrient Variability in the Lower Yellow River. Sci. Total Environ. 2021, 755, 142488. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-S.; Shen, S.-L.; Zhou, A.; Lyu, H.-M. Assessment Andmanagement of Lake Eutrophication: A Case Study in Lake Erhai, China. Sci. Total Environ. 2021, 751, 141618. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Pueppke, S.G.; Li, H.; Geng, J.; Diao, Y.; Hyndman, D.W. Modeling Phosphorus Sources and Transport in a Headwater Catchment with Rapid Agricultural Expansion. Environ. Pollut. 2019, 255, 113273. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Xia, R.; Chen, Y.; Chen, X.; Cheng, B.; Zhang, K.; Yang, C. Mixed Spatial Scale Effects of Landscape Structure on Water Quality in the Yellow River. J. Clean. Prod. 2022, 368, 133008. [Google Scholar] [CrossRef]
- Yu, J.; Fan, C.; Zhong, J.; Zhang, Y.; Wang, C.; Zhang, L. Evaluation of in Situ Simulated Dredging to Reduce Internal Nitrogen Flux across the Sediment-Water Interface in Lake Taihu, China. Environ. Pollut. 2016, 214, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhao, H.; Wang, S.; Zhang, L.; Qiao, Z. Coupling Characteristics and Environmental Significance of Nitrogen, Phosphorus and Organic Carbon in the Sediments of Erhai Lake. Environ. Sci. Pollut. Res. 2020, 27, 19901–19914. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Bicharanloo, B.; Hou, E.; Jiang, Y.; Dijkstra, F.A. Phosphorus Supply Increases Nitrogen Transformation Rates and Retention in Soil: A Global Meta-Analysis. Earths Future 2022, 10, e2021EF002479. [Google Scholar] [CrossRef]
- Wauer, G.; Gonsiorczyk, T.; Kretschmer, K.; Casper, P.; Koschel, R. Sediment Treatment with a Nitrate-Storing Compound to Reduce Phosphorus Release. Water Res. 2005, 39, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Beutel, M.W.; Horne, A.J.; Taylor, W.D.; Losee, R.F.; Whitney, R.D. Effects of Oxygen and Nitrate on Nutrient Release from Profundal Sediments of a Large, Oligo-Mesotrophic Reservoir, Lake Mathews, California. Lake Reserv. Manag. 2008, 24, 18–29. [Google Scholar] [CrossRef]
- Hemond, H.F.; Lin, K. Nitrate Suppresses Internal Phosphorus Loading in an Eutrophic Lake. Water Res. 2010, 44, 3645–3650. [Google Scholar] [CrossRef]
- Li, Y.; Yu, S.; Strong, J.; Wang, H. Are the Biogeochemical Cycles of Carbon, Nitrogen, Sulfur, and Phosphorus Driven by the “FeIII-FeII Redox Wheel” in Dynamic Redox Environments? J. Soils Sediments 2012, 12, 683–693. [Google Scholar] [CrossRef]
- Ma, S.-N.; Wang, H.-J.; Wang, H.-Z.; Zhang, M.; Li, Y.; Bian, S.-J.; Liang, X.-M.; Sondergaard, M.; Jeppesen, E. Effects of Nitrate on Phosphorus Release from Lake Sediments. Water Res. 2021, 194, 116894. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yang, J.-L.; Zhao, X.-R.; Yang, S.-H.; Mulder, J.; Dorsch, P.; Zhang, G.-L. Seasonal Dynamics of Soil pH and N Transformation as Affected by N Fertilization in Subtropical China: An in Situ 15N Labeling Study. Sci. Total Environ. 2022, 816, 151596. [Google Scholar] [CrossRef]
- Kraal, P.; Dijkstra, N.; Behrends, T.; Slomp, C.P. Phosphorus Burial in Sediments of the Sulfidic Deep Black Sea: Key Roles for Adsorption by Calcium Carbonate and Apatite Authigenesis. Geochim. Cosmochim. Acta 2017, 204, 140–158. [Google Scholar] [CrossRef]
- Kraal, P.; Slomp, C.P. Rapid and Extensive Alteration of Phosphorus Speciation during Oxic Storage of Wet Sediment Samples. PLoS ONE 2014, 9, e96859. [Google Scholar] [CrossRef]
- McGinley, P.M.; Masarik, K.C.; Gotkowitz, M.B.; Mechenich, D.J. Impact of Anthropogenic Geochemical Change and Aquifer Geology on Groundwater Phosphorus Concentrations. Appl. Geochem. 2016, 72, 1–9. [Google Scholar] [CrossRef]
- Zeng, Q.; Qin, L.; Bao, L.; Li, Y.; Li, X. Critical Nutrient Thresholds Needed to Control Eutrophication and Synergistic Interactions between Phosphorus and Different Nitrogen Sources. Environ. Sci. Pollut. Res. 2016, 23, 21008–21019. [Google Scholar] [CrossRef]
- Ma, S.N.; Wang, H.J.; Wang, H.Z.; Li, Y.; Liu, M.; Liang, X.M.; Yu, Q.; Jeppesen, E.; Sondergaard, M. High Ammonium Loading Can Increase Alkaline Phosphatase Activity and Promote Sediment Phosphorus Release: A Two-Month Mesocosm Experiment. Water Res. 2018, 145, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, S.; Dong, R.; Jiang, C.; Ni, M. Influences of Land Use Metrics at Multi-Spatial Scales on Seasonal Water Quality: A Case Study of River Systems in the Three Gorges Reservoir Area, China. J. Clean. Prod. 2019, 206, 76–85. [Google Scholar] [CrossRef]
- Li, H.; Song, C.-L.; Cao, X.-Y.; Zhou, Y.-Y. The Phosphorus Release Pathways and Their Mechanisms Driven by Organic Carbon and Nitrogen in Sediments of Eutrophic Shallow Lakes. Sci. Total Environ. 2016, 572, 280–288. [Google Scholar] [CrossRef]
- Cetin, M. Sustainability of Urban Coastal Area Management: A Case Study on Cide. J. Sustain. For. 2016, 35, 527–541. [Google Scholar] [CrossRef]
- de Mello, K.; Valente, R.A.; Randhir, T.O.; Alves dos Santos, A.C.; Vettorazzi, C.A. Effects of Land Use and Land Cover on Water Quality of Low-Order Streams in Southeastern Brazil: Watershed versus Riparian Zone. Catena 2018, 167, 130–138. [Google Scholar] [CrossRef]
- Xu, S.; Li, S.-L.; Zhong, J.; Li, C. Spatial Scale Effects of the Variable Relationships between Landscape Pattern and Water Quality: Example from an Agricultural Karst River Basin, Southwestern China. Agric. Ecosyst. Environ. 2020, 300, 106999. [Google Scholar] [CrossRef]
- Xu, G.; Fan, H.; Oliver, D.M.; Dai, Y.; Li, H.; Shi, Y.; Long, H.; Xiong, K.; Zhao, Z. Decoding River Pollution Trends and Their Landscape Determinants in an Ecologically Fragile Karst Basin Using a Machine Learning Model. Environ. Res. 2022, 214, 113843. [Google Scholar] [CrossRef] [PubMed]
- Manav-Demir, N.; Gelgor, H.B.; Oz, E.; Ilhan, F.; Ulucan-Altuntas, K.; Tiwary, A.; Debik, E. Effluent Parameters Prediction of a Biological Nutrient Removal (BNR) Process Using Different Machine Learning Methods: A Case Study. J. Environ. Manag. 2024, 351, 119899. [Google Scholar] [CrossRef]
- Nong, X.; Shao, D.; Zhong, H.; Liang, J. Evaluation of Water Quality in the South-to-North Water Diversion Project of China Using the Water Quality Index (WQI) Method. Water Res. 2020, 178, 115781. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Qiao, X.; Zheng, B.; Chang, S.; Fu, Q. Investigation of Nitrogen and Phosphorus Contents in Water in the Tributaries of Danjiangkou Reservoir. R. Soc. Open Sci. 2018, 5, 170624. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Peng, W.; Wu, L.; Liu, L. Water Quality Assessment of Danjiangkou Reservoir and Its Tributaries in China. In Proceedings of the 2017 2nd International Conference on Environmental Engineering and Sustainable Development (CEESD 2017), Koh Samui, Thailand, 8–10 December 2017; IoP Publishing Ltd.: Bristol, UK, 2018; Volume 112, p. 012008. [Google Scholar]
- Li, J.-J.; Dong, F.; Huang, A.-P.; Lian, Q.-Y.; Peng, W.-Q. The Migration and Transformation of Nitrogen in the Danjiangkou Reservoir and Upper Stream: A Review. Water 2021, 13, 2749. [Google Scholar] [CrossRef]
- Xin, X.; Li, K.; Finlayson, B.; Yin, W. Evaluation, Prediction, and Protection of Water Quality in Danjiangkou Reservoir, China. Water Sci. Eng. 2015, 8, 30–39. [Google Scholar] [CrossRef]
- Lin, J.; Tang, Y.; Liu, D.; Zhang, S.; Lan, B.; He, L.; Yu, Z.; Zhou, S.; Chen, X.; Qu, Y. Characteristics of Organic Nitrogen Fractions in Sediments of the Water Level Fluctuation Zone in the Tributary of the Yangtze River. Sci. Total Environ. 2019, 653, 327–333. [Google Scholar] [CrossRef]
- Chu, X.; Wang, H.; Zheng, F.; Huang, C.; Xu, C.; Wu, D. Spatial Distribution Characteristics and Sources of Nutrients and Heavy Metals in the Xiujiang River of Poyang Lake Basin in the Dry Season. Water 2021, 13, 1654. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; Jiang, L.; Zhuang, L.; Hao, L.; Zhang, J.; Nie, L. Roles of Carbon Source-Derived Extracellular Polymeric Substances in Solids Accumulation and Nutrient Removal in Horizontal Subsurface Flow Constructed Wetlands. Chem. Eng. J. 2019, 362, 702–711. [Google Scholar] [CrossRef]
- Yaqub, M.; Lee, W. Modeling Nutrient Removal by Membrane Bioreactor at a Sewage Treatment Plant Using Machine Learning Models. J. Water Process Eng. 2022, 46, 102521. [Google Scholar] [CrossRef]
- Li, S.; Xu, J.; Ni, M. Changes in Sediment, Nutrients and Major Ions in the World Largest Reservoir: Effects of Damming and Reservoir Operation. J. Clean. Prod. 2021, 318, 128601. [Google Scholar] [CrossRef]
- Geng, M.; Wang, K.; Yang, N.; Li, F.; Zou, Y.; Chen, X.; Deng, Z.; Xie, Y. Spatiotemporal Water Quality Variations and Their Relationship with Hydrological Conditions in Dongting Lake after the Operation of the Three Gorges Dam, China. J. Clean. Prod. 2021, 283, 124644. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, B.; Hao, H.; Zhou, H.; Lu, J. Nitrogen and Phosphorus in Sediments in China: A National-Scale Assessment and Review. Sci. Total Environ. 2017, 576, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, Y.; Yang, F. Critical Review on Soil Phosphorus Migration and Transformation under Freezing-Thawing Cycles and Typical Regulatory Measurements. Sci. Total Environ. 2021, 751, 141614. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Ghoshal, N. Variation in Total Biological Productivity and Soil Microbial Biomass in Rainfed Agroecosystems: Impact of Application of Herbicide and Soil Amendments. Agric. Ecosyst. Environ. 2010, 137, 241–250. [Google Scholar] [CrossRef]
- Turner, B.L.; Engelbrecht, B.M.J. Soil Organic Phosphorus in Lowland Tropical Rain Forests. Biogeochemistry 2011, 103, 297–315. [Google Scholar] [CrossRef]
- Baumgartner, S.; Bauters, M.; Drake, T.W.; Barthel, M.; Alebadwa, S.; Bahizire, N.; Bazirake, B.M.; Six, J.; Boeckx, P.; Van Oost, K. Substantial Organic and Particulate Nitrogen and Phosphorus Export from Geomorphologically Stable African Tropical Forest Landscapes. Ecosystems 2023, 26, 553–567. [Google Scholar] [CrossRef]
- GB3838-2002; Environmental Quality Standards for Surface Water. National Standard of the People’s Republic of China: Beijing, China, 2002.
- Thu, N.D.; Nishida, K. A Nitrogen Cycle Model in Paddy Fields to Improve Material Flow Analysis: The Day-Nhue River Basin Case Study. Nutr. Cycl. Agroecosyst. 2014, 100, 215–226. [Google Scholar] [CrossRef]
- Hale, R.; Reich, P.; Daniel, T.; Lake, P.S.; Cavagnaro, T.R. Scales That Matter: Guiding Effective Monitoring of Soil Properties in Restored Riparian Zones. Geoderma 2014, 228, 173–181. [Google Scholar] [CrossRef]
- Giang, P.H.; Harada, H.; Fujii, S.; Lien, N.P.H.; Hai, H.T.; Anh, P.N.; Tanaka, S. Transition of Fertilizer Application and Agricultural Pollution Loads: A Case Study in the Nhue-Day River Basin. Water Sci. Technol. 2015, 72, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Sheikhzeinoddin, A.; Esmaeili, A. Ecological and Economic Impacts of Different Irrigation and Fertilization Practices: Case Study of a Watershed in the Southern Iran. Environ. Dev. Sustain. 2017, 19, 2499–2515. [Google Scholar] [CrossRef]
- Deknock, A.; De Troyer, N.; Houbraken, M.; Dominguez-Granda, L.; Nolivos, I.; Van Echelpoel, W.; Forio, M.A.E.; Spanoghe, P.; Goethals, P. Distribution of Agricultural Pesticides in the Freshwater Environment of the Guayas River Basin (Ecuador). Sci. Total Environ. 2019, 646, 996–1008. [Google Scholar] [CrossRef] [PubMed]
- Skrzypek, G.; Dogramaci, S.; Grierson, P.F. Geochemical and Hydrological Processes Controlling Groundwater Salinity of a Large Inland Wetland of Northwest Australia. Chem. Geol. 2013, 357, 164–177. [Google Scholar] [CrossRef]
- Padmalal, D.; Remya, S.I.; Jyothi, S.J.; Baijulal, B.; Babu, K.N.; Baiju, R.S. Water Quality and Dissolved Inorganic Fluxes of N, P, SO4, and K of a Small Catchment River in the Southwestern Coast of India. Environ. Monit. Assess. 2012, 184, 1541–1557. [Google Scholar] [CrossRef] [PubMed]
- Yue, F.-J.; Liu, C.-Q.; Li, S.-L.; Zhao, Z.-Q.; Liu, X.-L.; Ding, H.; Liu, B.-J.; Zhong, J. Analysis of δ15N and δ18O to Identify Nitrate Sources and Transformations in Songhua River, Northeast China. J. Hydrol. 2014, 519, 329–339. [Google Scholar] [CrossRef]
- Yang, L.; Han, J.; Xue, J.; Zeng, L.; Shi, J.; Wu, L.; Jiang, Y. Nitrate Source Apportionment in a Subtropical Watershed Using Bayesian Model. Sci. Total Environ. 2013, 463, 340–347. [Google Scholar] [CrossRef]
- Engström, E.; Rodushkin, I.; Ingri, J.; Baxter, D.C.; Ecke, F.; Österlund, H.; Öhlander, B. Temporal Isotopic Variations of Dissolved Silicon in a Pristine Boreal River. Chem. Geol. 2010, 271, 142–152. [Google Scholar] [CrossRef]
- Yan, L.; Xu, X.; Xia, J. Different Impacts of External Ammonium and Nitrate Addition on Plant Growth in Terrestrial Ecosystems: A Meta-Analysis. Sci. Total Environ. 2019, 686, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Dorioz, J.M.; Wang, D.; Poulenard, J.; Trevisan, D. The Effect of Grass Buffer Strips on Phosphorus Dynamics—A Critical Review and Synthesis as a Basis for Application in Agricultural Landscapes in France. Agric. Ecosyst. Environ. 2006, 117, 4–21. [Google Scholar] [CrossRef]
- Hoffmann, C.C.; Kjaergaard, C.; Uusi-Kamppa, J.; Hansen, H.C.B.; Kronvang, B. Phosphorus Retention in Riparian Buffers: Review of Their Efficiency. J. Environ. Qual. 2009, 38, 1942–1955. [Google Scholar] [CrossRef]
- Zak, D.; Kronvang, B.; Carstensen, M.; Hoffmann, C.C.; Kjeldgaard, A.; Larsen, S.E.; Audet, J.; Egemose, S.; Jorgensen, C.A.; Feuerbach, P.; et al. Nitrogen and Phosphorus Removal from Agricultural Runoff in Integrated Buffer Zones. Environ. Sci. Technol. 2018, 52, 6508–6517. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Chen, L.; Jamil, M.A.; Abid, K.; Khan, K.; Duan, W.; Li, C.; Khan, A. Changes in Soil-Phosphorus Fractions by Nitrogen and Phosphorus Fertilization in Korean Pine Plantation and Its Natural Forest. Forests 2022, 13, 527. [Google Scholar] [CrossRef]
- Wu, X.; Ma, T.; Du, Y.; Jiang, Q.; Shen, S.; Liu, W. Phosphorus Cycling in Freshwater Lake Sediments: Influence of Seasonal Water Level Fluctuations. Sci. Total Environ. 2021, 792, 148383. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Li, J. Effect of Phosphorus-Coupled Nitrogen Fertigation on Clogging in Drip Emitters When Applying Saline Water. Irrig. Sci. 2020, 38, 337–351. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z.; Xu, C.; Elrys, A.S.; Shen, F.; Cheng, Y.; Chang, S.X. Organic Amendment Enhanced Microbial Nitrate Immobilization with Negligible Denitrification Nitrogen Loss in an Upland Soil. Environ. Pollut. 2021, 288, 117721. [Google Scholar] [CrossRef] [PubMed]
- Missong, A.; Holzmann, S.; Bol, R.; Nischwitz, V.; Puhlmann, H.V.; Wilpert, K.; Siemens, J.; Klumpp, E. Leaching of Natural Colloids from Forest Topsoils and Their Relevance for Phosphorus Mobility. Sci. Total Environ. 2018, 634, 305–315. [Google Scholar] [CrossRef]
- Zhou, J.; Han, X.; Brookes, J.D.; Qin, B. High Probability of Nitrogen and Phosphorus Co-Limitation Occurring in Eutrophic Lakes. Environ. Pollut. 2022, 292, 118276. [Google Scholar] [CrossRef]
- Liu, J.; Han, G.; Liu, X.; Liu, M.; Song, C.; Yang, K.; Li, X.; Zhang, Q. Distributive Characteristics of Riverine Nutrients in the Mun River, Northeast Thailand: Implications for Anthropogenic Inputs. Water 2019, 11, 954. [Google Scholar] [CrossRef]
- Jing, J.; Rui, Y.; Zhang, F.; Rengel, Z.; Shen, J. Localized Application of Phosphorus and Ammonium Improves Growth of Maize Seedlings by Stimulating Root Proliferation and Rhizosphere Acidification. Field Crops Res. 2010, 119, 355–364. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Ma, T.; Chen, L.; Liu, W.; Zhang, M.; Shang, R. Multimedia Nitrogen and Phosphorus Migration and Source Control Using Multivariate Analysis and XGBoost: The Case Study in a Typical Agricultural Basin, Danjiangkou Reservoir. Water 2024, 16, 1936. https://doi.org/10.3390/w16141936
Chen Y, Ma T, Chen L, Liu W, Zhang M, Shang R. Multimedia Nitrogen and Phosphorus Migration and Source Control Using Multivariate Analysis and XGBoost: The Case Study in a Typical Agricultural Basin, Danjiangkou Reservoir. Water. 2024; 16(14):1936. https://doi.org/10.3390/w16141936
Chicago/Turabian StyleChen, Yu, Teng Ma, Liuzhu Chen, Wenhui Liu, Mengting Zhang, and Ruihua Shang. 2024. "Multimedia Nitrogen and Phosphorus Migration and Source Control Using Multivariate Analysis and XGBoost: The Case Study in a Typical Agricultural Basin, Danjiangkou Reservoir" Water 16, no. 14: 1936. https://doi.org/10.3390/w16141936
APA StyleChen, Y., Ma, T., Chen, L., Liu, W., Zhang, M., & Shang, R. (2024). Multimedia Nitrogen and Phosphorus Migration and Source Control Using Multivariate Analysis and XGBoost: The Case Study in a Typical Agricultural Basin, Danjiangkou Reservoir. Water, 16(14), 1936. https://doi.org/10.3390/w16141936