Simultaneous Removal of Cu(II) and Dyes from Aqueous Solution Using LDH@GO-SH as an Adsorbent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of the Adsorbents
2.3. Batch Adsorption Experiments
2.4. Data Analysis
- (1)
- Er > 0 indicates that the presence of coexistent pollutant j would enhance the adsorption of pollutant i;
- (2)
- Er = 0 indicates that the presence of coexistent pollutant j would not affect the adsorption of pollutant i;
- (3)
- Er < 0 indicates that the presence of coexistent pollutant j would weaken the adsorption of pollutant i.
2.5. Model Fitting
2.6. Characterization
3. Results and Discussion
3.1. Adsorption Performance
3.2. Isotherm Studies
3.3. Kinetic Studies
3.4. Effects of Solution pH and Ionic Strength
3.5. Effect of Temperature
3.6. Reusability
3.7. Adsorption Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, W.; Hu, Y.; Li, Y.; Zhou, Y.; Niu, D.; Lei, Z.; Zhang, Z. Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: The roles of cavity and surface functional groups. J. Taiwan Inst. Chem. Eng. 2018, 82, 189–197. [Google Scholar] [CrossRef]
- Cheng, S.; Oatley, D.L.; Williams, P.M.; Wright, C.J. Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters. Water Res. 2012, 46, 33–42. [Google Scholar] [CrossRef]
- Ling, C.; Liu, F.-Q.; Long, C.; Chen, T.-P.; Wu, Q.-Y.; Li, A.-M. Synergic removal and sequential recovery of acid black 1 and copper (II) with hyper-crosslinked resin and inside mechanisms. Chem. Eng. J. 2014, 236, 323–331. [Google Scholar] [CrossRef]
- Tovar-Gómez, R.; Rivera-Ramírez, D.A.; Hernández-Montoya, V.; Bonilla-Petriciolet, A.; Durán-Valle, C.J.; Montes-Morán, M.A. Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2-modified carbon. J. Hazard. Mater. 2012, 199–200, 290–300. [Google Scholar] [CrossRef]
- Fu, Z.-J.; Jiang, S.-K.; Chao, X.-Y.; Zhang, C.-X.; Shi, Q.; Wang, Z.-Y.; Liu, M.-L.; Sun, S.-P. Removing miscellaneous heavy metals by all-in-one ion exchange-nanofiltration membrane. Water Res. 2022, 222, 118888. [Google Scholar] [CrossRef]
- Chowdhury, N.; Solaiman; Roy, C.K.; Firoz, S.H.; Foyez, T.; Imran, A.B. Role of Ionic Moieties in Hydrogel Networks to Remove Heavy Metal Ions from Water. ACS Omega 2021, 6, 836–844. [Google Scholar] [CrossRef]
- Cai, Z.; Sun, Y.; Liu, W.; Pan, F.; Sun, P.; Fu, J. An overview of nanomaterials applied for removing dyes from wastewater. Environ. Sci. Pollut. Res. 2017, 24, 15882–15904. [Google Scholar] [CrossRef]
- Yang, X.; Wang, L.; Tong, J.; Shao, X.; Feng, Y.; Zhou, J.; Han, Y.; Yang, X.; Ding, F.; Zhang, J.; et al. Alkaline ball-milled peanut-hull biosorbent effectively removes aqueous organic dyes. Chemosphere 2023, 313, 137410. [Google Scholar] [CrossRef]
- Yuan, D.; Yang, K.; Zhu, E.; Li, X.; Sun, M.; Xiao, L.; Hari, Q.; Tang, S. Peracetic Acid Activated with Electro-Fe2+ Process for Dye Removal in Water. Coatings 2022, 12, 466. [Google Scholar] [CrossRef]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Oyewo, O.A.; Onwudiwe, D.C. Simultaneous removal of organics and heavy metals from industrial wastewater: A review. Chemosphere 2021, 262, 128379. [Google Scholar] [CrossRef]
- Das, D.; Charumathi, D.; Das, N. Bioaccumulation of the synthetic dye Basic Violet 3 and heavy metals in single and binary systems by Candida tropicalis grown in a sugarcane bagasse extract medium: Modelling optimal conditions using response surface methodology (RSM) and inhibition kinetics. J. Hazard. Mater. 2011, 186, 1541–1552. [Google Scholar] [CrossRef]
- Du, P.D.; Danh, H.T.; Silva-Martinez, S. Single and Binary Adsorption Systems of Rhodamine B and Methylene Blue onto Alkali-Activated Vietnamese Diatomite. Adsorpt. Sci. Technol. 2021, 2021, 1014354. [Google Scholar] [CrossRef]
- Zhou, G.; Kang, W.; Huang, X.; Liu, S.; Wang, H.; Hu, J.; Li, Y. Cadmium(II) Capture Using Amino Functionalized Hydrogel with Double Network Interpenetrating Structure: Adsorption Behavior Study. Environ. Eng. Sci. 2022, 39, 639–649. [Google Scholar] [CrossRef]
- Soltani, R.; Pelalak, R.; Pishnamazi, M.; Marjani, A.; Shirazian, S. A water-stable functionalized NiCo-LDH/MOF nanocomposite: Green synthesis, characterization, and its environmental application for heavy metals adsorption. Arab. J. Chem. 2021, 14, 103052. [Google Scholar] [CrossRef]
- Wang, B.; Bai, Z.; Jiang, H.; Prinsen, P.; Luque, R.; Zhao, S.; Xuan, J. Selective heavy metal removal and water purification by microfluidically-generated chitosan microspheres: Characteristics, modeling and application. J. Hazard. Mater. 2019, 364, 192–205. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Y.; Chen, H.; Lu, J.; Yu, G.; Möslang, M.; Zhou, Y. Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J. Hazard. Mater. 2020, 382, 121040. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, G.; Chen, K.; Lu, J.; Lei, J.; Pu, S. Adsorptive removal of bisphenol A, chloroxylenol, and carbamazepine from water using a novel β-cyclodextrin polymer. Ecotoxicol. Environ. Saf. 2019, 170, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Priya, V.N.; Rajkumar, M.; Mobika, J.; Sibi, S.P.L. Adsorption of As (V) ions from aqueous solution by carboxymethyl cellulose incorporated layered double hydroxide/reduced graphene oxide nanocomposites: Isotherm and kinetic studies. Environ. Technol. Innov. 2022, 26, 102268. [Google Scholar] [CrossRef]
- Rahman, N.; Raheem, A. Graphene oxide/Mg-Zn-Al layered double hydroxide for efficient removal of doxycycline from water: Taguchi approach for optimization. J. Mol. Liq. 2022, 354, 118899. [Google Scholar] [CrossRef]
- Das, A.; Jana, A.; Das, D.; Biswas, S.; Sheshadri, H.; Rao, M.S.; De, S. Surfactant assisted APTES functionalization of graphene oxide intercalated layered double hydroxide (LDH) for uranium adsorption from alkaline leach liquor. J. Clean. Prod. 2023, 390, 136058. [Google Scholar] [CrossRef]
- Maryam Hafezian, S.; Biparva, P.; Bekhradnia, A.; Naser Azizi, S. Amine and thiol functionalization of SBA-15 nanoparticles for highly efficient adsorption of sulforaphane. Adv. Powder Technol. 2021, 32, 779–790. [Google Scholar] [CrossRef]
- Zounia, M.; Hakimi, M.; Yazdi, M.R.S.; Zare, H.; Amiri, A. The effect of thiol ligands on the adsorption behavior of silver ions on functionalized nanomagnetic graphene oxides. Diam. Relat. Mater. 2024, 144, 110943. [Google Scholar] [CrossRef]
- Induvesa, P.; Ratanatawanate, C.; Wongrueng, A.; Punyapalakul, P. Adsorption of iodinated trihalomethanes onto thiol functionalized ZIF-8s: Active adsorption sites, adsorptive mechanisms, and dehalogenation by-products. Sci. Total Environ. 2021, 754, 142376. [Google Scholar] [CrossRef]
- Hezarjaribi, M.; Bakeri, G.; Sillanpää, M.; Chaichi, M.J.; Akbari, S.; Rahimpour, A. Novel adsorptive PVC nanofibrous/thiol-functionalized TNT composite UF membranes for effective dynamic removal of heavy metal ions. J. Environ. Manag. 2021, 284, 111996. [Google Scholar] [CrossRef]
- Liao, W.; Bao, D.; Li, H.-q.; Yang, P. Cu(II) and Cd(II) removal from aqueous solution with LDH@GO-NH2 and LDH@GO-SH: Kinetics and probable mechanism. Environ. Sci. Pollut. Res. 2021, 28, 65848–65861. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Liao, B.; Lin, L.; Qiu, W.; Song, Z. Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide–biochar composites. Sci. Total Environ. 2018, 615, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Li, Q.; Huang, M.; Li, A.; Zhang, J.; Li, Y.; Li, S.; Kang, C.; Mo, W. Removal of Zn(II), Mn(II) and Cu(II) by adsorption onto banana stalk biochar: Adsorption process and mechanisms. Water Sci. Technol. 2020, 82, 2962–2974. [Google Scholar] [CrossRef]
- Chen, H.; Li, W.; Wang, J.; Xu, H.; Liu, Y.; Zhang, Z.; Li, Y.; Zhang, Y. Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather: Selective adsorption and influence of dissolved organic matter. Bioresour. Technol. 2019, 292, 121948. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.-H.; Zhang, X.-R.; Zeng, G.-M.; Gong, J.-L.; Niu, Q.-Y.; Liang, J. Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem. Eng. J. 2013, 226, 189–200. [Google Scholar] [CrossRef]
- Huang, G.; Jiang, L.; Wang, D.; Chen, J.; Li, Z.; Ma, S. Intercalation of thiacalix[4]arene anion via calcined/restored reaction into LDH and efficient heavy metal capture. J. Mol. Liq. 2016, 220, 346–353. [Google Scholar] [CrossRef]
- Zhang, C.; Sui, J.; Li, J.; Tang, Y.; Cai, W. Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes. Chem. Eng. J. 2012, 210, 45–52. [Google Scholar] [CrossRef]
Langmuir Model | Freundlich Model | |||||||
---|---|---|---|---|---|---|---|---|
qe (mg·g−1) | qm (mg·g−1) | KL (L·min−1) | R2 | qm (mg·g−1) | KL (L·min−1) | R2 | ||
Single system | 178.87 | 180.83 | 4.57 | 0.9961 | 96.93 | 0.2786 | 0.7598 | |
Binary system | MB = 2 mg·L−1 | 180.65 | 183.15 | 4.58 | 0.9983 | 100.94 | 0.2579 | 0.6566 |
MB = 5 mg·L−1 | 198.85 | 203.25 | 4.20 | 0.9979 | 112.93 | 0.2822 | 0.6646 | |
MB = 10 mg·L−1 | 198.20 | 202.43 | 4.25 | 0.9972 | 110.29 | 0.2663 | 0.6276 | |
MB = 2 mg·L−1 | 193.73 | 198.81 | 3.12 | 0.9963 | 105.12 | 0.2509 | 0.6150 | |
MB = 50 mg·L−1 | 187.75 | 190.11 | 4.78 | 0.9964 | 106.04 | 0.2650 | 0.7287 | |
MO = 2 mg·L−1 | 198.85 | 201.21 | 7.08 | 0.9982 | 109.07 | 0.2901 | 0.6215 | |
MO = 5 mg·L−1 | 203.85 | 204.50 | 32.49 | 0.9977 | 144.05 | 0.2868 | 0.6859 | |
MO = 10 mg·L−1 | 211.14 | 212.31 | 23.38 | 0.9977 | 144.71 | 0.2852 | 0.7049 | |
MO = 25 mg·L−1 | 210.24 | 210.97 | 27.32 | 0.9997 | 145.65 | 0.2728 | 0.6934 | |
MO = 50 mg·L−1 | 211.33 | 212.77 | 23.50 | 0.9998 | 143.06 | 0.2645 | 0.5810 |
qe,exp (mg·g−1) | Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | |||||
---|---|---|---|---|---|---|---|
qe,cal (mg·g−1) | k1 (h−1) | R2 | qe,cal (mg·g−1) | k2 (h−1) | R2 | ||
MB–Cu binary system | 120.04 | 123.98 | 0.2212 | 0.9885 | 152.69 | 0.0015 | 0.9672 |
MO–Cu binary system | 124.17 | 125.12 | 0.2598 | 0.9802 | 148.31 | 0.0020 | 0.9759 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, W.; Li, H.; Yu, X.; Li, Y. Simultaneous Removal of Cu(II) and Dyes from Aqueous Solution Using LDH@GO-SH as an Adsorbent. Water 2024, 16, 1968. https://doi.org/10.3390/w16141968
Liao W, Li H, Yu X, Li Y. Simultaneous Removal of Cu(II) and Dyes from Aqueous Solution Using LDH@GO-SH as an Adsorbent. Water. 2024; 16(14):1968. https://doi.org/10.3390/w16141968
Chicago/Turabian StyleLiao, Wei, Huiqiang Li, Xiaowen Yu, and Yongzhi Li. 2024. "Simultaneous Removal of Cu(II) and Dyes from Aqueous Solution Using LDH@GO-SH as an Adsorbent" Water 16, no. 14: 1968. https://doi.org/10.3390/w16141968
APA StyleLiao, W., Li, H., Yu, X., & Li, Y. (2024). Simultaneous Removal of Cu(II) and Dyes from Aqueous Solution Using LDH@GO-SH as an Adsorbent. Water, 16(14), 1968. https://doi.org/10.3390/w16141968