Lake Water Ecological Simulation for a Typical Alpine Lake on the Tibetan Plateau
Abstract
:1. Introduction
2. Study Area, Lake Model, and Data
2.1. Study Area
2.2. Lake Model
2.3. Data
3. Results
3.1. Model Calibration and Validation
3.2. Simulation Analysis
3.2.1. Water Nutrients
3.2.2. Concentrations of WGPP, WNPP, and Chl-a
3.2.3. The Impact of Meteorological and Hydrological Factors
4. Discussion
4.1. The Ecological Status of This Lake
4.2. The Factors Influencing Changes in Water Ecology
4.3. Possible Changes in the Ecological Conditions for This Lake
4.4. Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Huang, A.; Yang, B.; Dong, G.; Wen, L.; Lazhu; Zhang, Z.; Fu, Z.; Zhu, X.; Zhang, X.; et al. Numerical study on the climatic effect of the lake clusters over Tibetan Plateau in summer. Clim. Dynam. 2019, 53, 5215–5236. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, L.; Yao, T.; Li, X.; Zhu, L.; Zhang, X. Observed and Simulated Lake Effect Precipitation Over the Tibetan Plateau: An Initial Study at Nam Co Lake. J. Geophys. Res. Atmos. 2018, 123, 6746–6759. [Google Scholar] [CrossRef]
- Dai, Y.; Yao, T.; Li, X.; Ping, F. The impact of lake effects on the temporal and spatial distribution of precipitation in the Nam Co basin, Tibetan Plateau. Quatern. Int. 2018, 475, 63–69. [Google Scholar] [CrossRef]
- Sterner, R.W.; Reinl, K.L.; Lafrancois, B.M.; Brovold, S.; Miller, T.R. A first assessment of cyanobacterial blooms in oligotrophic Lake Superior. Limnol. Oceanogr. 2020, 65, 2984–2998. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Stanley, E.H.; Vander Zanden, M.J. State of the World’s Freshwater Ecosystems: Physical, Chemical, and Biological Changes. Annu Rev. Env. Resour. 2011, 36, 75–99. [Google Scholar] [CrossRef]
- Woolway, R.I.; Jennings, E.; Shatwell, T.; Golub, M.; Pierson, D.C.; Maberly, S.C. Lake heatwaves under climate change. Nature 2021, 589, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Woolway, R.I.; Merchant, C.J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 2019, 12, 271–276. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet Change 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Ma, R.; Duan, H.; Hu, C.; Feng, X.; Li, A.; Ju, W.; Jiang, J.; Yang, G. A half-century of changes in China’s lakes: Global warming or human influence? Geophys. Res. Lett. 2010, 37, L24106. [Google Scholar] [CrossRef]
- Wang, B.; Ma, Y.; Su, Z.; Wang, Y.; Ma, W. Quantifying the evaporation amounts of 75 high-elevation large dimictic lakes on the Tibetan Plateau. Sci. Adv. 2020, 6, eaay8558. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Jin, J.; Liu, Y. Modeling the Effects of Lakes in the Tibetan Plateau on Diurnal Variations of Regional Climate and Their Seasonality. J. Hydrometeorol. 2020, 21, 2523–2536. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, R.; Yang, X.; Anderson, N.J.; Kong, L. Interactive effects of climate-atmospheric cycling on aquatic communities and ecosystem shifts in mountain lakes of southeastern Tibetan Plateau. Sci. Total Environ. 2024, 914, 169825. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.K.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L.; et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Lazhu; Yang, K.; Wang, J.; Lei, Y.; Chen, Y.; Zhu, L.; Ding, B.; Qin, J. Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 7578–7591. [Google Scholar] [CrossRef]
- Guo, L.; Zheng, H.; Wu, Y.; Zhang, T.; Wen, M.; Fan, L.; Zhang, B. Responses of Lake Ice Phenology to Climate Change at Tibetan Plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3856–3861. [Google Scholar] [CrossRef]
- Lei, Y.; Yao, T.; Sheng, Y.; Yang, K.; Yang, W.; Li, S.; Zhou, J.; Jiang, Y.; Yu, Y. Unprecedented lake expansion in 2017–2018 on the Tibetan Plateau: Processes and environmental impacts. J. Hydrol. 2023, 619, 129333. [Google Scholar] [CrossRef]
- Zhang, G.; Duan, S. Lakes as sentinels of climate change on the Tibetan Plateau. All Earth 2021, 33, 161–165. [Google Scholar] [CrossRef]
- Flaim, G.; Eccel, E.; Zeileis, A.; Toller, G.; Cerasino, L.; Obertegger, U. Effects of re-oligotrophication and climate change on lake thermal structure. Freshw. Biol. 2016, 61, 1802–1814. [Google Scholar] [CrossRef]
- Seelen, L.M.S.; Flaim, G.; Jennings, E.; De Senerpont Domis, L.N. Saving water for the future: Public awareness of water usage and water quality. J. Environ. Manag. 2019, 242, 246–257. [Google Scholar] [CrossRef]
- Tao, H.; Song, K.; Liu, G.; Wen, Z.; Lu, Y.; Lyu, L.; Shang, Y.; Li, S.; Hou, J.; Wang, Q.; et al. Variation of satellite-derived total suspended matter in large lakes with four types of water storage across the Tibetan Plateau, China. Sci. Total Environ. 2022, 846, 157328. [Google Scholar] [CrossRef]
- Nyamweya, C.S.; Natugonza, V.; Taabu-Munyaho, A.; Aura, C.M.; Njiru, J.M.; Ongore, C.; Mangeni-Sande, R.; Kashindye, B.B.; Odoli, C.O.; Ogari, Z.; et al. A century of drastic change: Human-induced changes of Lake Victoria fisheries and ecology. Fish Res. 2020, 230, 105564. [Google Scholar] [CrossRef]
- Reed, K.M.; Izzo, L.K.; Binder, T.; Hayden, T.; Dembkowski, D.; Hansen, S.; Caroffino, D.; Vandergoot, C.; Krueger, C.C.; Isermann, D. Initial insights on the thermal ecology of lake whitefish in northwestern Lake Michigan. J. Great Lakes Res. 2023, 49, 757–766. [Google Scholar] [CrossRef]
- Lin, J.; Ding, W.; Zhou, H.; Wang, H. Mitigating adverse impacts of reservoir impoundment on lake ecology: A case study of the Three Gorges Reservoir and Dongting Lake. J. Clean Prod. 2024, 451, 141835. [Google Scholar] [CrossRef]
- Xu, T.; Ma, W.; Chen, J.; Duan, L.; Li, H.; Zhang, H. Water Quality of Lake Erhai in Southwest China and Its Projected Status in the near Future. Water-Sui 2024, 16, 972. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, B.; Shi, K.; Zhang, Y.; Deng, J.; Wild, M.; Li, L.; Zhou, Y.; Yao, X.; Liu, M.; et al. Radiation dimming and decreasing water clarity fuel underwater darkening in lakes. Sci. Bull. 2020, 65, 1675–1684. [Google Scholar] [CrossRef]
- Jansen, J.; Woolway, R.I.; Kraemer, B.M.; Albergel, C.; Bastviken, D.; Weyhenmeyer, G.A.; Marcé, R.; Sharma, S.; Sobek, S.; Tranvik, L.J.; et al. Global increase in methane production under future warming of lake bottom waters. Glob. Change Biol. 2022, 28, 5427–5440. [Google Scholar] [CrossRef]
- Jia, J.; Wang, Y.; Lu, Y.; Sun, K.; Lyu, S.; Gao, Y. Driving mechanisms of gross primary productivity geographical patterns for Qinghai–Tibet Plateau lake systems. Sci. Total Environ. 2021, 791, 148286. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, B.M.; Pilla, R.M.; Woolway, R.I.; Anneville, O.; Ban, S.; Colom-Montero, W.; Devlin, S.P.; Dokulil, M.T.; Gaiser, E.E.; Hambright, K.D.; et al. Climate change drives widespread shifts in lake thermal habitat. Nat. Clim. Change 2021, 11, 521–529. [Google Scholar] [CrossRef]
- Gurkan, Z.; Zhang, J.; Jørgensen, S.E. Development of a structurally dynamic model for forecasting the effects of restoration of Lake Fure, Denmark. Ecol. Model. 2006, 197, 89–102. [Google Scholar] [CrossRef]
- Arhonditsis, G.B.; Brett, M.T. Eutrophication model for Lake Washington (USA). Ecol. Model. 2005, 187, 140–178. [Google Scholar] [CrossRef]
- Jorgensen, S.E. State-of-the-art management models for lakes and reservoirs. Lakes Reserv. Sci. Policy Manag. Sustain. Use 1995, 1, 79–87. [Google Scholar] [CrossRef]
- Wu, D.; Cao, M.; Gao, W.; Duan, Z.; Zhang, Y. Simulating critical nutrient loadings of regime shift in the shallow plateau Lake Dianchi. Ecol. Model. 2024, 491, 110689. [Google Scholar] [CrossRef]
- Chang, M.; DeAngelis, D.L.; Janse, J.H.; Janssen, A.B.G.; Troost, T.A.; van Wijk, D.; Mooij, W.M.; Teurlincx, S. A generically parameterized model of Lake eutrophication: The impact of Stoichiometric ratios and constraints on the abundance of natural phytoplankton communities (GPLake-S). Ecol. Model. 2022, 473, 110142. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, K.; Lin, Q.; Huang, S.; Yang, X. Assessing lake ecosystem health from disturbed anthropogenic landscapes: Spatial patterns and driving mechanisms. Ecol. Indic. 2023, 147, 110007. [Google Scholar] [CrossRef]
- Park, R.A.; Clough, J.S.; Wellman, M.C. AQUATOX: Modeling environmental fate and ecological effects in aquatic ecosystems. Ecol. Model. 2008, 213, 1–15. [Google Scholar] [CrossRef]
- Akkoyunlu, A.; Karaaslan, Y. Assessment of improvement scenario for water quality in Mogan Lake by using the AQUATOX Model. Environ. Sci. Pollut. Res. 2015, 22, 14349–14357. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Gou, Q.; Wang, X.; Zhang, Y. Simulation of a water ecosystem in a landscape lake in Tianjin with AQUATOX: Sensitivity, calibration, validation and ecosystem prognosis. Ecol. Model. 2016, 335, 54–63. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, J.; Song, T.; Liu, Y. Application of an AQUATOX model for direct toxic effects and indirect ecological effects assessment of Polycyclic aromatic hydrocarbons (PAHs) in a plateau eutrophication lake, China. Ecol. Model. 2018, 388, 31–44. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, L.; Daut, G.; Ju, J.; Lin, X.; Wang, Y.; Zhen, X. Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China. Limnology 2009, 10, 149–158. [Google Scholar] [CrossRef]
- Zhou, S.; Kang, S.; Chen, F.; Joswiak, D.R. Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau. J. Hydrol. 2013, 491, 89–99. [Google Scholar] [CrossRef]
- Si, Y.; Li, Z.; Wang, X.; Liu, Y.; Jin, J. Lake Ice Simulation and Evaluation for a Typical Lake on the Tibetan Plateau. Water-Sui 2023, 15, 3088. [Google Scholar] [CrossRef]
- Wu, C.; Liu, G.; Cong, L.; Li, X.; Liu, X.; Liu, Y.; Wu, D.; Zhang, Y.; Bai, D. ENSO-driven hydroclimate changes in central Tibetan Plateau since middle Holocene: Evidence from Zhari Namco’s lake sediments. Quat. Sci. Rev. 2024, 330, 108593. [Google Scholar] [CrossRef]
- Keil, A.; Berking, J.; Mügler, I.; Schütt, B.; Schwalb, A.; Steeb, P. Hydrological and geomorphological basin and catchment characteristics of Lake Nam Co, South-Central Tibet. Quatern. Int. 2010, 218, 118–130. [Google Scholar] [CrossRef]
- Song, C.; Ye, Q.; Cheng, X. Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations. Sci. Bull. 2015, 60, 1287–1297. [Google Scholar] [CrossRef]
- Li, M.; Yan, D.; Liu, S.; Qin, T.; Yao, L. Variation characteristics of water surface area and water storage capacity of Namucuo Lake in recent 40 years. Water Resour. Power 2017, 35, 41–43, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Wu, G. Meteorological Observation Data from the Integrated Observation and Research Station of Multiple Spheres in Namco (2005–2016). National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://data.tpdc.ac.cn/en/data/c97bce0f-bf67-4dcc-b864-d7e4d8cff62f (accessed on 5 June 2024).
- Wang, J.; Wu, G. Meteorological Observation Data of Namuco Multi Circle Comprehensive Observation and Research Station (2017–2018). National Tibetan Plateau/Third Pole Environment Data Center. 2019. Available online: https://data.tpdc.ac.cn/en/data/aa49fcc6-521f-4027-a481-8e49b32d16b5/ (accessed on 5 June 2024).
- Wang, J.; Huang, L.; Ju, J.; Daut, G.; Ma, Q.; Zhu, L.; Haberzettl, T.; Baade, J.; Mäusbacher, R.; Hamilton, A.; et al. Seasonal stratification of a deep, high-altitude, dimictic lake: Nam Co, Tibetan Plateau. J. Hydrol. 2020, 584, 124668. [Google Scholar] [CrossRef]
- Wang, J. Water Temperature Observation Data at Nam Co Lake in Tibet (2011–2014). National Tibetan Plateau/Third Pole Environment Data Center. 2020. Available online: https://data.tpdc.ac.cn/en/data/44702bf5-52e4-4a47-ab8a-7ad359ef1a98/ (accessed on 5 June 2024).
- Ren, M.; Sun, L. Investigation, development and utilization of fish resources in Namco, Xizang. Freshw. Fish. 1982, 4, 1–10. (In Chinese) [Google Scholar]
- Kai, J.; Wang, J.; Huang, L.; Wang, Y.; Ju, J.; Zhu, L. Seasonal variations of dissolved organic carbon and total nitrogen concentrations in Nam Co and inflowing rivers, Tibet Plateau. J. Lake Sci. 2019, 31, 1099–1108, (In Chinese with English Abstract). [Google Scholar]
- Guo, J.; Kang, S.; Zhang, Q.; Huang, J.; Wang, K. Temporal and Spatial Variations of Major Ions in Nam Co Lake Water, Tibetan Plateau. Environ. Sci. 2012, 33, 2295–2302. (In Chinese) [Google Scholar]
- Wang, S.; Li, J.; Zhang, B.; Spyrakos, E.; Tyler, A.N.; Shen, Q.; Zhang, F.; Kuster, T.; Lehmann, M.K.; Wu, Y.; et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sens. Environ. 2018, 217, 444–460. [Google Scholar] [CrossRef]
- Li, N.; Jiaxi, L.; Guowen, L.; Ye, L.; Beidou, X.; Yiwen, W.; Caole, L.; Wei, L.; Lieyu, Z. The eutrophication and its regional heterogeneity in typical lakes of China. Acta Hydrobiol. Sin. 2018, 42, 854–864, (In Chinese with English Abstract). [Google Scholar]
- Shu, J.; Huang, W.; Wu, Y. Studies on the classification of tropic types of China’s lakes. J. Lake Sci. 1996, 8, 193–200. [Google Scholar]
- Chen, F.; Li, S.; Song, K. Remote sensing of lake chlorophyll-a in Qinghai-Tibet Plateau responding to climate factors: Implications for oligotrophic lakes. Ecol. Indic. 2024, 159, 111674. [Google Scholar] [CrossRef]
- Pang, S.; Zhu, L.; Liu, C.; Ju, J. Causes and Impacts of Decreasing Chlorophyll-a in Tibet Plateau Lakes during 1986–2021 Based on Landsat Image Inversion. Remote Sens. 2023, 15, 1503. [Google Scholar] [CrossRef]
- Sun, K.; Deng, W.; Jia, J.; Gao, Y. Spatiotemporal patterns and drivers of phytoplankton primary productivity in China’s lakes and reservoirs at a national scale. Glob. Planet Change 2023, 228, 104215. [Google Scholar] [CrossRef]
- Xiao, Q.; Xu, X.; Qi, T.; Luo, J.; Lee, X.; Duan, H. Lakes shifted from a carbon dioxide source to a sink over past two decades in China. Sci. Bull. 2024, 69, 1857–1861. [Google Scholar] [CrossRef] [PubMed]
- Marcé, R.; Pierson, D.; Mercado-Bettin, D.; Thiery, W.; Tan, Z.; Seneviratne, S.; Golub, M.; Debolskiy, A.; Stepanenko, V.; Perroud, M.; et al. ISIMIP2b Simulation Data from the Global Lakes Sector; ISIMIP Repository: 2022. Available online: https://data.isimip.org/10.48364/ISIMIP.931371 (accessed on 5 June 2024).
- Huo, S.; Xi, B.; Su, J.; Zan, F.; Chen, Q.; Ji, D.; Ma, C. Determining reference conditions for TN, TP, SD and Chl-a in eastern plain ecoregion lakes, China. J. Environ. Sci. 2013, 25, 1001–1006. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Y.; Zhou, T.; Wang, Y.; Wang, L.; Yang, J.; Shang, Y.; Chen, F.; Hei, P. Phosphorus accumulation during the ice-on season in macrophyte-dominated eutrophic lakes and its implications. J. Environ. Manag. 2024, 360, 121096. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhang, B.; Lee, Z.; Spyrakos, E.; Feng, L.; Liu, C.; Zhao, H.; Wu, Y.; Zhu, L.; et al. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS. Remote Sens. Environ. 2020, 247, 111949. [Google Scholar] [CrossRef]
- He, Y.; Lu, Z.; Wang, W.; Zhang, D.; Zhang, Y.; Qin, B.; Shi, K.; Yang, X. Water clarity mapping of global lakes using a novel hybrid deep-learning-based recurrent model with Landsat OLI images. Water Res. 2022, 215, 118241. [Google Scholar] [CrossRef]
Type | Parameter | Value | Reference |
---|---|---|---|
Lake characteristics | Surface area Mean depth Maximum depth | 1997.55 km2 40 m 95 m | [47] [41] [41] |
Local climate | Shortwave radiation Wind speed | Figure 2a Figure 2b | [48,49] [48,49] |
Lake thermodynamics | Water temperature Water volume Water evaporation | Figure 2d Figure 2c 27.52 int | [50,51] [47] [16] |
Parameter | Value Set for Diatom Algae | Value Set for Green Algae |
---|---|---|
Optimal temperature | 18 °C | 20 °C |
Photorespiration coefficient Mortality coefficient | 0.05 d−1 0.001 g (g d)−1 | 0.08 d−1 0.001 g (g d)−1 |
Sedimentation rate | 0.015 m d−1 | 0.005 m d−1 |
Saturation intensity | 300 Ly d−1 | 110 Ly d−1 |
Variable | Simulated Relative Error (%) |
---|---|
SD | 12 |
WTP WTN | 17 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Chang, L.; Gu, X.; Duan, R.; Ma, M. Lake Water Ecological Simulation for a Typical Alpine Lake on the Tibetan Plateau. Water 2024, 16, 1982. https://doi.org/10.3390/w16141982
Zhang Q, Chang L, Gu X, Duan R, Ma M. Lake Water Ecological Simulation for a Typical Alpine Lake on the Tibetan Plateau. Water. 2024; 16(14):1982. https://doi.org/10.3390/w16141982
Chicago/Turabian StyleZhang, Qunhui, Liang Chang, Xiaofan Gu, Rui Duan, and Maonan Ma. 2024. "Lake Water Ecological Simulation for a Typical Alpine Lake on the Tibetan Plateau" Water 16, no. 14: 1982. https://doi.org/10.3390/w16141982
APA StyleZhang, Q., Chang, L., Gu, X., Duan, R., & Ma, M. (2024). Lake Water Ecological Simulation for a Typical Alpine Lake on the Tibetan Plateau. Water, 16(14), 1982. https://doi.org/10.3390/w16141982